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ROCKAFELLAR’S PROXIMAL POINT ALGORITHM FOR A

FINITE FAMILY OF MONOTONE OPERATORS

Mohammad Eslamian 1

In this paper, we consider Rockafellar’s proximal point algorithm with
viscosity method for a finite family of monotone operators. We obtain the strong
convergence of the proposed algorithm to a common zero point for a finite family
of monotone operators in Hilbert spaces. The results obtained in this paper extend
and improve some recent known results.
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1. Introduction

Let H be a Hilbert space and let T be a set-valued mapping with domain
D(T ) = {x ∈ H : Tx ̸= ∅} and range R(T ) = {y ∈ H : ∃x ∈ D(T ), s.t. y ∈ Tx}.
Then the mapping T is said to be monotone if

⟨x1 − x2, y1 − y2⟩ ≥ 0, ∀xi ∈ D(T ), ∀yi ∈ T (xi), i = 1, 2.

A monotone operator T is said to be maximal monotone if the graph G(T ) of T ,

G(T ) = {(x, u) ∈ H ×H : u ∈ T (x)},
is not properly contained in the graph of any other monotone mapping. It is known
that T is maximal iff R(I+rT ) = H for every r > 0, where R(I+rT ) =

∪
{z+rTz :

z ∈ H,Tz ̸= ∅}. Monotone operators have proven to be a key class of objects in
modern Optimization and Analysis; see, e.g., the books [1-7] and the references
therein. Let us consider the zero point problem for a monotone operator T on a real
Hilbert space H, that is, finding a point z ∈ H, such that 0 ∈ Tz. This problem is
closely related to many kinds of important problems, such as minimization problems,
saddle point problems, equilibrium problems and others. In order to approximate
the solution to this problem, various types of iterative schemes have been proposed.
One of the most important methods is Rockafellar proximal point algorithm [8],
which generates a sequence {xn} according to the relation:

xn+1 = JT
rn(xn + en), (1.1)

where JT
r = (I + rT )−1 for all r > 0 is the resolvent of T and {en} is a sequence

of errors. Rockafellar’s proved the weak convergence of the algorithm (1.1). Guler’s
example however shows that in an infinite dimensional Hilbert space, Rochafellar’s
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algorithm has only weak convergence. To obtain the strong convergence, several
authors proposed modifications of Rochafellar’s proximal point algorithm (see for
instance [9-18]).

In 2002, Xu [14] investigated a modified version of the initial proximal point
algorithm studied by Rockafellar as follows:

xn+1 = tnx0 + (1− tn)J
T
rnxn + en, (1.2)

where x0 is the starting point of proximal point algorithm and {en} is the error
sequence. For {en} summable, it was proved that {xn} is strongly convergent if
rn −→ ∞ and {tn} ⊂ (0, 1) with limn−→∞ tn = 0,

∑∞
n=0 tn = ∞. Algorithm (1.2)

was further studied by Boikanyo and Morosanu [17] (see also [18]). Very recently,
Tian and Song [19] generalized the result of Xu [14]. In fact, they show that strong
convergence of (1.2) is preserved under the assumption that lim infn−→∞ rn > 0.
On the other hand, Moudafi [20] introduced the viscosity approximation method
for finding fixed point of a nonexpansive mapping (see [21] for further developments
in both Hilbert and Banach spaces). In this paper we prove strong convergence of
Rockafellar’s proximal point algorithm to a common zero point for a finite family of
monotone operators via viscosity method. Our result generalize some result of Tian
and Song [19], Boikanyo and Morosanu [17] and many others.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨., .⟩ and induced norm ∥.∥.
We write xn ⇀ x to indicate that the sequence {xn} converge weakly to x, and
xn −→ x to indicate that the sequence {xn} converges strongly to x. Let C be a
closed and convex subset of H. For every point x ∈ H, there exists a unique nearest
point in C, denoted by PCx. This point satisfies

∥x− PCx∥ ≤ ∥x− y∥ ∀y ∈ C.

The operator PC is called the metric projection or the nearest point mapping of H
onto C. The metric projection PC is characterized by the fact that PC(x) ∈ C and

⟨y − PC(x), x− PC(x)⟩ ≤ 0, ∀x ∈ H, y ∈ C.

It is well known that PC is a nonexpansive mapping. It is also known that H satisfies
Opial’s condition, i.e., for any sequence {xn} with xn ⇀ x, the inequality

lim inf
n−→∞

∥xn − x∥ < lim inf
n−→∞

∥xn − y∥

holds for every y ∈ H with y ̸= x.

