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W. Heinzer, L.J. Ratliff Jr. And K. Shah have found in [3] and [4] a close
connection between ideal covers and the maximal embedded components of a non-
open ideal in a local Noetherian ring.

The aim of the paper is to obtain the analogous results concerning
submodule covers for a submodule of a strong Laskerian module over a local ring
(not necessarily Noetherian), which has a strongly primary component.
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1. Introduction

In [7] L.J. Ratliff Jr. And D.E. Rush have introduced the notion of ideal
covers in a local Noetherian ring. After introducing and studying in [2] the
concept of a maximal embedded component of a non-open ideal in a local
Noetherian ring, W. Heinzer, L.J. Ratliff Jr. and K. Shah have found in [3] and [4]
a close connection between ideal covers and maximal embedded components..

In [5] the author have introduced the analogue for maximal embedded
components of submodules and has obtained generalizations of the results of [2]
and [3] for submodules of a strong Laskerian module over a quasi-local ring.

The purpose of this paper is to obtain the analogous results of [3] and [4]
concerning covers of ideals for a submodule of a module over a local ring (not
necessarily Noetherian) that admits a strongly primary component.

The notation and the terminology are mainly as in [1].

Throughout the paper we denote by R a commutative ring with identity and by E
an R-module. By Ass (E/F) we denote the set of all associated prime divisors of
the submodule F (in the weak Bourbaki sense), i.e. Pe Ass(E/F)< P is a

minimal prime divisor of F:XR for some Xxe E\F.

In Section [2] we introduce the notion of a strongly primary component and give
the basic results we need later. In Section [3] the main results are (3.3) and (3.4),
which describe and give the number of covers of a strongly primary component of
a submodule as well as the relationship between the submodule covers and their
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strongly primary components. Two characterizations of a maximal strongly
primary component are given in (3.8).

2. Strongly Primary Components

Definition 2.1. Let P be a prime ideal of R and G a P-primary submodule of E.

G is a P-primary component of the submodule F of E if P e Ass(E/F) and if
there exists a submodule V of E such that P ¢ Ass(E/V) and F =GNV .

If, in addition, G is of finite exponent (i.e. there exists ne N such that
P"E < G) then G is called a strongly P-primary component of F.

Remark 2.2. If F is a P-primary submodule of E, then F is a P-primary
component of itself, since F=F NE and P ¢ AsS(E/E)= Ass(0)=J.
Moreover, each P-primary component of F coincides with F.

Indeed, let G be a P-primary component of F. Then F =GNV and
Pe Ass(E/V).

If G <V then it holds that G=F.

If G&V then there exists XxeG andxgV,so Xx¢F .Then V:XR=F:xRcP
since F is P-primary. So P € Ass(E /V), a contradiction.

Therefore it holds that if F is a P-primary submodule of E, then the unique P-
primary component of it is F.

Definition 2.3. Let P be a prime ideal in R and F a submodule of E, which has a
strongly P-primary component.

A maximal strongly P-primary component of F is a strongly P-primary
component of F, that is not properly contained in any other strongly P-primary
component of F.

Remark 2.4. Each strongly P-primary component of F is contained in a maximal
strongly P-primary component.

Indeed, let F =Q NV, where Q is a strongly P-primary component of F and
Peg Ass(E/V).Let A= {G ; G is a strongly P-primary component of F}. Since
20 is not empty (Q €% ) and 2 is inductive, by Zorn’s lemma 2 has a maximal
element, that is a maximal strongly P-primary component of F.

Remark 2.5. Let us remark the fact, that this maximal strongly P-primary
component depends on V.

Thus, in Q[X,Y],(X) is a maximal strongly (X) - primary component of the
ideal (X7, XY) and (X?, XY)=(X)"(X*,XY,Y") for each neN,n>2 .
Therefore V = (X*, XY ,Y") is not unique.

There are situations in which V is unique.
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LEMMA 26. If F is a submodule of E which has a strongly P-primary
component Q, F =Q NV, and P is maximal in Ass(E/F), then V is unique.

Proof. Let ne N be such thatP"E Q. ThenV =F : P".

3.Strongly Primary Components and Submodule Covers

Throughout this section we denote by (R,M) a local ring (not necessarily
Noetherian) and by E an R-module.

