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THERMODYNAMIC TRIPOLES: A FRAMEWORK FOR
STUDYING AND OPTIMIZING IRREVERSIBLE MACHINES

Vlad ENACHE', Stoian PETRESCU?

Inspired by dipoles from the Electrical Circuits Theory, the Thermodynamic
Tripoles are an original approach providing a common conceptual framework to
various branches of Irreversible Engineering Thermodynamics, thus allowing them
to cooperate in evaluating various irreversibilities. We find that a generic thermal
machine can be described with two characteristic functions, while certain special
cases (brakes, heat exchangers and reversible machines) need only one function. As
a proof of validity, a formula for the mechanical power is found and then used to
recover the known Curzon-Ahlborn result regarding endoreversible machines.

Keywords: Finite Speed Thermodynamics, Finite Time Thermodynamics,
Thermal Machines Optimization.

1. Introduction

Various branches of the Irreversible Engineering Thermodynamics
developed independently, each focusing on certain types of irreversibilities.
Examples include Finite Speed Thermodynamics (FST: [1], [2], [3], [4], [5]) and
Finite Time Thermodynamics (FTT: [6], [7], [8], [9]). Each of them has its own
concepts, tools and methods. The Thermodynamic Tripoles framework is an
original approach in which concepts specific (at least) to FST and FTT can be
easily expressed, allowing us to study their interaction and explore possible ways
of integration into a single broader theory. Inspired by electrical dipoles, a
thermodynamic tripole describes a thermodynamic system through a number of
functions relating the energy flows of the system to the thermodynamic forces
acting upon it. We will find that in the general case two such functions are
needed, while certain degenerate cases (brakes, heat exchangers and reversible
machines) need only one. We will apply the thermodynamic tripoles theory to an
endoreversible Carnot machine to recover the known Curzon-Ahlborn result [6].

2. Definition

We call thermodynamic tripole a thermodynamic system € which
exchanges energy with its environment in at most three ways: 1) heat Oy
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exchanged at temperature 7y, 2) heat Q; exchanged at temperature 77, and 3)
work W, so that after a time 7 its internal energy U and entropy S are unchanged.
We will call the time duration 7 the cycle duration.

A tripole is represented graphically as shown in Fig. 1.

Fig. 1. The schematic representation of a tripole

For a given tripole, we consider that the temperatures 7y and 7; and the
cycle duration 7 determine uniquely the three energy exchanges Qg, O, and W.
This dependency is expressed by the following three functions:

Oy =0, (T,,T,,7)
QL:¢L(TH7TLaT) (2.1)
W=¢,(T,,T,,7)

These functions characterize completely the tripole from a thermodynamic
viewpoint. Based on these, we define the following functions:

@0y (T, T,,7)

T,T ,7)=—""F"—"""—
Ju(Ty,T,,7) T,z

T,T . T

f‘L(THaTL’T)Z_(pL( ;TL ) (22)

L

@y (T, T,,7)

T,.T ,7)=—"""7">

Sn @ T3.7) (T,-T,)r

With these, the energies exchanged by the tripole are:

Oy =Tyt fu(Ty.T,,7)

Q,=-T,c-1,(T,.T,,7) (2.3)
w=(T,-T,)c £, (T,;.T,,7)

The average energy fluxes (averaged over the cycle duration) are:
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éH =T, fu,(T,.T,,7)
0, =-T, f,(T,.T,.T) (2.4)
W= (TH _TL)'fW(TH’TL’T)

3. The Thermodynamics Laws

Let us apply the Thermodynamics Laws to the tripole.
The tripole’s internal energy being the same at the beginning and at the
end of the cycle, it follows that the internal energy variation is zero:

AU=0 (3.1)
From the First Law it follows that:
W=0,+0,, (3.2)
which means:
T T
Jw(Ty,T,,7)= T fTL Ju (T, T,,7)— T —LTL f,(Ty,T,,7) (3.3)

This equation shows that if we know the functions fy and f;, then the
function fy is determined. This is the reason why we can characterize the tripole
using only the two functions fy and f;, which we will call the tripole’s
characteristic functions.

The tripole’s entropy being the same at the beginning and at the end of the
cycle, the entropy variation is zero:

as=2e, 9 g (3.4)
T gen
H L
Seen 15 the entropy generated inside the tripole, which is nonnegative (the
Second Law guarantees this):

Seen :—(%+%} >0, (3.5)
H L
which means:
STy T, 0) < fo (T, T, 7) (3.6)
We conclude that any thermodynamic tripole € (obeying the
Thermodynamics Laws) can be completely described by two functions fy and f;
which satisfy the inequality (3.6). We will consider that the tripole is such a pair
of functions:

Q:(fHafL)a fH:/—i%/T ﬁ/—i_)/T fHSfL (3.7)
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Knowing the characteristic functions, we can find the average energy
fluxes exchanged by the tripole with the environment in any situation (i.e., for any
given parameters 7y, 77 and 7):

éH = TH 'fH(TH’TL’T)
0, =-T, £,(T,.T,.7) (3.8)
W=T, f,(T,.T,7)-T, f,(T,.T,.7)

4. Special cases

4.1 Brake

Let us suppose that one of the heat fluxes is zero — e.g. let’s take QL =0.

