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FAULT TREE EVENT CLASSIFICATION BY NEURAL
NETWORK ANALYSIS

Mihai Alexandru BARBELIAN !, Casandra Venera BALAN (PIETREANU)?

Due to the growing trend of parallel processing power, it is desirable that the
existing modeling systems can be linked with compatible architectures. In addition
to increased processing capacity, these systems show flexibility, adaptability and are
able to predict events through a learning process. The application can be run on
parallel processors.

The Fault tree provides a linear, rigid analysis. In addition, Neural networks
could estimate nonlinear influence and deal with more events. Therefore, the
analysis of a Fault Tree by Neural networks can give results such as the setting of
the main event and its associated risk, and also the total probability of risk.
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1. Introduction

Modern technology interaction with natural phenomena influence the
factors and degree of risk, whose awareness, understanding and interpretation are
essential for the decisions to be taken and in order to handle risk and restore the
previous situation.

Loads exerted on the structure of an aircraft can be treated and modeled as
random variables in a probabilistic risk analysis, but the limitations of this
analysis aims the difficulty with which one can make a prediction of the exact
timing of malfunctions. Therefore, the importance of mathematical models is
essential, as these are computational methods that allow analysis of the operating
conditions, behavior/ system evolution, in order to estimate with a higher degree
of accuracy and make precise forecasts for the occurrence of defects.

The failure probability for non-repairable/repairable components, and the
constant failure probability can be calculated as follows:

1—e T
P=12t/(1+ 1) (1)
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A = component failure rate

T = exposure time

T = repair time

¢ = constant probability

Ratings projections for different levels of the system, allow a qualitative
analysis on the functioning as early as the design stage, highlighting possible
weaknesses and the likelihood of malfunctions, thus improving the level of safety.
In this regard, in order to maintain operational safety, the calculations allow for a
possible reconfiguration and improvement of the overall technical parameters; one
of the methods chosen for such a forecasting reliability analysis is redundancy. A
method adapted for assessing and quantifying the probability of failure for the
prediction reliability is the FTA (fault tree analysis), which brings out what lead to
the failed state [1].

2. Fault Tree Analysis

An event can be represented by the occurrence of a defect after a certain
time of operation. The attached probability in aviation is an indicator of the
accident/ incident accounting the realization of a number of conditions under a
certain criterion and it involves assigning a value that indicates the possibility of
achievement to each event.

As known, the probability is a number in the [0,1] range, therefore it
cannot be less than 0 (0%) or greater than 1 (100%).

0<PE)<1
P(Impossible,yen:) = P (®) =0 (2)
P(Certaingyen:) =P (E) =1

The Fault Tree is a deductive analysis which determines the failure
processes that lead to the undesired event [7]. Built through a reverse logic,
primary faults and then intermediates events are reconstructed in a backward way,
in order to outline the scenario and study the events that preceded the emergence
of the Top Event.

The decomposition of the main cause of an accident is made from the top,
through the tree branches, identified as intermediate events, and by the lowest
(basic) events described by material failures, human or environmental factors, etc.

[6].

Based on error modeling techniques regarding certain specific system
components, and combining them, the fault tree is set up as a puzzle, whose
constituent parts are located in primary and intermediate classes of events that
shape the built ramification.
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Fig. 1. The structure of a Fault Tree

Constructing a FT is an iterative process in which, after establishing the
correct top event, every iteration generates a necessary and sufficient cause,
respecting the limitations and taking into account the existing data through an
amply analysis.

The minimum cut sets establish types of independent items that produce
immediate faults or even the crash of the entire system [5]. This optimized
structure presumes that a basic event is not taken into account several times, so
this is not a redundant analysis. The minimum cut sets generates reliable results,
they are an indicator of the vulnerability of a system; a vulnerable system will
require small MCS, or even a few of them.

Using the notations:

TE = Top event,

MCS = Minimum cut set,

E = Basic event,

the probability of Top event and minimum cut sets will be calculated as
follows:

P(TE) = P (MCS; + MCS, + ... + MCS,)
P(TE) = £ P(MCS}) (3)
P(MCS) = P(E1)P(E3) ... P(Esmp)

The probability of the Top event is calculated as the sum of the
probabilities of minimum cut sets, which is the product of basic (primary) events
probability.

As mentioned, the qualitative analysis of the FT is conducted using data
from the minimum cut set and the probability is given by the product probability
of its basic events.

The fault tree in the example below refers to the inability to control an
UAV, due to propulsion, aeroelastic and environmental factors.



