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PARALLEL MULTI-VIEW CONCEPT CLUSTERING
ALGORITHM BASED ON SPARK

Xiaoming JIANG?, Huamin YANG?, Yuan REN®*, Zeming DU*, Qingzong LIU®

To address the explosive growth of data in today's big data era, the increasing
prevalence of multi-view and multi-modal data presents significant challenges for
traditional stand-alone clustering algorithms. In recent years, with the continuous
development of computer hardware, the popularization of cloud computing
technology, and the reduction of storage costs, the parallel transformation of
clustering algorithms is a way to face the above challenges. Conceptual
decomposition, as an extension of non-negative matrix factorization (NMF), retains
its advantages while removing the non-negativity constraint, thereby expanding its
applicability. This paper uses a multi-view clustering algorithm based on concept
decomposition, combined with Spark, the current mainstream parallel computing
framework, to implement a Spark-based multi-view conceptual clustering parallel
method, which improves the operating efficiency of the algorithm without reducing
the accuracy rate. Experimental results validate the performance and efficiency of the
proposed parallel method, demonstrating its suitability for big data clustering
analysis.

Keywords: Cluster analysis, Multi-view clustering, Conceptual factorization,
Parallel computing, Spark

1. Introduction

Due to the increase of data acquisition technologies (such as sensors,
cameras, web crawlers, etc.) and data formats (e.g., text files, database files,
structured files, HTML files, etc.) in recent years, multi-modal data has become
increasingly common. Matrix factorization algorithms have been widely used in
machine learning, data mining, and other fields, having the advantages of high
efficiency, easy implementation, and strong scalability [1]. NMF (Non-negative
matrix factorization) has been applied in the field of multi-view clustering and has
obtained high performance [2]. However, NMF requires that each element in the
data set must be non-negative, which largely limits its usage. To solve this
limitation, researchers have proposed the concept factorization algorithm (Concept
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Factorization, commonly referred to as CF algorithm). Inheriting the advantages of
NMF algorithms, the CF algorithm removes the constraint on the non-negativity of
the data set and extends the application of matrix factorization in the multi-view
clustering field. Therefore, the CF algorithm has gradually been attention paid by
domestic and foreign researchers. As the era of big data comes, the data volume is
increasing with the rapid development of various fields. This has brought new
challenges to the study of cluster analysis. To address the big data clustering
problem, a more effective approach is to integrate distributed technology and put
forward new clustering algorithms, or to transform existing traditional serial
clustering algorithms. Many parallel clustering algorithms have been proposed in
recent years [3]. Most of these algorithms are implemented based on the current
mainstream distributed computing framework, such as Hadoop MapReduce and
Spark. Spark is a distributed computing engine based on memory [4]. It is a
MapReduce computing model as well as Hadoop MapReduce, but Spark can store
intermediate calculation results in memory and reduce the program-to-disk 1/0
interaction, so Spark running efficiency is far higher than Hadoop MapReduce [5].
Because of its high efficiency and flexibility, Spark is more and more widely used
in the field of multi-view clustering.

In this paper, based on the concept decomposition algorithm, a multi-view
concept clustering algorithm based on concept decomposition is proposed. Then,
the algorithm is applied in the Spark distributed computing platform to achieve a
parallel approach based on Spark for multi-view concept clustering. The paper also
conducts experiments on the proposed method to verify its effectiveness.

2. Concept Decomposition Basic Model

The main idea of concept decomposition is the same as that of non-negative
matrix decomposition, for a given data matrix X € R**" (n is the number of samples
in the data set, d is the feature dimension of the sample). It is necessary to find two
matrices so that the multiplication result is infinitely close to the original data matrix
X[6]. The objective function is expressed as:

X~ XOv* (1)

Among them, U € R**"js the basis matrix, which is the coordinate basis in
the new space. V€ R™" is the coefficient matrix to replace the original data matrix
for subsequent processing [7]. In addition, the loss function describing the
approximation before and after concept decomposition is defined as:

n[]li;lOCF:HX*XUVTII% 2)

