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ON THE POSITIVITY OF 2D FRACTIONAL LINEAR
ROESSER MODEL USING THE CONFORMABLE

DERIVATIVE
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Djillali BOUAGADA ∗3

In this paper, we focus on the positivity of 2D fractional lin-
ear hybrid systems (continuous- discrete time). Precisely, we investigate
a new class of systems that are described by the Roesser model, in which
the considered derivative is the conformable fractional derivative. A general
solution is then given for these classes as well as necessary and sufficient
conditions for their positivity. Finally, some numerical examples are given
to illustrate our results.
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1. Introduction

In many physical systems, the variables are by nature positive, but the
usual models, in particular linear ones, do not generally integrate this con-
straint. Specific models have been developed by many scientists, including
compartmental models for medicine and biology, electrical models (RLC cir-
cuits), other models appear in the fields of social sciences, micro- and micro-
economics, manufacturing, communication, information science, and industrial
processes involving chemical reactor. [9, 11, 14, 18, 19, 21]. In control theory,
the two dimensional systems are a noteworthy type of physical system that
propagate the state in two independent directions. The models introduced by
Roesser are the most widely used models for linear systems in two dimensions.
Several authors introduced an overview of the positive two dimensional system
in control theory in the literature [9–11,14,15].
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Due to its usefulness in describing the derivation and integration of 
fractional orders in the case of two dimensional systems, fractional calculus 
is currently very popular among researchers in basic mathematical sciences 
and control theory engineers. Moreover, the 2D positive fractional systems 
in control theory has been introduced and developed in [11, 14, 16, 17]. The 
positivity conditions as well as, the asymptotic stability test and the stabi-
lization, were investigated in the standard form and in the fractional forms; 
see e.g.; [1, 3–5, 7, 8, 13]. To overcome certain problems in fractional calculus, 
Khalil et al. [22] presented a new fractional derivative called the conformable 
derivative. In [2], Abdeljawad gave some fundamental properties if the con-
formable fractional calculus. Kaczorek in [21] investigated the positivity and 
the stability of a 1D fractional linear continuous-time systems defined via the 
conformable derivative. Meanwhile, Thabet et al. in [25] have proposed a new 
work concerning the resolution of a non linear system using the conformable 
fractional derivative. Some other work that illustrate the importance and ap-
plicability of the new conformable fractional derivative are presented in [6,23].

This paper introduce a new class of 2D fractional linear continuous 
discrete-time systems (commonly called hybrid systems) that is described by 
the Roesser model using the conformable derivative. The solutions are calcu-
lated and the positivity conditions are derived.

In order to analyze the conformable Roesser models, this work aims to 
propose an efficient analytical method. The remainder of this paper is orga-
nized as follows. In Section 2, we introduce some preliminaries concerning 
the conformable fractional calculus which are discussed in this article. Sec-
tion 3 discusses an effective approach for solving the positive fractional con-
tinuous discrete-time linear system described by the Roesser model and the 
conformable fractional derivative. In Section 4 the main result concerning the 
positivity conditions will be derived. The usefulness of the proposed approach 
is demonstrated with some simulation results using numerical examples.

Notations

The following notations will be used: R is the set of real numbers, Rn×1
+ =

Rn
+ the space vectors of n non-negatives real entries, Rn×m

+ the space of the
matrices with non-negatives real entries and N is the set of natural number.

2. Preliminaries

In this section, we present the definition of the Metzler matrices and the
new fractional derivative of order α where α ∈ [0, 1[ called the conformable
derivative, see [22] and [2] for more details.

Definition 2.1. A = (aij)i,j is called a Metzler matrix if all its off-diagonal
entries are positive i.e.: ai,j ≥ 0 for all i 6= j.
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We denote by Mn the set of the real Metzler matrices with dimension 
n ≥ 1.

We recall the definition of the conformable derivative.

Definition 2.2. Let f be a function f : [0,∞[−→ R, the fractional con-
formable derivative of the function f is defined by the following relation:

dαf(t)

dtα
= lim

ε→0

f(t+ εt1−α)− f(t)

ε
, t > 0. (1)

The following theorem reveals some properties based on α- differentiable
functions.

