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          1. Introduction  

 
In [7] L.J. Ratliff Jr. And D.E. Rush have introduced the notion of ideal 

covers in a local Noetherian ring. After introducing and studying in [2] the 
concept of a maximal embedded component of a non-open ideal in a local 
Noetherian ring, W. Heinzer, L.J. Ratliff Jr. and K. Shah have found in [3] and [4] 
a close connection between ideal covers and maximal embedded components.. 
In [5] the author have introduced the analogue for maximal embedded 
components of submodules and has obtained generalizations of the results of [2] 
and [3] for submodules of a strong Laskerian module over a quasi-local ring. 
The purpose of this paper is to obtain the analogous results of [3] and [4] 
concerning covers of ideals for a submodule of a module over a local ring (not 
necessarily Noetherian) that admits a strongly primary component.  
The notation and the terminology are mainly as in [1].  
Throughout the paper we denote by R a commutative ring with identity and by E 
an R-module. By Ass (E/F) we denote the set of all associated prime divisors of 
the submodule F (in the weak Bourbaki sense), i.e.  ( / )P Ass E F∈ ⇔  P is a 
minimal prime divisor of F:xR for some \x E F∈ . 
In Section [2] we introduce the notion of a strongly primary component and give 
the basic results we need later. In Section [3] the main results are (3.3) and (3.4), 
which describe and give the number of covers of a strongly primary component of 
a submodule as well as the relationship between the submodule covers and their 
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strongly primary components. Two characterizations of a maximal strongly 
primary component are given in (3.8). 
  

2. Strongly Primary Components  
 
Definition 2.1.  Let P be a prime ideal of R and G a P-primary submodule of E. 
    G is a P-primary component of the submodule F of E if  ( / )P Ass E F∈  and if 
there exists a submodule V of E such that  ( / )P Ass E V∉  and F G V= ∩ . 
    If, in addition, G is of finite exponent (i.e. there exists n∈`  such that 

nP E G⊆ ) then G is called a strongly P-primary component of F.  
Remark 2.2.  If F is a P-primary submodule of E, then F is a P-primary 
component of itself, since F F E= ∩  and  ( / ) (0)P Ass E E Ass∉ = =∅ . 
Moreover, each P-primary component of F coincides with F.  
Indeed, let G be a P-primary component of F. Then F G V= ∩ and 

( / )P Ass E V∉ .  
If G V⊆  then it holds that G=F. 
If G V⊄  then there exists x G∈  and x V∉ , so x F∉ .Then : :V xR F xR P= ⊆  
since F is P-primary. So ( / )P Ass E V∈ , a contradiction. 
Therefore it holds that if F is a P-primary submodule of E, then the unique P-
primary component of it is F. 
Definition 2.3.  Let P be a prime ideal in R and F a submodule of E, which has a 
strongly P-primary component. 
   A maximal strongly P-primary component of F is a strongly P-primary 
component of F, that is not properly contained in any other strongly P-primary 
component of F. 
Remark 2.4.  Each strongly P-primary component of F is contained in a maximal 
strongly P-primary component. 
      Indeed, let F Q V= ∩ , where Q is a strongly P-primary component of F and 

( / )P Ass E V∉ . Let  {G=A  ; G is a strongly P-primary component of }F . Since 
A  is not empty (Q∈A ) and  A  is inductive, by Zorn’s lemma A  has a maximal 
element, that is a maximal strongly P-primary component of F. 
Remark 2.5.  Let us remark the fact, that this maximal strongly P-primary 
component depends on V.  
Thus, in [ , ], ( )X Y X_  is a maximal strongly ( )X  - primary component of the 
ideal 2( , )X XY  and 2 2( , ) ( ) ( , , )nX XY X X XY Y= ∩  for each , 2n n∈ ≥`  . 
Therefore 2( , , )nV X XY Y=  is not unique. 
There are situations in which V is unique.  
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LEMMA 2.6. If F is a  submodule of E which has a strongly P-primary 
component Q, F Q V= ∩ , and P is maximal in Ass(E/F), then V is unique. 
Proof.  Let n∈`  be such that nP E Q⊆ . Then : nV F P= .    
  