Using an iterative multiplicative update algorithm to solve the objective
function (2), the results are as follows:



Parallel multi-view concept clustering algorithm based on Spark 95

(KV)
41, bl NV 4
Uy Y (ROVTV)

z'tj+1 — ”z’tj’+1 (VévKT—UI?[j-) p

In the formula, t means iteration t. It is a linear kernel function, any other
ker[n]el function can be used instead, such as polynomial kernel, Gaussian kernel,
etcl®l,

When concept decomposition is actually applied to cluster analysis
scenarios, the final clustering results can be obtained through the following two
methods:

1) Specifies the number of clusters in the data set, let r=k, at this time, the
subscript of the maximum value of each row vector element in the mapping matrix
V is the cluster label of the clustering result;

2) Use other clustering algorithms to cluster the mapping matrix H.

The method proposed in this paper is to output the clustering results directly
in the mapping matrix according to method (1).

)

(Y

3. Multi-View Concept Clustering

The execution of concept decomposition is a linear decomposition process.
Therefore, the calculated new space can preserve the global characteristics of the
original data, while the original local characteristics may be lost®®l. In order to
preserve the original local characteristics of the data, the idea of manifold learning
is introduced, that is, the local geometric features of the data are represented by the
nearest neighbor graph!*®l. The weight of the edge is defined by a kernel function,
usually using a Gaussian kernel:

o s *

p ! ) .
e , X; and X;j are close ne|ghb9rs (4)
, X; and X are not close neighbors

The main advantage of this method is that it can keep the global
characteristics of data while effectively retaining its local characteristics.

Where a is the variance of the data features. Based on the geometric
structure between the sample points in the weight matrix S and the mapping matrix

Vis:
n
F= Z [v: — v;]] sy
i,j=1

= Tr(VTDV)— Tr (VT SV)
=Tr(VTLV)
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D is a diagonal matrix, defined as 2% o BT huh
L=D-S represents the graph Laplacian matrix!*%.

The general flow of the multi-view concept clustering algorithm (MVCC)
is shown in Fig. 1.

jare row vectors.

Concept factorization: X = XUV"
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Fig. 1. Flowchart of the multi-view conceptual clustering algorithm

Assume a data set X ={X"}_, with m views. X' ={z;}’_, € R“*" denotes
the data matrix of the vth view, which has d. features and n sample points. The
main task of MVCC is to find a consistent mapping matrix. The algorithm also uses
a penalty function to describe the approximation between the mapping matrix of
each view and the consistent mapping matrix, and its F-norm representation is as
follows:

Doy = w,|[[VY = V™|

s.t. w,=0, Zwv =1 ©)
v=1

where represents the weight of w, , let £ =[w,]. Combining equations
(2)(5)(6) together, the objective function can be obtained:
. < X" —X"W(H")"||F+
min O oo = UZ;{QTT((H”)TL”H”)+5’LUU| |H”H*||%}

(7

st w; =0,h;=0,h;=0,w,=0, E w, =1

v

Where o and Bare balance factors, which are used to balance the local
manifold regularization term and consistency penalty term, respectively.
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Let K'=(X")"X,R=V"—V*(K"is also a linear kernel), (7) can be
rewritten in the form of matrix trace:
. Tr(K")—2Tr((U)TK'V")+
minOyyee = Y Tr((U")"L'V") +
. “arr (V) TLV) 4 Bu, Tr((RY) T RY)

(8)
st.w; =0,k =0,k =0,w,20, Y w, =1

As can be seen from (8), it is a very challenging task to find the global
optimal solution for all variables simultaneously [12]. In the following content, an
iterative optimization algorithm based on the multiplication rule will be introduced,
which aims to find the optimal local solution for each variable. The solution process
is as follows:

1) Fixed V*,V* and 2, solve U":
At this time, it can be converted into the following formula to solve:

. "\ =2Tr((U)"K*V")+
minO =
o L\ Tr (U)K U (V') "V") ©)
st u; =0
Equivalent to:

(K“V"©) ..

v t+1 v t ij
(uZ]) A (uu) (KUUv (VU)TVU)Z-]- (10)

2) Fixed U*,V* and £2, solve V":
Let v; denote the Lagrange operator. Due to the nonnegative constraint on
v, and let ¥ =[1;], Then the Lagrangian function £(V*) for V"is expressed as:
LWV)=Tr(K")—2Tr((U")"K"U"(V")"V")
+aTr((V')"L"V") (11)
+ Bw,Tr((R")"R")— Tr(¥V")
Calculate the partial derivative of V*to (11), and apply the KKT condition
¥,v; =0, we can get:
(KU +aS"V'+ pwV*) ,
V' UY KU +aD'V + pwv), (12

i

(0p) " (wh) "

Orthogonalize U’ and V*to ensure the uniqueness of the solution. It can be
seen that the following formula:
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1
U U (Z7)?

Ve vi(zr) 2 (13)

ZV = diag (Z Vs enns Z v7-,”1>
3)Fixed U, V" and (2, solve V*:
At this point (8) is transformed into solving the following formula:
min0O (2)= > w||[V'—V*||}
) (14)
s.t. wa =1,w=0

Finding the partial derivative of V* to (14) and making it equal to 0 can be
solved to get:

V*=—2 = wV? (15)
o>

4) Fixed U*, V¥ and V*,solve £2:
At this time, the minimization problem of (8) will degenerate into a convex
optimization problem, expressed as:
minO ()= > w||[V'—V*||%

’ (16)
s.t. Zw =1,w=0

In order to effectively avoid the occurrence of invalid solutions, the
introduction of 2-norm sparse regularization can make the obtained perspective
weights more practical, specifically expressed as the following formula:

minO (2)= > w||V* —V*||3+~||2||?
’ 7
s.t. Zw:LwZO
Where the parameter v controls the smoothness of the weight vector 2.
Solving equation (17) can be regarded as a quadratic programming task.

4. Parallel Multi-View Concept Clustering Algorithm

Through the analysis of the above-mentioned multi-view concept clustering
algorithm MVCC, it can be seen that the main steps of the algorithm are
independent [13]. Therefore, the MVCC algorithm can be used for distributed
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parallel computing, thereby improving the performance and efficiency of the
algorithm [14].

Due to the data transmission of the distributed computing framework, disk
10 and network delay need to be considered. Therefore, putting data stored as close
together as possible can greatly improve the performance of the system [15].
Therefore, an important concept of Spark is: to only move tasks, not move data. By
storing data distributedly on multiple nodes, the Driver node can obtain the required
resources from the resource manager and then transmit the corresponding
computing tasks to each node, thereby realizing parallel processing of multiple
nodes [16].

The basic idea of the multi-view concept clustering parallel method is:

1) Assign a computing node to each view to calculate the association matrix

U" and the mapping matrix V*;

2) Allocate a computing node for the data set to calculate the consistency
mapping matrix V*;

3) Assign a calculation node to the view weight to calculate the view weight
0.

It can be seen from the above algorithm idea that the consistency matrix V*
and the weight vector f2are in a global position. Therefore, consider defining V*
and 2 as global variables.Through distributed storage of multi-view data
set {X’}~, in HDFS, U"and V"stored in each partition are generated to realize

parallel computing.

To sum up, the application of the MVCC algorithm in distributed parallel
computing has obvious advantages. By storing data tightly, reducing the cost of data
transmission, and adopting the strategy of only moving tasks, the MVCC algorithm
has achieved remarkable results in performance and efficiency. In addition, Spark's
distributed computing framework provides strong support for multi-node parallel
processing, which further enhances the practical application value of the algorithm.
With the continuous development of distributed computing technology, the MVCC
algorithm is expected to become an important pillar in the field of big data
processing in the future.