Definition 3.1. If G c H are submodules of E, then H is a cover of G if there
exists

Xxe H\G suchthat H=G+xR and MxcG.

Remark 3.2. A submodule is sheltered if and only if it admits exactly one cover.
Indeed, it is clear, that if a submodule has only one cover then it is sheltered.

For the converse, let G — E be a sheltered submodule of E. Then there exists
xe E, Xg G such that each submodule of E, which strictly contains G, contains
alsoG + xR . Therefore G+ XR/G is a simple submodule G+ XR/G =R/M and
MxcG. So G+ xR is the unique cover of G.

From now on we consider F a submodule of E, that admits a strongly M-primary
embedded component and in addition we assume that V =F :M" (from Lemma
(2.6)) for all large n e N has an irredundant primary decomposition.

The following proposition indicates us a way to construct two larger M-primary
components of a given M-primary component of F, which are not maximal
strongly M-primary components of F.

PROPOSITION 3.3. Let Q be a strongly M-primary component of F, which is not
maximal, F =QnV and M ¢ Ass(E/V). Then there exists veV \F such that

F +VR isacover of F and

Ve U{Q' ;Q  is a strongly M-primary component of F}
and there exists x e E such that :
(3.3.1) Q=Q+xR and Q,=Q+(x+V)R are strongly M-primary components
of F.
(3.3.2) Q and Q, arecoversof Q.

(3.3.3) There are no containment relations between Q, and Q, .

(334) QNQ,=Q.

Proof. Since M € Ass(E/F) it follows that Fc F:M . Let ve(F:M)\F.
Then VM c F cV . Since M & P for each P e Ass(E/V), it holds that veV .
Therefore veV \F and F +VR is a cover of F.
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Ve U{Q' ; Q' is a strongly M-primary component of F} because otherwise there

exists Q' a strongly M-primary component of F such that veQ'. Hence
veQ NV =F, which contradicts the choice of v. Since Q is not a maximal
strongly M-primary component of F, there exists Q ©Q a strongly M-primary
component of F . We claim that then there exists X € Q \Q such that MxcQ.
Indeed, let y € Q' \Q. Since Q is strongly M-primary, there exists n € N such that
M"ycQ and M"'yzQ. Therefore it exists acM"" such that ayeQ.
Considering x:=ay we get xeQ'\Q and MxcQ, therefore Q =Q+XR is a
cover of Q.

Since F=QnVcQ NV cQ NV =F it follows that Q is a strongly M-

primary component of F.
To complete the proof of (3.3.1) we must show that Q,NV =F, where

Q,=Q+(x+V)R.

For this, one containment is clear: Q, "V o F.To prove the opposite let
yeQ,NV . Then there existqeQ and d eR such that y=q+d(x+Vv)eV.
Therefore q+dxeV ,so q+dxeVNQ =F.If deM, then dveF,so yeF,
as desired. If d ¢ M ; then d isaunitin R. Since q+dxeQ we get dxeQ, and
because d is a unit it follows that X € Q, contradiction. Therefore d € M , hence
Q,NV =F ,so Q, is a strongly M-primary component of F.

To prove (3.3.2) note first that in (3.3.1) we have shown that Q, is a cover of
Q.

Let us prove now the statement for Q, .

Since VM c F and XM < Q, it follows that (x+V)M cQ+F =Q . Hence it
remains to show that X+v&Q. Suppose the opposite, if X+veQ cQ,, then,
since X €Q, we get that ve Q,, and this is a contradiction with the choice of V.
So the proof of (3.3.2) is complete.

To prove (3.3.3) observe that if Q, =Q, then X+veQ,, so it follows that
v € Q,, which does not hold.. If Q, = Q, then X—r(x+v)eQ,with reR.
If reM then x(I-r)eQ+VvM cQ+F =Q and so xeQ, which contradicts the
choice of X.
If re M it follows that X+veQ, , so veQ,, and this contradicts (3.3.1). Hence

(3.3.3) holds.
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For (3.3.4) observe that since Q, and Q, are distinct covers of Q, from the
definition of a cover it follows that Q =Q, N Q,. m|
PROPOSITION 3.4. Let Q= Q' be two strongly M-primary components of F,
F=QnV=Q NV,where V=F:M".neN , let xeQ \Q and let v be as in
(3.3). Then:

(3.4.1) Q+xR and Q+(x+kv)R are strongly M-primary components of F for all
units k inR.