 3.Strongly Primary Components and  Submodule Covers 
 
Throughout this section we denote by ( , )R M  a local ring (not necessarily 
Noetherian) and by E an R-module. 
Definition 3.1. If  G H⊆  are submodules of E, then H is a cover of G if there 
exists  

\x H G∈  such that H G xR= +  and Mx G⊂ . 
Remark 3.2. A submodule is sheltered if and only if it admits exactly one cover. 
Indeed, it is clear, that if a submodule has only one cover then it is sheltered. 
For the converse, let G E⊂  be a sheltered submodule of E. Then there exists 

,x E∈  x G∉ such that each submodule of E, which strictly contains G, contains 
alsoG xR+ . Therefore G xR G+  is a simple submodule G xR G R M+ ≅  and 
Mx G⊂ .  So G xR+  is the unique cover of G. 
From now on we consider F a submodule of E, that admits a strongly M-primary 
embedded component and in addition we assume that : nV F M=   (from Lemma 
(2.6)) for all large n∈`  has an irredundant primary decomposition. 
The following proposition indicates us a way to construct two larger M-primary 
components of a given M-primary component of F, which are not maximal 
strongly M-primary components of F.  
PROPOSITION 3.3.  Let Q be a strongly M-primary component of F, which is not 
maximal, F Q V= ∩ and ( / )M Ass E V∉ . Then there exists \v V F∈  such that 
F vR+  is a cover of F  and  
                                     { ' ';v Q Q∉∪  is a strongly M-primary component of }F  
and there exists  x E∈  such that : 
(3.3.1)  1Q Q xR= +   and   2 ( )Q Q x v R= + +   are strongly M-primary components 
of F . 
(3.3.2)  1Q  and  2Q   are covers of Q . 
(3.3.3)  There are no containment relations between 1Q  and 2Q . 
(3.3.4)  1 2Q Q Q∩ = . 
 
Proof.  Since ( / )M Ass E F∈  it follows that :F F M⊂ .  Let ( : ) \v F M F∈ . 
Then vM F V⊂ ⊂ . Since M P⊄  for each ( / )P Ass E V∈ , it holds that v V∈ . 
Therefore \v V F∈  and F vR+  is a cover of F.  
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 { ' ';v Q Q∉∪  is a strongly M-primary component of }F  because otherwise  there 

exists "Q   a strongly M-primary  component of F such that  "v Q∈ . Hence  
"v Q V F∈ ∩ = , which contradicts the choice of v . Since Q is not a maximal 

strongly M-primary component of F, there exists 'Q Q⊃  a strongly M-primary 
component of F . We claim that then there exists ' \x Q Q∈  such that  Mx Q⊂ . 
Indeed, let ' \y Q Q∈ . Since Q is strongly M-primary, there exists n∈`  such that 

nM y Q⊆   and  1nM y Q− ⊄ . Therefore it exists 1na M −∈  such that ay Q∉ . 
Considering :x ay=  we get ' \x Q Q∈  and Mx Q⊂ , therefore 1Q Q xR= +  is a 
cover of Q.  
Since '

1F Q V Q V Q V F= ∩ ⊆ ∩ ⊆ ∩ =  it follows that 1Q  is a strongly M-
primary component of F. 
To complete the proof of (3.3.1) we must show that 2Q V F∩ = , where 

2 ( )Q Q x v R= + + . 
For this, one containment is clear: 2Q V F∩ ⊇ .To prove the opposite let 

2y Q V∈ ∩ . Then there exist q Q∈  and d R∈  such that ( )y q d x v V= + + ∈ . 
Therefore q dx V+ ∈ , so 1q dx V Q F+ ∈ ∩ = . If  d M∈ , then dv F∈ , so y F∈ , 
as desired. If d M∉ ; then d  is a unit in R . Since q dx Q+ ∈  we get dx Q∈ , and 
because d  is a unit it follows that x Q∈ , contradiction. Therefore  d M∈  , hence 