58 Mihai Alexandru Barbillian, Casandra Venera Balan (Pietreanu)

Inability to
cpntrol airerafft

Propulzion Asrpelaztic Uncontrolled vironmet |
factors factors movement
Loss of Wing Frost Turbulence| [mcidence of
lift torque @ i sunlicht
Pm_pallm' Propulsion ]ncmacF Inappropriath Instability Instability tp
pitch effect piopeller pitch  coggitions of flght |on OV ais|  stabilize aircipft

&) & ©

Fig. 2. Example of a Fault Tree Analysis for a UAV

If we consider the next probabilities for the basic events of the fault tree
developed above:

P(A1) =1-1075; P(A2) =2-10"*%; P(43)=2-10"°

P(B1) =1-1073; P(B2) =3-107%

P(C)=1-10"% P(C2)=2-10"3; P(C3)=1-10"*

P(D1)=2-107"3; P(D2)=2-10"% P(D3)=3-10"°

Knowing the relations stated next, we can calculate the probabilities of the
gates and finally of the top event.

Table 1
The calculus of probabilities for “OR” and “AND” gates
Type Number Probability
of of inputs
Gate
OR 2 P(A) + P(B) — P(A)P(B)
OR 3 (P(A) + P(B) + P(C)) — (P(AB) + P(AC) + P(BC)) + P(ABC)
OR 4 (P(A) + P(B) + P(C) + P(D)) — (P(AB) + P(AC) + P(AD) + P(BC) +
P(BD) + P(CD)) + (P(ABC) + P(ABD) + P(BCD) + P(ACD)) —
P(ABCF)
AND 2 P(A) « P(B) = P(A)P(B)
AND 3 P(A) « P(B) » P(C) = P(A)P(B)P(C)
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a.) P(P2) = (P(A1) + P(A2) + P(43)) — (P(A142) + P(A143) +
P(A243)) + P(A14243) = 2.2999380004 - 10™*

b.) P(P3) = P(B1) + P(B2) — P(B1)P(B2) = 1.2997 - 1073

c.) P(P4) = P(C1)P(C2)P(C3) =2-107°

d.) P(P5)=(P(D1) + P(D2) + P(D3)) — (P(D1D2) + P(D1D3) +
P(D2D3)) + P(D1D2D3) = 2.229534012 - 1073

e.) P(P1) = (P(P2)+ P(P3) + P(P4) + P(P5)) — (P(P2P3) +
P(P2P4) + P(P2P5) + P(P3P4) + P(P3P5) + P(P4P5)) + (P(P2P3P4) +
P(P2P3P5) + P(P3P4P5) + P(P2P4P5)) — P(P2P3P4P5) =
0.75552104370001118450872753131 - 1073

So, the calculated probability of the Top event is:

P(P1) = 3.75552104370001118450872753131 - 1073 = 3.8- 1073

3. Fault Tree Neural Network Analysis

The feed forward propagation neural networks allow the emulation of an
input-output behavior through neurons activation internal functions. This behavior
can be controlled through drive algorithms, the result being according to the
chosen algorithm, an exact input-output correlation or just at a stochastic level by
minimizing a cost function given by the square error between input and output [8].

Since feed forward propagation neural networks have a great opening to
the integration with programming environments with existing parallel processing
[9], the fault tree will be modeled with this type of network.

A fault tree modeling is necessary in order to obtain the required training
data sets.
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Fig. 3. The simulated model of the Fault Tree
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The feed forward neural network used for fault tree modeling is defined by
one input linear layer with as many neurons as primary events, one hidden
tangent-sigmoidal layer with a number of neurons adapted to the best learning
performance and one output layer for events and classes identification. The fault
tree used for neural network training has a perturbation selector to test the
network accuracy and to identify the perturbed probability for primary event and

its class.

The perturbed inputs for each event is as follows:
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Fig. 5. The perturbed inputs for each event

The training set used for neural network is generated from the deviation in
the perturbed states of primary events probability and the answer set of neural
network is defined accordingly to the number of events and classes. The answer of
the network is considered valid for values greater than 0.7.

Best Validation Performance is 3.3083e-20 at epoch 87

Train :
Validation |:
Test
Best

Mean Squared Error (mse)

87 Epochs

Fig. 6. Validation performance for 87 training epochs
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The best performance of neural network is achieved with a minimal
network architecture size by a triple number of neurons in the hidden layer
relative to the number of events. Best validation performance value is 3.3e72° and

is obtained after 87 epochs.
The training algorithm used for training is Levenberg-Marquadt and the
performance goal is defined by the mean square error.

Algorithms

Data Division: Random
Training:
Performance:

Derivative: Default

Progress
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Fig. 7. Training parameters for Levenberg-Marquadt algorithm

The answer of the network is shown in the following two figures.
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Fig. 8. Perturbations on probability and the desired neural network answer (continuous-red) and
actual (dotted — green)
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Fig. 9. Perturbations on probability and the desired neural network answer (continuous-red) and

actual (dotted — green)
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4. Conclusions

From the depicted answer in the previous graphs of the neural network, the
results achieved are considered accurate, this assuring a good detection for values
that are not in the training set. Also, for an imposed limit on the probability, one
can detect if we have an increase or an inaccurate value of the predicted state.
This is useful for a better analysis the of data, in order to take into consideration
only accurate values, and to provide a platform for parallel processing in case of
real time determination of predicted probability of failure.
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