From the definition of the tripole it follows that the function f is zero. But in this
case the inequality (3.6) says that:

J, (T, T,,7)<0, (4.1)
which means that the heat flux Q,, is nonpositive:

0y =T, f,(T,.T,.1)<0, (4.2)
and the average power will also be nonpositive:

W=0,+0,=0,+0<0 (4.3)

If the other heat flux (QH) is zero, from (3.6) it follows that f; is

nonnegative, so the flux Q, is nonpositive:

0,=-T, f.(T,,T,,7)<0, (4.9)
which means the power will also be nonpositive:
W=0,+0,=0+0, <0 (4.5)

In conclusion, a monothermal tripole (i.e., exchanging heat with only one
external system) can only receive work — which it will transform entirely in heat
released into the environment. This is a classical consequence of the Second Law,
which confirms the validity of the mathematical model described here.

We call this kind of monothermal tripole a brake and we represent it
graphically as in Fig. 2. Brakes have only one characteristic function (the other
one being equal to zero). Although any of the two functions fy and f; can be
nonzero (as we have seen above), we convene to always make fy = 0 and keep f;
as the single characteristic function of a brake:

Qe = (0: ST, 7)) (4.6)
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Q1-1=0
0, =T, f(T,7) 4.7)
V=0,

/4
. /
(o
T

L
Fig. 2. A brake tripole

Brakes can be used to model various irreversibility sources. For example,
friction losses directly proportional to speed can be modeled with a brake having
the characteristic function:

1 L
f(TL,T)—T—L-k-[—j, (4.8)

[
speed w

where k [J/m] is a constant, L is a characteristic size of the system (e.g., the
piston’s stroke), and L/t = w is the average speed. This brake receives mechanical
work and converts it entirely into heat, which is released into the environment:

0,=0
0, =—kw (4.9)
W = —kw

4.2. Heat exchanger

If the tripole doesn’t exchange mechanical work with its environment, we
have a heat exchanger. In this case the two characteristic functions fy and f; are
additionally constrained by the “zero power” condition:

w=T, f,(T,.T,7)-T,(T,.T,,7)=0 (4.10)
T

fL(THﬂTLaT)szH(THaTL:T) (4.11)
L

One of the characteristic functions can be derived from the other.
Consequently, such a tripole can be characterized using only one function:

Qheat exchanger = (f(TH’TL’T)’ TH /TL 'f(THiTL’T))’ (412)
which determines the energy fluxes:
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O, =T, f(Ty.T,.7)

0,=-0, @.13)

Fig. 3. A heat exchanger tripole
4.2.1. Limited duration heat transfer
Let us consider a heat exchanger tripole which exchanges a constant heat
flux QH during the time period Texchange < 7, and exchanges no heat during the rest
of the cycle. The heat exchanged during a full cycle will be:
O = On Tescanse (4.14)
The characteristic function of this heat exchanger is:
FT T, 0y = 22 Do Foe
I, T, T
and the average heat flux follows:

~ s Texc ange
QH :TH 'f(THvTLsr):QH% (416)

4.2.2. Newtonian heat transfer
The Newtonian heat transfer means a linear dependency between the
temperature difference and the heat flux:

0, =K(,.T,70)(T,-T,), (4.17)
where K is the thermal conductance (which may depend on the temperatures and
on the cycle duration).

Substituting this into equations (4.15) and (4.16), we obtain the
characteristic function of the Newtonian heat exchanger:

T, )7,
f(TH’TL’T):K(TH’TUT).[I_T_L\JM
H

and its average heat flux:

~ T(’XC ange
QH = K(TH aTLaT)'(TH _TL) ; £ (419)

(4.15)

(4.18)
T
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4.3. Reversible tripole
If in equation (3.5) expressing The Second Law we take equality, we have
a reversible tripole (Sgen = 0). From (3.6) it follows that the functions fy and f;
become equal. This means that a reversible tripole is described by a single
characteristic function:
Qreversib/e = (f(TH’ TL’ T)’ f(TH’ TL s Z')), (420)
with the energy fluxes given by:

éH = TH 'f(TH ’TL’T)
0, =-T, - f(T,.T,7) 4.21)
W =(T,-T,) f(T,.T,7)

We see that the efficiency of this tripole (viewed as a motor) is given by
the Carnot formula:

n=2 L (4.22)
Oy Ty

This result should not be surprising: indeed, if the tripole contains a gas,
the setup described in the definition leads to a Carnot cycle (or equivalent —
Stirling with perfect heat regeneration).

Important remark: As opposed to an irreversible tripole, which has two
distinct characteristic functions fz and f;, the reversible tripole can be described
with only one characteristic function f. Unfortunately, this creates confusion when
one studies first the reversible case and then wants to advance to the irreversible
case: the habit of describing the system with only one function, acquired while
studying the reversible case, leads to an attempt to describe also the irreversible
system with one function — which is incorrect and leads to contradictions.