2Q V F∩ = , so 2Q  is a strongly M-primary component of F. 
   To prove (3.3.2) note first that in (3.3.1) we have shown that 1Q  is a cover of 
Q .  
Let us prove now the statement for 2Q . 
   Since vM F⊆  and xM Q⊆ , it follows that ( )x v M Q F Q+ ⊆ + =  . Hence it 
remains to show that x v Q+ ∉ . Suppose the opposite, if 1x v Q Q+ ∈ ⊂ , then, 
since 1x Q∈  we get that 1v Q∈ , and this is a contradiction with the choice of v . 
So the proof of (3.3.2) is complete. 
      To prove (3.3.3) observe that if 2 1Q Q⊆  then 1x v Q+ ∈ , so it follows that 

1v Q∈ , which does not hold.. If 1 2Q Q⊆  then ( )x r x v Q− + ∈ , with r R∈ .  
If r M∈  then (1 )x r Q vM Q F Q− ∈ + ⊆ + =  and so x Q∈ , which contradicts the 
choice of x .  
If r M∉  it follows that 1x v Q+ ∈  , so 1v Q∈ , and this contradicts (3.3.1). Hence 
(3.3.3) holds. 
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       For (3.3.4) observe that since 1Q  and 2Q  are distinct covers of Q , from the 
definition of a cover it follows that 1 2Q Q Q= ∩ .                                                 ,     
PROPOSITION 3.4. Let 'Q Q⊂  be two strongly M-primary components of F, 

'F Q V Q V= ∩ = ∩ , where : ,nV F M n= ∈`  , let ' \x Q Q∈  and let v  be as in 
(3.3). Then: 
(3.4.1) Q xR+  and ( )Q x kv R+ +  are strongly M-primary components of F for all 
units k  in R. 
 (3.4.2) If  Q xR+  is a cover of Q, then for each unit k  in R, ( )Q x kv R+ +  is a 
cover  of   Q , and there are card(R/M) such submodules.  
Proof.  For (3.4.1), since 'Q Q xR Q⊂ + ⊆  it follows that Q xR+  is a strongly 
M -primary component of F . Then it follows, as shown in the proof of (3.3.1), 
that ( )Q x v R+ +  and  ( )Q x kv R+ +  are strongly M -primary components of F  
for all units k  in R . 
     For (3.4.2), the proof that each ( )Q x kv R+ +  is a cover of Q  is the same as in 
(3.3.2). So, to complete the proof of (3.4.2), it suffices to show that if k  and 'k  
are units in R  such that 'k M k M+ ≠ + , then '( ) ( )Q x kv R Q x k v R+ + ⊄ + + .  
For this, if '( )x kv Q x k v R+ ∈ + +  then '( )x kv q r x k v+ = + + , with q Q∈  and 
r R∈ , so    
                           ' ' '( ) ( 1)( ) ( )k k v q r x k v Q x k v R− = + − + ∈ + + . 
Since 'k k−  is a unit in R, it follows that '( )v Q x k v R∈ + + , which contradicts the 
choice of v , since by (3.3.1) '( )Q x k v R+ +  is a strongly M - primary component 
of F .   ,  
There is a very close connection between covers of submodules and strongly M - 
primary components of submodules. To be more specific, note first that in (3.3) it 
is shown the existence of \v V F∈  such that F vR+  is a cover of F . Hence the 
submodules F of E , which have a  strongly M - primary component  Q , 
F Q V= ∩ , ( / )M Ass E V∉ and V  admits an irredundant primary decomposition, 
have covers. 
On the other hand, if G  is a submodule of E , which is not  strongly M - primary  
but which admits a finite irredundant primary decomposition, then G  has the 
properties of F , i.e. G  has a strongly M - primary component 'Q , ' 'G Q V= ∩  
and '( / )M Ass E V∉ . 
 To see this, let L  be a cover of G , L G xR= +  and xM G⊂ .Then ML G L⊆ ⊂ , 
so P PGR LR=  for each  ( ) \{ }P Spec R M∈ . Therefore, from G L⊂  it follows 
that G  has a strongly M -primary component. Consider now  
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{H E= ⊂M  submodule ; H F⊃   and  H  is a strongly M -primary component 