Theorem 2.1. [22]
Let f and g be defined on [0,∞[ are α-differentiable, 0 < α < 1. Then,

for all a, b ∈ R we have the following relations:

dα

dtα
[
af(t) + bg(t)

]
= a

dαf(t)

dtα
+ b

dαg(t)

dtα
,

dα

dtα
[
f(t)g(t)

]
= f(t)

dαg(t)

dtα
+ g(t)

dαf(t)

dtα
,

dα

dtα

[
f(t)

g(t)

]
=
g(t)d

αf(t)
dtα
− f(t)d

αg(t)
dtα[

g(t)
]2 ,

dαf(t)

dtα
= t1−α

df(t)

dt
,

dαtq

dtα
= qtq−α , ∀q ∈ R,

dαeqt

dtα
= qt1−αeqt , ∀q ∈ R.

3. The 2D conformable fractional hybrid Roesser ant its solu-
tion

Consider a class of 2D fractional continuous discrete-time linear Roesser
model that propagates the state in two independent directions (horizontal and
vertical axes) and it is described by the state space equations,

dαxh(t, i)

dtα
= A11x

h(t, i) + A12x
v(t, i) +B1u(t, i), (2)

xv(t, i+ 1) = A21x
h(t, i) + A22x

v(t, i) +B2u(t, i), (3)

with t > 0, i ∈ N and 0 < α ≤ 1
Here, A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 , A21 ∈ Rn2×n1 , A22 ∈ Rn2×n2 are the state
matrices, xh(t, i) and xv(t, i) are the horizontal and vertical state variables
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respectively, B1 ∈ Rn1×m , B2 ∈ Rn2×m and xh(0, i) ∈ Rn1 , ∀i ∈ Z+ and xv(t, 0) ∈ 
Rn2 , ∀t ∈ R+ are the initial conditions.

The fractional differential operator dαxh(t,i)
dtα

is defined by

dαxh(t, i)

dtα
= lim

ε→0

xh(t+ εt1−α, i)− xh(t, i)
ε

, t > 0, i ∈ N∗. (4)

Since the equations (2) and (3) define a new class of systems, the reso-
lution is necessary to deduce the positivity conditions. Therefore, we firstly
prove the following result.

Theorem 3.1. The solution (xh(t, i), xv(t, i)) of the equations (2) and (3) has
the following form
xh(t, 0) = Φα(t)xh(0, 0) + Cαtx

v(t, 0) + Zαtu(t, 0) for i = 0

xh(t, i) = Φα(t)xh(0, i) +
i−1∑
k=0

Cαt(A21Cαt + A22)
i−(k+1)

[
A21Φα(t)xh(0, k)

+(A21Zαt +B2)u(t, k)] + Cαt(A21Cαt + A22)
ixv(t, 0) + Zαtu(t, i) for i ≥ 1

(5)
and

xv(t, i) =
i−1∑
k=0

(A21Cαt + A22)
i−(k+1)

[
A22Φα(t)xh(0, k)

+ (A21Zαt +B2)u(t, k)

]
+ (A21Cαt + A22)

ixv(t, 0) for i ≥ 1,

(6)

where the operators Cαt and Zαt are defined by the relations:

Cαt =

∫ t

0

e
A11
α

(tα−τα)A12τ
α−1dτ, (7)

Zαt =

∫ t

0

e
A11
α

(tα−τα)B1τ
α−1dτ (8)

and the transition matrices are defined by the following relation:

Φα(t) = e
A11
α
tα . (9)

Proof. By induction, the solution of the equation (2) is given by

xh(t, i) = e
A11
α
tαxh(0, i) +

∫ t

0

e
A11
α

(tα−τα)
[
A12x

v(τ, i) +B1u(τ, i)

]
τα−1dτ, (10)

and for i = 0

xh(t, 0) = e
A11
α
tαxh(0, 0)+

∫ t

0

e
A11
α

(tα−τα)[A12x
v(τ, 0)+B1u(τ, 0)