Lemma 2.1. ([20]) There holds the following inequality in a Hilbert space H:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.

Lemma 2.2. Let H be a real Hilbert space. Then for xi ∈ H, ai ∈ [0, 1], i =

1, 2, · · · , k with
∑k

i=1 ai = 1, we have

∥a1x1 + a2x2 + · · ·+ akxk∥2 ≤ a1∥x1∥2 + a2∥x2∥2 + · · ·+ ak∥xk∥2.

Proof. We prove this by mathematical induction. If k = 2, then we have
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∥a1x1 + a2x2∥2= ⟨a1x1 + a2x2, a1x1 + a2x2⟩

=a21∥x1∥2 + a22∥x2∥2 + 2a1a2Re⟨x1, x2⟩

=a21∥x1∥2 + a22∥x2∥2 + a1a2(∥x1∥2 + ∥x2∥2 − ∥x1 − x2∥2)

=a1∥x1∥2 + a2∥x2∥2 − a1a2∥x1 − x2∥2

≤a1∥x1∥2 + a2∥x2∥2.

Hence the conclusion is holds. Suppose that the inequality holds for k = n− 1. Let
an ̸= 1 be chosen in such a way that

∑n
i=1 ai = 1. It follows from the induction

hypotheses that

∥a1x1 + a2x2 + · · ·+ anxn∥2=∥(1− an)
a1x1+a2x2+···+an−1xn−1

(1−an)
+ anxn∥2

≤ (1− an)∥a1x1+a2x2+···+an−1xn−1

(1−an)
∥2 + an∥xn∥2

≤a1∥x1∥2 + a2∥x2∥2 + · · ·+ an−1∥xn−1∥2 + an∥xn∥2.

�

Lemma 2.3. ([14]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn + βn, n ≥ 0,

where {γn}, {βn} and {δn} satisfy the conditions:

(i) γn ⊂ [0, 1],
∑∞

n=1 γn = ∞,
(ii) lim supn−→∞ δn ≤ 0 or

∑∞
n=1 |γnδn| < ∞,

(iii) βn ≥ 0 for all n ≥ 0 with
∑∞

n=0 βn < ∞.

Then limn−→∞ an = 0.

Lemma 2.4. ([22]) Let {tn} be a sequence of real numbers such that there exists a
subsequence {ni} of {n} such that tni < tni+1 for all i ∈ N. Then there exists a non-
decreasing sequence {s(n)} ⊂ N such that s(n) −→ ∞ and the following properties
are satisfied by all (sufficiently large ) numbers n ∈ N:

ts(n) ≤ ts(n)+1, tn ≤ ts(n)+1.

In fact

s(n) = max{k ≤ n : tk < tk+1}.

We now recall some properties of monotone operators.
Remark 1: It is well known that for λ > 0,

(i) T is monotone if and only if the resolvent JT
λ of T is single valued and firmly

nonexpansive, (see [8]).
(ii) T is maximal monotone if and only if JT

λ of T is single valued and firmly
nonexpansive and its domain is all of H (see [8, 24]).

(iii)

0 ∈ T (x⋆) ⇐⇒ x⋆ ∈ Fix(JT
λ ),

where Fix(JT
λ ) denotes the fixed point set of JT

λ . Since the fixed point set of
nonexpansive operators is closed convex, the projection onto the solution set
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Z = T−1(0) = {x ∈ D(T ) : 0 ∈ Tx} is well defined whenever Z ̸= ∅. For more
details, see [23, 24].

Lemma 2.5. [1](The Resolvent Identity) For λ, µ > 0, there holds the identity:

JT
λ x = JT

µ (
µ

λ
x+ (1− µ

λ
)JT

λ x), x ∈ H.

Lemma 2.6. ([19]) For each λ > 0, there holds the inequality:

∥JT
λ x− JT

λ y∥2 ≤ ∥x− y∥2 − ∥(x− JT
λ x)− (y − JT

λ x)∥2, x, y ∈ R(I + λT ).

3. Main Result

Now, we state our main result.