In Spark, it is the executors in each worker node that actually perform
computing operations. If the calculation of the executor needs to use the variables
in the driver, you need to apply for a copy of the variables from the driver[17]. The
number of tasks in the executor must be consistent with the number of variable
copies. This consumes a lot of memory resources and communication costs. Spark
provides a broadcast variable to help developers solve this problem[18]. Broadcast
variables are read-only variables that can be written and customized by developers.
They are cached in the executor, which can effectively reduce the communication
overhead between nodes and improve system performance.
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The steps of the parallel multi-view concept clustering algorithm are as
follows:

Algorithm 1 Parallel algorithm for multi-view clustering based on Spark

Input:Multi-view data matrix{x*}7~,, number of neighbors p, parameter
{a,8,~}, number of clusters k.

Output:Clustering result

Algorithm Description:

Initialization:

1.Store the data set in the distributed file system HDFS;

2.Read data set from HDFS, create view matrix RDD;

3.Use the map() function to convert the view matrix RDD to a graph
Laplacian matrix RDD;

4.Initialize the weight vector 2 and use it as a broadcast variable;

5.Use map() to perform kmeans on each view, and initialize U”, V¥, V*with

the result;
6.Cache U”, v, and use V*as a broadcast variable.

Iterative Calculation:
1. Fixed vv, v* and 2, Calculate U* from the formula (10) using map();

2. Fixed U”, v* and ¢, Calculate V* from the formula (12) using map();
3. Use map() to perform orthogonal normalization on U”and V"*according

to formula (13);

4. Use collectAsMap() to collect U* and V' operation results and cache them
in memory;

5. Fix U”, v and 2, calculate V*according to formula (15), and update the
consistency matrix V* to the broadcast variable;

6. Fix U, v* and v*, update 2according to formula (17), and update the
weight matrix 2 to broadcast variables.

7. According to the formula (8), it is judged whether the maximum number
of iterations or the convergence condition is reached, and if it is reached, the
iteration is exited, otherwise steps 1-7 in the iterative calculation are repeated,

8. Execute argmax;<;<, H*; to get the final clustering result.

The flowchart of the parallel multi-view conceptual clustering algorithm is
shown in Fig.2.
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Fig. 2. Flowchart of the parallel multi-view conceptual clustering algorithm

5. Experiment

5.1 Lab Environment

In this experiment, we use the "master-slave" architecture to test. The whole
experimental system includes a master node and two slave nodes, with three hosts
participating together. In order to ensure the smooth progress of the experiment, we
have strictly planned the hardware configuration and software environment of the
master node and the slave node. Specifically, the master node is equipped with a
high-performance processor, sufficient memory, and fast storage devices to ensure
stable operation when processing a large amount of data. Table 1 and Table 2 list
the specific parameters of the host configuration and development environment in

detail.
Table 1
Host configuration information
Spark01 Spark02 Spark03
CPU 8 cores 14cores 12cores
Memory 16G 16G 16G
SSD 1T 512G 1T
Table 2
Development environment
Spark01 Spark02 Spark03
operating system Debianl1.3 Debianl1.1 Debianl1.1
JDK 11.0.16 11.0.16 11.0.16
Hadoop Hadoop-3.3.4 Hadoop-3.3.4 Hadoop-3.3.4
Spark Spark-3.3.1 Spark-3.3.1 Spark-3.3.1
Python 3.9.13 3.9.13 3.9.13
Anaconda 22.9.0 22.9.0 22.9.0
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PySpark 3.3.1 | 3.3.1 | 3.3.1
IDE VS Code

5.2 Dataset Description

In this paper, the following three data sets are used in the experiment:
1) BBC data set

The BBC data set is a new data set, that contains 685 news reports from the
BBC, which can be divided into five categories (business, entertainment, politics,
sports, and technology). It is described by four views, and the dimensions are 4659-
dimensional, 4633-dimensional, 4665-dimensional, and 4684-dimensional. These
four dimensions reflect the richness and diversity of data sets and provide different
levels of analytical perspectives.

2) Handwritten Digits(HD)

The HD data set is a multimodal data set of handwritten images. The data
set has 10,000 samples, the two view dimensions are 784, 256, and 10 clusters.
These two views respectively represent different feature attributes of handwritten
images.