]
τα−1dτ. (11)

Following the equation (3) and for i = 0, we obtain

xv(t, 1) = A21x
h(t, 0) + A22x

v(t, 0) +B2u(t, 0), (12)
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replacing (11) in (12), we get

xv(t, 1) = A21

[
e
A11
α
tαxh(0, 0) +

∫ t
0
e
A11
α

(tα−τα)[A12x
v(τ, 0) +B1u(τ, 0)

]
τα−1dτ

]
+A22x

v(t, 0) +B2u(t, 0)

Hence

xv(t, 1) = A21Φα(t)xh(0, 0) +
(
A21Cαt + A22

)
xv(t, 0) +

(
A21Zαt +B2)u(t, 0),

(13)
Similarly, a substitution of (13) into (10) and taking i = 1, we get

xh(t, 1) = Φα(t)xh(0, 1) + Cαtx
v(t, 1) + Zαtu(t, 1),

Therefore

xh(t, 1) = CαtA12Φα(t)xh(0, 0) + Φα(t)xh(0, 1) + Cαt
(
A21Cαt (14)

+ A22

)
xv(t, 0) + Cαt

(
A21Zαt +B2

)
u(t, 0) + Zαtu(t, 1).

Suppose now that the solution is true for i = k, and prove that it is also
true for i = k + 1.
By the same manner and taking into account the relations (3), (5) and (6) for
i = k > 1, we have the following:

A21x
h(t, k) + A22x

v(t, k) +B2u(t, k) =

A21

{
Φα(t)xh(0, k) +

k−1∑
j=0

Cαt
(
A21Cαt + A22

)k−(j+1)[
A21Φα(t)

xh(0, j) + (A21Zαt +B2)u(t, j)
]

+ Cαt
(
A21Cαt + A22

)k
xv(t, 0)

+Zαtu(t, k)
}

+ A22

{ k−1∑
j=0

(
A21Cαt + A22

)k−(j+1)[
A21Φα(t)xh(0, j)

+(A21Zαt +B2)u(t, j) + (A21Cαt + A22)
kxv(t, 0)

]}
+B2u(t, k)

=
k∑
j=0

(A21Cαt + A22)
k−j[A21Φα(t)xh(0, j) + (A21Zαt +B2)u(t, j)

]
+(A21Cαt + A22)

k+1xv(t, 0)
= xv(t, k + 1).
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By the same procedure and using the (10),(5) and (6) for i = k > 1, we deduce 
the following relation:

Φα(t)x
h(0, k + 1) + Cαtxv(t, k + 1) + Zαtu(t, k + 1) =

Φα(t)xh(0, k + 1) + Cαt

{ k∑
j=0

(A21Cαt + A22)
k−j[

A21Φα(t)xh(0, j) + (A21Zαt +B2)u(t, j)
]

+ (A21Cαt

+A22)
k+1xv(t, 0)

}
+ Zαtu(t, k + 1)

= Φα(t)xh(0, k + 1) +
k∑
j=0

Cαt(A21Cαt + A22)
k−j[

A21Φα(t)xh(0, j) + (A21Zαt +B2)u(t, j)
]

+Cαt(A21Cαt + A22)
k+1xv(t, 0) + Zαtu(t, k + 1)

= xh(t, k + 1)

�

4. The positivity of the conformable Roesser models

The following definitions introduce the concept of the positivity of the
systems treated in Section 3, and we will test the positivity of these systems
by extracting necessary and sufficient conditions.

Definition 4.1. The two-dimensional linear hybrid system described by the
Roesser model which is defined by the equations (2) and (3) is called positive
if the state vectors xh(t, i) and xv(t, i) are positive for every positive initial
conditions xh(t, 0), xh(0, i) and all positive entries u(t, i) i.e.:

xh(t, i) ∈ Rn1
+ and xv(t, i) ∈ Rn2

+ where t ∈ R+, i ∈ Z+,

for all

xh(t, 0) ∈ Rn1
+ , xv(t, 0) ∈ Rn2

+ , t ∈ R+,
xh(0, i) ∈ Rn1

+ , xv(0, i) ∈ Rn2
+ , i ≥ 1, i ∈ Z+,

(15)

and every u(t, i) ∈ Rm
+ .