Theorem 3.1. Let Ti, (i = 1, 2, ...,m) be a finite family of monotone operators of a
Hilbert space H with Z =

∩m
i=1 T

−1
i ({0}) ̸= ∅. Assume that K is a nonempty closed

convex subset of H such that
∩m

i=1D(Ti) ⊂ K ⊂
∩m

i=1R(I + rTi) for all r > 0.
Assume that f is a k-contraction of K into itself. Let {xn} be a sequence generated
by x0 ∈ K and

xn+1 = an,0f(xn) + an,1J
T1
rn xn + an,2J

T2
rn xn + ...+ an,mJTm

rn xn + en, n ≥ 0,

where
∑m

i=0 an,i = 1. If {an,i}, {en} and {rn} ⊂ (0,∞) satisfy the following condi-
tions:

(i) limn−→∞ an,0 = 0 and
∑∞

n=0 an,0 = ∞,
(ii) lim infn−→∞ rn > 0 and {rn} ⊂ (0,∞),
(iii) en ∈ K satisfies

∑∞
n=0 ∥en∥ < ∞,

(iv) {an,i} ⊂ (b, 1) ⊂ (0, 1), i = 1, ...,m,

then the sequence {xn} converges strongly to z ∈ Z, where z = PZf(z).

Proof. First we show that {xn} is bounded. In fact, let z ∈ Z =
∩m

i=1 T
−1
i ({0}).

Noting that each resolvent JTi
rn is nonexpansive, we have

∥xn+1 − z∥=∥an,0f(xn) + an,1J
T1
rn xn + an,2J

T2
rn xn + ...+ an,mJTm

rn xn + en − z∥

≤an,0∥f(xn)− z∥+ an,1∥JT1
rn xn − JT1

rn z∥+ ...+ an,m∥JTm
rn xn − JTm

rn z∥+ ∥en∥
≤an,0∥f(xn)− z∥+ an,1∥xn − z∥+ ...+ an,m∥xn − z∥+ ∥en∥
≤an,0∥f(xn)− f(z)∥+ an,0∥f(z)− z∥+ (1− an,0)∥xn − z∥+ ∥en∥
≤an,0k∥xn − z∥+ an,0∥f(z)− z∥+ (1− an,0)∥xn − z∥+ ∥en∥
≤ (1− (1− k))∥xn − z∥+ an,0∥f(z)− z∥+ ∥en∥

≤max{∥xn − z∥, 1
1−k∥f(z)− z∥}+ ∥en∥

≤ ...

≤max{∥x0 − z∥, 1
1−k∥f(z)− z∥}+

∑n
i=1 ∥ei∥.

This implies that {xn} is bounded and we also obtain that {f(xn)} is bounded.
Next we show that for 1 ≤ i ≤ m and for all r > 0, limn−→∞ ∥xn − JTi

r xn∥ = 0. By
using Lemma 2.2 and Lemma 2.6, for some appropriate constant L > 0, we have
that
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∥xn+1 − z∥2=∥an,0f(xn) + an,1J
T1
rn xn + an,2J

T2
rn xn + ...+ an,mJTm

rn xn + en − z∥2

≤∥an,0f(xn) + an,1J
T1
rn xn + an,2J

T2
rn xn + ...+ an,mJTm

rn xn − z∥2 + L∥en∥

≤an,0∥f(xn)− z∥2 + an,1∥JT1
rn xn − JT1

rn z∥
2 + ...+ an,m∥JTm

rn xn − JTm
rn z∥2 + L∥en∥

≤an,0∥f(xn)− z∥2 + an,1∥xn − z∥2 − an,1∥xn − JT1
rn xn∥

2 + ...

+an,m∥xn − z∥ − an,m∥xn − JTm
rn xn∥2 + L∥en∥

≤an,0∥f(xn)− z∥2 + (1− an,0)∥xn − z∥2 −
∑m

i=1 an,i∥xn − JTi
rnxn∥

2 + L∥en∥.

Hence for i = 1, 2, ...,m, we have

an,i∥xn − JTi
rnxn∥

2 ≤ (1− an,0)∥xn − z∥2 − ∥xn+1 − z∥2 + an,0∥f(xn)− z∥2 + L∥en∥

≤∥xn − z∥2 − ∥xn+1 − z∥2 + an,0∥f(xn)− z∥2 + L∥en∥.

(3.1)
Now, we show that there exists a unique z ∈ Z such that z = PZf(z). Indeed, since
Z =

∩m
i=1 T

−1
i ({0}) is closed and convex, we have the projection PZ is well defined.

Now, let Q = PZ , we show that Q(f) is a contraction of K into itself. In fact, since
Q is nonexpansive,

∥Q(f)(x)−Q(f)(y)∥ ≤ ∥f(x)− f(y)∥ ≤ k∥x− y∥.

Hence there exists a unique element z ∈ Z such that z = PZf(z).
In order to prove that xn −→ z as n −→ ∞, we consider two possible cases.
Case1. Suppose that {∥xn−z∥} is a monotone sequence. In other words, for n0

large enough, {∥xn−z∥}n≥n0 is either nondecreasing or non-increasing. Since ∥xn−
z∥ is bounded we have ∥xn−z∥ is convergent. Since limn−→∞ an,0 = limn−→∞ ∥en∥ =
0 and {f(xn)} is bounded, from (3.1) we obtain that limn−→∞ an,i∥xn−JTi

rnxn∥
2 = 0.