(3.4.2) If Q+xR is a cover of Q, then for each unit k in R, Q+(x+kv)R is a
cover of Q, and there are card(R/M) such submodules.

Proof. For (3.4.1), since QcQ+xRcQ it follows that Q+ xR is a strongly

M -primary component of F . Then it follows, as shown in the proof of (3.3.1),
that Q+(x+V)R and Q+(x+kv)R are strongly M -primary components of F

for all units k in R.

For (3.4.2), the proof that each Q + (Xx+kVv)R is a cover of Q is the same as in
(3.3.2). So, to complete the proof of (3.4.2), it suffices to show that if k and k
are units in R such that K+ M #k + M , then Q+(X+kv)Rz Q+(x+kV)R.

For this, if X+kveQ+(x+kV)R then x+kv=q+r(x+kVv), with qeQ and
reR,so

(k—KW=q+(r-1)(x+kv)eQ+(x+kV)R.
Since k —k' is a unit in R, it follows that Ve Q +(Xx+k'V)R, which contradicts the

choice of v, since by (3.3.1) Q+(x+KkV)R is a strongly M - primary component
of F. O

There is a very close connection between covers of submodules and strongly M -
primary components of submodules. To be more specific, note first that in (3.3) it
is shown the existence of veV \F such that F +VR is a cover of F . Hence the
submodules F of E, which have a strongly M - primary component Q,
F=QnV, M ¢ Ass(E/V)and V admits an irredundant primary decomposition,

have covers.
On the other hand, if G is a submodule of E, which is not strongly M - primary
but which admits a finite irredundant primary decomposition, then G has the

properties of F,ie. G has a strongly M - primary component Q' , G=Q NV
and M ¢ Ass(E/V").

To see this, let L be acoverof G, L=G+ xR and XM <G .Then MLcGc L,
so GR, =LR, for each P eSpec(R)\{M}. Therefore, from G c L it follows
that G has a strongly M -primary component. Consider now
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M = {H c E submodule ;H o F and H is a strongly M -primary component
of F}

By (2.6) it follows that for each H € 1 we have F=H NV, where V=F:M",
neN.

The next result shows that if G > F is a submodule of E, then G et if and
only if there exists a one-to-one correspondence between the covers of F and the
covers of G that are not in 907

THEOREM 3.5. Let G c E be a submodule such that G > F . Then G e 9t if
and only if there exists a one-to-one correspondence between the covers F +wR
of F and the covers G+ xR of G suchthat G+xR ¢ .

This correspondence is given by F +wR corresponds to G+wR and G+ xR
corresponds to F +wR, where w=g+xe(F:M)\F, forsome geG.

Proof . Assume first that Ge 91 and let F+WR be a cover of F. Then
we(F:M)\FcV\F,so we(G+WR)nV , hence G+WR g 91 . Since G e M
it follows that w ¢ G. Further wM < F < G, therefore G +WR is a cover of G .

Consider now G+xR a cover of G such that G+ xR ¢ 91 .Then

F < (G+xR)nV , implying the existence of y € (G +XR)NV)\F such that

YM c(G+XR)NVI)M < (G+XxM)nNV =GNV =F.
Then Gc G+ YR, since y¢G (otherwise y € GNV =F, which contradicts the
choice of y) and G+ YyRc G+ xR, so G+ yYR=G+XR. Therefore y=g+xr
for a unit re R (otherwise ye€G). Hence r'y=r"'g+x. Taking w=r""y we
get that F +WR is a cover of F since w¢ F (otherwise ye F) and wM c F
because YM c F .

Observe that from this argument it follows that distinct covers of G which are
not in 9 determine distinct covers of F .

Let F+wR and F+UR be two distinct covers of F and suppose that
G+WR=G+UR. Then u=g+rw for some unit r € R ( since according to the
first part of the proof if Ge9, F+wR and F +uRare covers of F, then
G+wR and G+UR are covers of G), so u—rweGNn(F:M)cQnV =F,
where Q is a maximal strongly M -primary component of F that contains G .
Therefore F+WR=F +UR, which contradicts the hypothesis. Hence
G+wWR#G+UuUR and the one-to-one correspondence readily follows from this
result and (3.4).