of }F  

By (2.6) it follows that for each H ∈M  we have F H V= ∩ , where : nV F M= , 
n∈` .  
The next result shows that if G F⊃ is a submodule of E , then G∈M  if and 
only if there exists a one-to-one correspondence between the covers of F  and the 
covers of G  that are not in M . 
THEOREM 3.5.  Let  G E⊂  be a submodule such that G F⊃ . Then G∈M  if 
and only if there exists a one-to-one correspondence between the covers F wR+  
of F  and the covers G xR+  of G  such that  G xR+ ∉M . 
This correspondence is given by  F wR+  corresponds to G wR+  and  G xR+  
corresponds to F wR+ , where ( : ) \w g x F M F= + ∈ , for some g G∈ . 
Proof .  Assume first that G∈M  and let F wR+  be a cover of F . Then 

( : ) \ \w F M F V F∈ ⊆ , so ( )w G wR V∈ + ∩ , hence G wR+ ∉M . Since G∈M  
it follows that .w G∉  Further wM F G⊆ ⊆ , therefore G wR+  is a cover of G . 
    Consider now  G xR+   a cover of G  such that G xR+ ∉M .Then  

( )F G xR V⊂ + ∩ , implying the existence of (( ) ) \y G xR V F∈ + ∩  such that     
                 (( ) ) ( )yM G xR V M G xM V G V F⊆ + ∩ ⊆ + ∩ ⊆ ∩ = .  
Then G G yR⊂ + , since y G∉  (otherwise y G V F∈ ∩ = , which contradicts the 
choice of y )  and G yR G xR+ ⊆ + , so G yR G xR+ = + . Therefore y g xr= +  
for a unit r R∈  (otherwise y G∈ ). Hence 1 1r y r g x− −= + . Taking 1w r y−= we 
get that F wR+  is a cover of F  since w F∉  (otherwise y F∈ ) and wM F⊂  
because yM F⊂ . 
     Observe that from this argument it follows that distinct covers of G  which are 
not in M  determine distinct covers of F . 
    Let F wR+  and F uR+  be two distinct covers of  F  and suppose that 
G wR G uR+ = + . Then u g rw= +  for some unit r R∈ ( since according to the 
first part of the proof  if G∈M , F wR+  and F uR+ are covers of F , then 
G wR+  and G uR+  are covers of G ), so ( : )u rw G F M Q V F− ∈ ∩ ⊆ ∩ = , 
where Q  is a maximal strongly M -primary component of F that contains G . 
Therefore F wR F uR+ = + , which contradicts the hypothesis. Hence 
G wR G uR+ ≠ +  and the one-to-one correspondence readily follows from this 
result and  (3.4). 
    Conversely, assume that G∉M . Then F G V⊂ ∩ . Consider ( ) \x G V F∈ ∩ . 
Then as before, there exists y F xR∈ +  such that F yR+  is a cover of F . But 
y F xR G∈ + ⊆ , so there does not exist such a one-to-one correspondence.  ,   
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Remark 3.6. From (3.5)  it follows that if Q  is a strongly M -primary submodule 
of E  that contains F , then Q  is a maximal strongly M -primary component of 
F  if and only if the covers of Q  are the distinct submodules Q wR+ , where the 
submodules F wR+  are distinct covers of F . 
In [5] we introduced the following definition for an M -primary submodule: 
Definition 3.7. Let Q be an M-primary submodule of E. IC(Q) denotes the set of 
irreducible M-primary submodules that appear in some decomposition of Q as an 
irredundant intersection of irreducible submodules. 
We gave in [5] the following description of this set  