By condition (iv), we have

b∥xn − JTi
rnxn∥

2 ≤ an,i∥xn − JTi
rnxn∥

2,

which implies that limn−→∞ ∥xn−JTi
rnxn∥ = 0. Using the resolvent identity (Lemma

2.5), for each r > 0 we have

∥xn − JTi
r xn∥≤∥xn − JTi

rnxn∥+ ∥JTi
rnxn − JTi

r xn∥

≤∥xn − JTi
rnxn∥+ ∥JTi

r ( r
rn
xn + (1− r

rn
)JTi

rnxn)− JTi
r xn∥

≤∥xn − JTi
rnxn∥+ ∥ r

rn
xn + (1− r

rn
)JTi

rnxn − xn∥

≤∥xn − JTi
rnxn∥+ |1− r

rn
|∥JTi

rnxn − xn∥ −→ 0, n −→ ∞.

Next we show that there exists a unique z ∈ Z such that lim supn−→∞⟨f(z)−z, xn−
z⟩ ≤ 0, where z = PZf(z). To show this inequality, we choose a subsequence {xni}
of {xn} such that

lim
i−→∞

⟨f(z)− z, xni − z⟩ = lim sup
n−→∞

⟨f(z)− z, xn − z⟩.

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges

weakly to w. Without loss of generality, we can assume that xni ⇀ w. We show
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that w ∈ Z. Indeed,

∥xni − JTi
r w∥ ≤ ∥xni − JTi

r xni∥+ ∥JTi
r xni − JTi

r w∥
≤ ∥xni − JTi

r xni∥+ ∥xni − w∥,

which implies that

lim sup
i−→∞

∥xni − JTi
r w∥ ≤ lim sup

i−→∞
∥xni − w∥.

By the Opial property of Hilbert space H we obtain w = JTi
r w, i = 1, 2, ...,m. Hence

w ∈ Z. Therefore, it follows that

lim sup
n−→∞

⟨f(z)− z, xn − z⟩ = lim
i−→∞

⟨f(z)− z, xni − z⟩ = ⟨f(z)− z, w − z⟩ ≤ 0.

Finally, we show that xn −→ PZf(z). In fact, for some appropriate constant M > 0,
using Lemma 2.1 and 2.2 we have

∥xn+1 − z∥2 ≤ ∥an,1JT1
rn xn + an,2J

T2
rn xn + ...+ an,mJTm

rn xn + en − (1− an,0)z∥2

+ 2an,0⟨f(xn)− z, xn+1 − z⟩
≤ ∥an,1JT1

rn xn+an,2J
T2
rn xn+...+an,mJTm

rn xn−(1−an,0)z∥2+M∥en∥+2an,0⟨f(xn)−z, xn+1−z⟩

≤ (1− an,0)
2(

an,1
1− an,0

∥JT1
rn xn − z∥2 + ...+

an,m
1− an,0

∥JTm
rn xn − z∥2)

+M∥en∥+ 2an,0⟨f(xn)− z, xn+1 − z⟩
≤ (1−an,0)(an,1∥xn−z∥2+ ...+an,m∥xn−z∥2)+M∥en∥+2an,0⟨f(xn)−z, xn+1−z⟩
≤ (1−an,0)

2∥xn−z∥2+M∥en∥+2an,0⟨f(xn)−f(z), xn+1−z⟩+2an,0⟨f(z)−z, xn+1−z⟩
≤ (1−an,0)

2∥xn−z∥2+M∥en∥+2an,0k∥xn−z∥∥xn+1−z∥+2an,0⟨f(z)−z, xn+1−z⟩
≤ (1−an,0)

2∥xn−z∥2+M∥en∥+an,0k{∥xn−z∥2+∥xn+1−z∥2}+2an,0⟨f(z)−z, xn+1−z⟩.