3) ALOI Dataset

ALOI is a multimodal object image data set. The data set has 11,025
samples, and the three view dimensions are 77, 64, 64, and 100 clusters. Compared
with other similar data sets, ALOI is unique in its rich multimodal features.

4) 3Sources Dataset

3Sources contains 948 news articles collected from three different media
outlets. Among these news reports, 169 were reported by three media at the same
time, and this part of the articles was selected as a multi-view data set, and each
news source was regarded as a view of the data set.

5) ORL Dataset

The ORL data set contains a face data set consisting of 400 pictures of 10
different photos of 40 people. The uniqueness of this data set is that it contains three
different types of feature sets, which represent different visual characteristics of
human faces, and provides multi-angle and multi-scale analysis methods.

See Table 3 for information about each data set. Although the datasets
utilized in this study are representative, they may not fully capture the diversity and
complexity of real-world data. Issues such as data skew and highly heterogeneous
distributions were not extensively tested, which could affect the framework's
generalizability in broader applications. Addressing these challenges will require

additional experimentation with more diverse and complex datasets.
Table 3
The Information of Data set
Data Set Number of samples Number of views Number of clusters
BBC 685 4 5
HD 10000 2 10
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ALOI 11025 3 100
3Sources 169 3 6
ORL 400 3 40

5.3 Evaluation Indicators

5.3.1 NMlI

Normalized mutual information (NMI) is an information measurement
method. The essence of clustering is to find patterns or structures in data, and NMI
provides a way to quantify the clustering effect. It is defined as follows:

VHX)H(Y)
In the formula, X and Y are N-dimensional vectors, I(X,Y)is the mutual

information of X and Y, and H(X) and H(Y) are the entropy of X and Y respectively.
The NMI value ranges from [0,1], the closer the NMI value is to 1, the better the
clustering effect.

5.3.2ACC
ACC is accuracy, defined as follows:

ACC = %Zy =map (p)) (19)

In the formula, p;is the label generated by the i-th sample in the cluster, y;
is its true label, and map () represents the redistribution of the cluster label, which

is usually implemented by the Hungarian algorithm. The ACC value ranges from
[0,1], and the closer the ACC value is to 1, the better the clustering effect.

5.3.3 Speedup Ratio

The acceleration ratio is an important performance evaluation index, which
is mainly used to measure the efficiency of parallel computing systems in
quantitative performance improvement. Its definition is as follows:

5

p

(20)

In the formula, T; is the running time under a single node, 7, is the running
time of parallel computing, and the larger S, is, the higher the parallelization
efficiency of the algorithm is.

5.4 Experimental Results and Algorithm Evaluation
5.4.1 Parallel Performance Experiment

In this experiment, the serial and parallel algorithms of multi-view concept
clustering are mainly concerned, and a total of 10 clustering processes are
empirically analyzed for the five data sets shown in Table 3. During the experiment,
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the time spent in each round of clustering will be recorded and the average value
will be calculated. In addition, the stability of the experimental results is measured
by calculating the standard deviation, which is the final experimental result. The
experimental results are shown in Table 4, Table 5, and Fig. 3 respectively. In these
tables and charts, the vertical axis MVCC represents the serial multi-view concept
clustering algorithm, and the horizontal axis represents different data sets (as
mentioned above).

Table 4 shows the experimental results of five data sets when using a serial
multi-view concept clustering algorithm. It can be observed that different data sets
have certain differences in clustering effect. This is because the distribution and
correlation of features may be different in different data sets, which leads to
different clustering results. Table 5 shows the experimental results of five data sets
under the parallel multi-view concept clustering algorithm. Similar to Table 4, we
can see that the parallel algorithm also shows some differences in different data
sets. However, it is worth noting that, compared with a serial algorithm, the parallel
algorithm has achieved a better clustering effect on some data sets. Fig. 3 shows the
experimental results visually. As can be seen from the figure, the parallel algorithm
does achieve better clustering results on some data sets, especially on data sets 5
and 6. However, on other data sets, the serial algorithm shows higher clustering
accuracy. This shows that in practical application, choosing the appropriate
clustering algorithm needs to be weighed according to the characteristics and needs
of specific data sets.