Conversely, assume that G ¢ 991. Then F c GV . Consider xe (GNV)\F.
Then as before, there exists y € F +xR such that F+ yR is a cover of F. But
y e F+XR < G, so there does not exist such a one-to-one correspondence. O
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Remark 3.6. From (3.5) it follows that if Q is a strongly M -primary submodule
of E that contains F, then Q is a maximal strongly M -primary component of
F if and only if the covers of Q are the distinct submodules Q+WR , where the
submodules F +WR are distinct covers of F .

In [5] we introduced the following definition for an M -primary submodule:
Definition 3.7. Let Q be an M-primary submodule of E. IC(Q) denotes the set of
irreducible M-primary submodules that appear in some decomposition of Q as an
irredundant intersection of irreducible submodules.

We gave in [5] the following description of this set

IC(Q)={G ; G is an irreducible submodule of E, Q<G and Q:M G}

The next result gives us a connection between covers and the above mentioned set
IC(Q) as well as two characterizations of a maximal strongly M-primary
component of

F. The first equivalence of (3.8) is quite useful since in the case of strong
Laskerian modules it localizes nicely (see (3.9)).

THEOREM 3.8. Let Q be a strongly M-primary component of F. Then the
following are equivalent:

(3.8.1) Q is a maximal strongly M-primary component of F.

(3.8.2) No submodule of IC(Q) contains F:M.

(3.8.3) For each GeIC(Q) there exists xe F:M such that G+ xR is the

unique cover of G.
Proof. Assume that (3.8.1) holds and let G e IC(Q). Then Q:M ¢ G by [5,

2.13] and Q:M =Q+(F:M) by [5,2.6]. So, since Qc G it follows that
F:M & G, hence (3.8.1) implies (3.8.2).

Suppose that (3.8.2) holds and let GelC(Q). Then there -exists
Xe(F:M)\G hence G G+xR. Also XM c F G, hence G+ xR is a cover
of G . Therefore, since G is an irreducible submodule, it follows that G + xR is
the unique cover of G, proving thus that (3.8.2) implies (3.8.3). It is obvious that
(3.8.2) is a consequence of (3.8.3).

To complete the proof it suffices to show that if (3.8.1) does not hold, then
(3.8.2) does not. For this purpose, assume that Q is not a maximal strongly M -
primary component of F. Then Q+(F:M)cQ:M by[5,2.6]. Therefore there
exists an irreducible component G of Q+(F : M), that does not contain Q: M .
Then Q<G and (Q:M)z G, that means GelC(Q) by [5,2.13] and
(F :M)c G by construction. Therefore (3.8.2) does not hold. Hence we proved
that (3.8.2) implies (3.8.1). i
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COROLLARY 3.9. Let A be a commutative ring with identity, P a prime ideal of
A with ht(P)>1, E' a strong Laskerian A-module, F' a submodule of E', Q a

strong P-primary submodule of E' that contains F'. Then Q is a maximal P-
primary embedded component of F' if and only if no submodule of IC(Q)

contains F':P.

Proof. The statement follows immediately from the implication (3.8.1)=(3.8.2)
and [5,(3.3)]. O

PROPOSITION 3.10. If Q is a strongly M-primary submodule of E and if
GelIC(Q), then Q:M < H, where H is the unique cover of G. Moreover, it
holdsthat H =G +(Q:M).

Proof. Let GelC(Q). Then G is an irreducible submodule and therefore
H=G:M. Now, since QcG, it follows that Q:M cG:M =H . But by
[5,2.13)] (Q:M)z G, therefore H=G+(Q:M). o

COROLLARY 3.11. If Q is a maximal strongly M-primary component of F and
GelC(Q),then F:M isacoverof GN(F:M).

Proof. (3.8.1) =(3.8.2) shows that F:M G and (3.10) shows that
G+(Q:M) is the unique cover of G. Hence from F:M cQ:M we conclude

that G+(F:M)=G+(Q:M). The conclusion of the corollary follows now

from
(F:M)/(GN(F:M)) = (G+(F:M))/G ]
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