This implies that

∥xn+1−z∥2 ≤ (1− an,0)
2 + an,0k

1− an,0k
∥xn−z∥2+ 2an,0

1− an,0k
⟨f(z)−z, xn+1−z⟩+M∥en∥

=
1− 2an,0 + an,0k

1− an,0k
∥xn−z∥2+

a2n,0
1− an,0k

∥xn−z∥2+ 2an,0
1− an,0k

⟨f(z)−z, xn+1−z⟩+M∥en∥

≤ (1−2(1− k)an,0
1− an,0k

)∥xn−z∥2+2(1− k)an,0
1− an,0k

{ an,0N

2(1− k)
+

1

1− k
⟨f(z)−z, xn+1−z⟩}+M∥en∥

≤ (1− ηn)∥xn − z∥2 + ηnδn + βn,

where N = sup{∥xn − z∥2 : n ≥ 0}, ηn =
2(1−k)an,0

1−an,0k
, βn = M∥en∥ and

δn =
an,0N

2(1− k)
+

1

1− k
⟨f(z)− z, xn+1 − z⟩.

It is easy to see that ηn −→ 0,
∑∞

n=1 ηn = ∞ and lim supn−→∞ δn ≤ 0 and
∑∞

n=1 βn <
∞. Hence, by Lemma 2.3, the sequence {xn} converges strongly to z = PZf(z).
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Case2. Assume that {∥xn − z∥} is not a monotone sequence. Then, we can
define an integer sequence {s(n)} for all n ≥ n0 (for some n0 large enough) by

s(n) = max{k ∈ N; k ≤ n : ∥xk − z∥ < ∥xk+1 − z∥}.
Clearly, s(n) is a nondecreasing sequence such that s(n) −→ ∞ as n −→ ∞ and for
all n ≥ n0,

∥xs(n) − z∥ < ∥xs(n)+1 − z∥.
From (3.1) we obtain that limn−→∞ ∥xs(n)−JTi

rs(n)
xs(n)∥ = 0. Following an argument

similar to that in Case (1) we have

∥xs(n)+1 − z∥2 ≤ (1− ηs(n))∥xs(n) − z∥2 + ηs(n)δs(n)

where ηs(n) −→ 0,
∑∞

n=1 ηs(n) = ∞ and lim supn−→∞ δs(n) ≤ 0. Hence, by Lemma
2.3, we obtain limn−→∞ ∥xs(n) − z∥ = 0 and limn−→∞ ∥xs(n)+1 − z∥ = 0. Now, from
Lemma 2.4 we have

0 ≤ ∥xn − z∥ ≤ max{∥xs(n) − z∥, ∥xn − z∥} ≤ ∥xs(n)+1 − z∥.

Therefore {xn} converges strongly to z = PZf(z). This complete the proof. �

Theorem 3.2. Let Ti, (i = 1, 2, ...,m) be a finite family of maximal monotone op-
erators of a Hilbert space H with Z =

∩m
i=1 T

−1
i ({0}) ̸= ∅. Assume that f is a

k-contraction of H into itself. Let {xn} be a sequence generated by x0 ∈ H and

xn+1 = an,0f(xn) + an,1J
T1
rn xn + an,2J

T2
rn xn + ...+ an,mJTm

rn xn + en, n ≥ 0,

where
∑m

i=0 an,i = 1. If {an,i}, {en} and {rn} ⊂ (0,∞) satisfy the following condi-
tions:

(i) limn−→∞ an,0 = 0 ,
∑∞

n=0 an,0 = ∞,
(ii) lim infn−→∞ rn > 0 and {rn} ⊂ (0,∞),
(iii) en ∈ H satisfies

∑∞
n=0 ∥en∥ < ∞,

(iv) {an,i} ⊂ (b, 1) ⊂ (0, 1), i = 1, ...,m,

then the sequence {xn} converges strongly to z ∈ Z , where z = PZf(z).

Proof. Since Ti are maximal monotone, then Ti are monotone and satisfy the condi-
tion

∩m
i=1D(Ti) ⊂ K ⊂

∩m
i=1R(I + rTi) for all r > 0. Putting K = H, the desired

result is holds. �

If we put f(x) = u and T1 = T2 = .... = Tm = T in Theorem 3.1, we obtain
the following Corollary:

Corollary 3.1. ([19]) Let T be a monotone operator of a Hilbert space H with
Z = T−1({0}) ̸= ∅. Assume that K is a nonempty closed convex subset of H such

that D(T ) ⊂ K ⊂ R(I+rT ) for all r > 0 and for a given point u ∈ K and an initial
value x0 ∈ K, {xn} is defined by the approximate rule

xn+1 = tnu+ (1− tn)J
T
rnxn + en.

If {tn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfy

(i) limn−→∞ tn = 0 ,
∑∞

n=0 tn = ∞,
(ii) lim infn−→∞ rn > 0,
(iii) en ∈ H satisfies

∑∞
n=0 ∥en∥ < ∞,
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then the sequence {xn} converges strongly to PZu, where PZ is the metric projection
from H onto Z.
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