We can see from the experimental data recorded in Table 4, that the
minimum standard deviation of the running time of MVCC and PMVCC (for
different node numbers) running 10 times under different data sets is 0.0036, and
the maximum is 0.0178, which does not exceed 0.03, which belongs to a small
deviation range, so the errors in the experimental process, statistical omissions, and
the contingency of the experiment are excluded, and the data reliability is relatively
high.

Table 4
Running time of algorithm(s)

BBC HD ALOI 3Sources ORL

MVCC 9.23 95.64 58.77 6.20 38.68
(0.0077) (0.0047) (0.0111) (0.0063) (0.0102)

PMVCC 9.46 97.27 60.25 6.25 39.23
(1 node) (0.0178) (0.0054) (0.0137) (0.0064) (0.0083)

PMVCC 8.95 75.39 49.13 6.07 32.55
(2 node) (0.0132) (0.0075) (0.0064) (0.0058) (0.0083)

PMVCC 8.52 62.76 36.26 5.85 25.92
(3 node) (0.0092) (0.0044) (0.0036) (0.0102) (0.0056)

Table 5 uses the MVCC running time as the standard according to the
statistical results in Table 4, calculates the speedup ratio of using PMVCC under
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different node numbers according to formula (20), and draws the speedup ratio line

graph in Fig. 3 based on this. From the overall experimental results, PMVCC can
accelerate the traditional serial algorithm.

Table 5
Algorithm acceleration ratio
BBC HD ALOI 3Sources ORL
MVCC 1 1 1 1 1
PMVCC (1node) 0.9757 0.9832 0.9754 0.9920 0.9860
PMVCC (2 node) 1.0313 1.2686 1.1962 1.0214 1.1883
PMVCC (3 node) 1.0833 1.5239 1.6208 1.0598 1.4923

5.4.2 Clustering Effect Experiment

In this experiment, the multi-view concept clustering algorithm is used to
cluster the same data set many times. The main purpose of the experiment is to
compare and analyze the performance of serial and parallel algorithms in clustering
accuracy (ACC) and standard mutual trust (NMI) under different numbers of nodes,
so as to evaluate the stability and effect of the algorithms.

—@— BBC
] =+ HD
= ALOI
164 -‘- 3Source:

—— ORL

3

1

Fig. 3. Algorithm acceleration ratio under

2
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Fig. 4. Spread between the highest and lowest

values of ACC and NMI(%)

Table 6
Cluster evaluation the result of ACC(%)

BBC HD ALOI 3Sources ORL

MVCC 76.84 83.24 53.46 77.01 60.04
(0.0035) (0.0025) (0.0178) (0.0041) (0.0047)

PMVCC 75.89 83.57 53.61 76.93 60.93
(1 node) (0.0112) (0.0033) (0.0062) (0.0156) (0.0091)

PMVCC 75.08 84.88 54.08 76.88 60.23
(2 node) (0.0084) (0.0102) (0.0093) (0.0136) (0.0038)

PMVCC 75.23 84.67 54.56 77.43 60.55
(3 node) (0.0088) (0.0028) (0.0074) (0.0183) (0.0028)
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Fig.3 shows a consistent increase in acceleration ratio, experimental
limitations prevented a comprehensive exploration of its scalability. We were
unable to test the acceleration limit by adding more nodes or identifying the
platform period and inflection point of algorithm acceleration.

The experimental results are shown in Table 6, Table 7, and Fig. 4. From
these tables and graphs, we can clearly see the clustering effect of serial and parallel
algorithms under different node numbers. It is worth noting that in most cases, with
the increase in the number of nodes, ACC and NMI values will show an upward
trend. This shows that increasing the number of nodes is helpful to improve the
clustering effect. However, in some specific cases, the increase in the number of
nodes does not bring a better clustering effect, which may be related to the
characteristics of the data set.