{( )IC Q G=  ; G  is an irreducible submodule of ,E  Q G⊆  and  }:Q M G⊄  
The next result gives us a connection between covers and the above mentioned set 
IC(Q)  as well as two characterizations of a maximal strongly M-primary 
component of  
F. The first equivalence of (3.8) is quite useful since in the case of strong 
Laskerian modules it localizes nicely (see (3.9)). 
THEOREM 3.8.  Let Q be a strongly M-primary component of F. Then the 
following are equivalent: 
(3.8.1) Q is a maximal strongly M-primary component of F. 
(3.8.2) No submodule of IC(Q) contains F:M. 
(3.8.3) For each ( )G IC Q∈  there  exists :x F M∈  such that G xR+  is the 

unique cover of G. 
Proof.  Assume  that (3.8.1) holds and let ( )G IC Q∈ . Then :Q M G⊄  by [5, 
2.13] and : ( : )Q M Q F M= +  by [5,2.6]. So, since Q G⊂  it follows that 

:F M G⊄ , hence (3.8.1) implies (3.8.2). 
      Suppose that (3.8.2) holds and let ( )G IC Q∈ . Then there exists 

( : ) \x F M G∈  hence G G xR⊂ + . Also xM F G⊆ ⊆ , hence G xR+  is a cover 
of G . Therefore, since G  is an irreducible submodule, it follows that G xR+  is 
the unique cover of G , proving thus that (3.8.2) implies (3.8.3). It is obvious that 
(3.8.2) is a consequence of (3.8.3). 
     To complete the proof it suffices to show that if (3.8.1) does not hold, then 
(3.8.2) does not. For this purpose, assume that Q  is not a maximal strongly M -
primary component of F . Then ( : ) :Q F M Q M+ ⊂  by[5,2.6]. Therefore there 
exists an irreducible component G  of ( : )Q F M+ , that does not contain :Q M . 
Then Q G⊆  and ( : )Q M G⊄ , that means ( )G IC Q∈  by [5,2.13] and 
( : )F M G⊆  by construction. Therefore (3.8.2) does not hold. Hence we proved 
that (3.8.2) implies (3.8.1).             ,   
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COROLLARY 3.9.  Let A be a commutative ring with identity, P a prime ideal of 
A with ht(P) 1≥ , 'E  a strong Laskerian A-module, 'F  a submodule of 'E , 'Q  a 
strong P-primary submodule of 'E  that contains 'F . Then 'Q  is a maximal P-
primary embedded component of 'F  if and only if no submodule of '( )IC Q  
contains ' :F P . 
Proof.  The statement follows immediately from the implication (3.8.1)⇒ (3.8.2) 
and [5, (3.3)].   ,  
PROPOSITION  3.10.  If Q is a strongly M-primary submodule of E and if 

( )G IC Q∈ , then :Q M H⊆ , where H is the unique cover of G. Moreover, it 
holds that ( : )H G Q M= + . 
Proof. Let  ( )G IC Q∈ . Then G  is an irreducible submodule and therefore 

:H G M= . Now, since Q G⊆ , it follows that : :Q M G M H⊆ = . But by 
[5,(2.13)]  ( : )Q M G⊄ , therefore ( : )H G Q M= + .  ,  
COROLLARY  3.11.  If Q is a maximal strongly M-primary component of F and 

( )G IC Q∈ , then :F M  is a cover of ( : )G F M∩ . 
Proof.  (3.8.1) ⇒ (3.8.2) shows that :F M G⊄  and (3.10) shows that 

( : )G Q M+  is the unique cover of G . Hence from : :F M Q M⊆  we conclude 
that  ( : ) ( : )G F M G Q M+ = + .  The conclusion of the corollary follows now 
from    
                                     ( : ) ( ( : )) ( ( : ))F M G F M G F M G∩ ≅ +                         ,  
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