Theorem 4.1. The two-dimensional linear continuous discrete-time system
described by the Roesser model and defined by the equations (2) and (3) is
positive if and only if the following conditions are satisfied,

• A12 ∈ Rn1×n2
+ , A21 ∈ Rn2×n1

+ , A22 ∈ Rn2×n2
+ , B1 ∈ Rn1×m

+

and B2 ∈ Rn2×m
+ .

• A11 is a Metzler matrix

Proof. It is well known that for all t > 0 and 0 < α < 1 the matrix e
A11
α
tα

satisfies the following relation:
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e
A11
α
tα ∈ Rn1×n1

+ if and only if A11 is a Metzler matrix (see [21]).
We have

e
A11
α
tα =

∞∑
k=0

Ak11t
αk

αkk!
,

so

e
A11
α
tα = In +

A11

α
tα +

A2
11

2α2
t2α + . . . ,

then

e
A11
α
tα ∈ Rn1×n1

+ if A11 ∈Mn1 , 0 < α < 1 , ∀t > 0.

On the other hand if,
A11

α
∈Mn1 , then there exist a positive real β satisfying

A11

α
+ βIn > 0.

This leads to (A11

α
+ βIn

)
−
(
βIn
)

= −
(
βIn
)

+
(A11

α
+ βIn

)
,

Hence

e
A11
α
tα = e(

A11
α

+βIn)tα−(βIn)tα ,

= e(
A11
α

+βIn)tαe−(βIn)t
α

,

= e(
A11
α

+βIn)tαe−βInt
α ∈ Rn1×n1

+ , 0 < α < 1.

Therefore, e(
A11
α

+βIn)tα ∈ Rn1×n1
+ , ∀t ≥ 0.

Sufficient condition : Now Suppose that A11 ∈ Mn1 , A12 ∈ Rn1×n2
+ ,

A21 ∈ Rn2×n1
+ , A22 ∈ Rn2×n2

+ B1 ∈ Rn1×m
+ , B2 ∈ Rn2×m

+ and u(t, i) ∈ Rm
+ ,

∀t ≥ 0. Let

dαxh(t, i)

dtα
= A11x

h(t, i) + F1(t, i), (16)

xv(t, i+ 1) = A21x
h(t, i) + F2(t, i), (17)

where

F1(t, i) := A12x
v(t, i) +B1u(t, i), (18)

and

F2(t, i) := A22x
v(t, i) +B2u(t, i), (19)

According to the equations (17), (19) and for i = 0, we have:

xv(t, 1) = A21x
h(t, 0) + F2(t, 0)

= A21x
h(t, 0) + A22x

v(t, 0) +B2u(t, 0),
(20)
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If xv(t, 1) ∈ Rn2
+ , By the same, from equations (16), (18) and for i = 1, we get

dαxh(t, 1)

dtα
= A11x

h(t, 1) + F1(t, 1)

= A11x
h(t, 1) + A12A21x

h(t, 0) + A12A22x
v(t, 0)

+ A12B2u(t, 0) +B1u(t, 1).

(21)

On the other hand, the solution of the equation (16) satisfies the following
relation:

xh(t, i) = e
A11
α
tαxh(0, i) +

∫ t

0

e
A11
α

(tα−τα)F1(τ, i)τ
α−1dτ, (22)

So

xh(t, 1) = e
A11
α
tαxh(0, 1) +

∫ t

0

e
A11
α

(tα−τα)F1(τ, 1)τα−1dτ. (23)

Hence xh(t, 1) ∈ Rn1
+ .

Now, suppose that xh(t, k) ∈ Rn1
+ and xv(t, k) ∈ Rn2

+ , for k ≥ 1, ∀t > 0, and
let’s prove that according to the hypothesis of the theorem (4.1) we will have
xh(t, k + 1) ∈ Rn1

+ and xv(t, k + 1) ∈ Rn2
+ .