In order to comprehensively evaluate the applicability of these two
algorithms in different scenarios, five representative data sets are selected for
experiments. During the experiment, each data set was clustered 10 times, and the
average accuracy rate (ACC) and Nash-Minton similarity index (NMI) of each
operation were calculated. Tables 6 and 7 show the average and standard deviation
of the experimental results. As can be seen from the table, MVCC and PMVCC
have achieved good clustering results under different node numbers [19]. In order
to visually represent the performance of each algorithm on each data set, the best
indicators obtained by each data set under different algorithm conditions are marked
in bold in the table. By comparing the statistical data in Table 6 and Table 7, we can
further analyze the performance differences of different algorithms on various data
sets. In order to more intuitively show the difference between the highest and lowest
values of clustering indicators of each data set under different algorithm conditions,
Fig. 4 is calculated and drawn, which is the line chart of the difference between the
highest and lowest values of clustering indicators obtained by each data set under
different algorithm conditions. The difference does not exceed 5%. It can be seen
that the parallelized multi-view concept clustering algorithm will not significantly
improve the clustering accuracy of the serial algorithm, and the clustering effect of
the algorithm is in a relatively stable state.

Table 7
Cluster evaluation the result of NMI(%)

BBC HD ALOI 3Sources ORL

MVCC 65.33 78.46 80.47 69.83 58.73
(0.0110) (0.0055) (0.0106) (0.0166) (0.0016)

PMVCC 64.94 79.82 82.55 69.57 60.11
(1 node) (0.0037) (0.0038) (0.0106) (0.0084) (0.0011)

PMVCC 65.26 80.02 82.18 70.17 59.62
(2 node) (0.0049) (0.0055) (0.0118) (0.0192) (0.0058)

PMVCC 65.11 78.96 82.95 70.43 59.82
(3 node) (0.0058) (0.0058) (0.0187) (0.0185) (0.0100)
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Based on the above experimental results, it can be shown that the parallel
multi-view concept clustering algorithm can have a considerable acceleration effect
on the original serial algorithm on the premise of ensuring that the accuracy of the
clustering results does not decrease.

6. Conclusion

With the rapid development of information technology, the challenge of
expanding data volume has become increasingly prominent. To address this, this
paper proposes a solution based on the current mainstream distributed computing
engine, Spark. The experimental results demonstrate that this method significantly
improves operational efficiency while ensuring accuracy.

First, while Fig.3 shows a consistent increase in acceleration ratio,
experimental limitations prevented a comprehensive exploration of its scalability.
We were unable to test the acceleration limit by adding more nodes or identifying
the platform period and inflection point of algorithm acceleration. These aspects
will be key focuses of our future research.

Secondly, as a memory-based parallel computing engine, Spark faces
potential challenges of memory overflow when handling large-scale datasets. While
Spark’ s data-spilling mechanism addresses such issues to some extent, it may lead
to significant performance degradation. Further exploration and optimization of
memory management strategies tailored to practical application scenarios are
required to address this limitation effectively.

Furthermore, although the datasets utilized in this study are representative,
they may not fully capture the diversity and complexity of real-world data. Issues
such as data skew and highly heterogeneous distributions were not extensively
tested, which could affect the framework's generalizability in broader applications.
Addressing these challenges will require additional experimentation with more
diverse and complex datasets.

Despite these limitations, this paper provides a detailed discussion of the
proposed framework, including its construction, the implementation of a multi-
view concept clustering algorithm on Spark, and an analysis of the results. We
believe that this approach offers an effective method for tackling the challenges of
expanding data volume.

In conclusion, while the distributed computing engine based on Spark and
the multi-view concept clustering algorithm demonstrate great potential, there are
still unresolved issues and challenges that need to be addressed. Through
continuous optimization and further research, we are confident that this framework
will play an increasingly significant role in future applications and contribute to the
advancement of related technologies and industries.
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