From the equations (17) and (19) we deduce that

xv(t, k + 1) = A21x
h(t, k) + F2(t, k)

= A21x
h(t, k) + A22x

v(t, k) +B2u(t, k),
(24)

Therefore xv(t, k + 1) ∈ Rn2
+ .

On the other hand

dαxh(t, k + 1)

dtα
= A11x

h(t, k + 1) + F1(t, k + 1)

= A11x
h(t, k + 1) + A12x

v(t, k + 1) +B1u(t, k + 1)

= A11x
h(t, k + 1) + A12

[
A21x

h(t, k) + A22x
v(t, k) +B2u(t, k)

]
+B1u(t, k + 1),

By the hypothesis of the Theorem (4.1)

F1(t, k + 1) = A12

[
A21x

h(t, k) + A22x
v(t, k) +B2u(t, k)

]
+B1u(t, k + 1) ∈ Rn1

+ .

Therefore

xh(t, k + 1) = e
A11
α
tαxh(0, k + 1) +

∫ t

0

e
A11
α

(tα−τα)F1(τ, k + 1)τα−1dτ,

Hence
xh(t, k + 1) ∈ Rn1

+ .
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Necessary condition:

Suppose that the system (2) and (3) is positive i.e.: xh(t, i) ∈ Rn1
+ , xv(t, i) ∈

Rn2
+ . Let:

u(t, 0) = 0, xv(t, 0) = 0, t ∈ R+.

According to the equations (2) and (5), for i = 0 we suppose that xh(0, 0) = ej,
where ej represents the jth column of the identity matrix In1 .
So, the trajectory of the system does not leave the positive orthant Rn1

+ only if

dαxh(t, 0)

dtα

∣∣∣∣∣
t=0

= A11x
h(0, 0)

= A11

[
Φα(0)xh(0, 0) + Cαtx

v(0, 0) + Zαtu(0, 0)
]

= A11ej ∈ Rn1
+ ,

this implies that aij ≥ 0 for i 6= j. Therefore, We deduce that A11 ∈Mn1 .
By the same manner, if xh(0, 0) = xv(0, 0) = 0 and i = 0, we will have

dαxh(t, 0)

dtα

∣∣∣∣∣
t=0

= B1u(0, 0) ∈ Rn1
+ ,

so, B1 ∈ Rn1×m
+ .

If xh(0, 0) = 0, u(0, 0) = 0 and i = 0, So

dαxh(t, 0)

dtα

∣∣∣∣∣
t=0

= A12x
v(0, 0) ∈ Rn2

+ ,

which implies that A12 ∈ Rn1×n2
+ .

Analogously, we prove the positivity of the matrices A21, A22 and B2. �

5. Examples and simulation

In this section we will show the applicability of the obtained result by
some numerical examples.

Example 5.1. The considered model described by the equation (2) and (3)
with α = 0.5, zero boundary conditions and system matrices

A =

 −2 −1 −1
1 −8 −1
1 1 −1


B =

 1
2
1


u(t, i) = 1 + i

Using the formula (5) and (6) theorem 3.1 we obtain the following figure
which represent the plot of the state variables
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Figure 1. The plot of state variables

Example 5.2. Let us consider the model described by the state space equation
(2) and (3) with α = 0.5, zero boundary conditions and system matrices

A =

 −1 3 1
5 −0.6 0

0.2 1.5 1.8



B =

 0.5
0.8
5


Applying the results of theorem 3.1 and the equations (5), (6) we obtain

the plot of the state variables
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Figure 2. The plot of state variables
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6. Concluding remarks

In this paper, a new class of two-dimensional hybrid fractional linear 
systems described by the Roesser model and formulated by the conformable 
derivative has been considered. Moreover, we established an effective com-
putational method for solving the 2D conformable fractional Roesser models 
using inductive reasoning. A new necessary and sufficient positivity conditions 
of the considered class of models are then proposed. To reveal the accuracy 
and usefulness of the proposed criteria, a numerical example is tested.
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