4.3.1. Reversible Carnot machine

Let us consider that the tripole is a reversible Carnot machine with one
cylinder containing a perfect gas. During the isothermal transformations we
consider constant instantaneous heat fluxes, equal to Q,, and Q, , respectively.

The isothermals:
By integrating The First Law on the isothermal expansion, we find that the
mechanical work is equal to the heat received from the hot source:

W, =0, =mRT, In(V,/V)) (4.23)
If this heat is receive in constant flux, the time needs to be:
v, =2 = "Ry gy (4.24)
Oy Oy

Similarly, for the cold isothermal (with negative QL):
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W,=0,=mRT, In(V, /V,) (4.25)
7, =R v, v, (4.26)
0,
The adiabats:
Let us denote:
0= Ty (4.27)
TL
By integrating The First Law on the adiabatic expansion, we get:
1
Vi_ g (4.28)
£
The stroke is:
- (L
Ly = Loh = —2L9771 - IJ (4.29)
Ap Ap
If the piston travels this distance with the average speed w,,, the duration
must be:
(L
RS —1) (4.30)
Wo3 przs

The mechanical work is:

R(T, —T,
W, = w 4.31)
y—1
Similarly, for the adiabatic compression (with the negative speed w,, ):
1
Vi _ g (4.32)
4
v L
T, =——2= ké”’l —IJ (4.33)
pr41
mR\T,, — T,
= M, (4.34)
y—1
which we see is the opposite of the mechanical work on the adiabatic expansion.
The cycle:

We can compute the cycle duration:
T=T,+7,+7,,+7, (4.35)
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=R 1 (v, 1v) + PR (v, v, +
! O (4.36)
1 1 .
+L(9H_1J_L[9H_1J
pw23 pw4l

We define the total compression ratio (L. is the total length of the
cylinder, and L, is the length of the “dead space”):

L
L Vowe Vs (4.37)
Ly, Vi V,

min min

so that after a few calculations we can write the cycle duration:
1

_ =
T:(T—H—L]len Al L) A 107 1) 5
0y, O 971 Wo3 97! Wy A A

We see that the cycle duration is determined by the temperatures, which
makes the characteristic function of the tripole become a function of the
temperatures alone. From the first equation of the system (4.21) we express the
characteristic function:

mR1In ll
Py
AT, T, = Q,  _mRT,In(V,/V) _ 0" ) _
T,7(T,.T,) T,7(T,.T,) T(T,.T,)
_ 1
B N 4.39
A w6 %39
1T — -5
— A A
(%E}%eﬂ“
QH QL meZS A‘
In| —;
97!

The average energy fluxes are:
0, =T, f(T,.T,)
0, =T, f(T,.T,) (4.40)
W =(1,-1,)- f(T,.T,)

Very fast adiabats:
We note that the average power is decreased by the second term in the
denominator of (4.39), which is always positive. Because of this, let us consider
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that we can increase the adiabats speeds enough that that term becomes negligible.
The characteristic function becomes:

1
J(Ty.T,)= T, T, (4.41)
0 O
and the energy fluxes can be written simply:

= TH

CT, T,
0, 0O

= —TL

0= T, T, (4.42)
0, 0O,

=_ Ty -T,

Yo,
0y 0O,

Optimizing the temperatures:
Assuming Newtonian heat transfer from a source with temperature 7y and

to a sink with temperature Ts;, the power can be written by simply plugging in the
Newtonian heat transfer formulae (4.17) for the instantaneous heat flux into the
average mechanical power formula from (4.42), obtaining:

- T,-T,
W= 7 T (4.43)

KH (TSH _TH) KL (TSL - TL)
In order to obtain the maximum power, we nullify both partial derivatives
with respect to the temperatures. After calculations, we get the optimum point:

T; TSL
L /— (4.44)
TH TSH
L SL \/K—H-i-\/K—L :
H SH \/E-{—\/K—L :
2
(o - JF) .

(=)

W, =

ax
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This is the known Curzon-Ahlborn result — which confirms that the
formulae proven in this section are valid.

Remark: Although the results of this section were obtained for a piston-
cylinder machine, they are also valid for continuous flux machines — we can
consider that the tripole is a kilogram of gas exchanging heat and work with parts
of the machine as it travels cyclically through it; at the end we just have to
multiply all the fluxes with the number of kilograms of gas found in the machine.

5. Conclusions

Inspired by the notion of electrical dipoles, we propose a new framework
for studying thermal machines: the thermodynamic tripoles. Any thermodynamic
system is described through two characteristic functions in the general case (or
just one function in some special, degenerate cases). These functions allow us to
model conveniently both the internal irreversibilities (caused by the finite speed of
the machine) and the external irreversibilities (caused by heat exchange in finite
time).

When only external irreversibilities are taken into account (and the
adiabats are very fast), a formula is derived for the average mechanical power:

X _ T,-T,
W_Ti_i 5.1
0, O,

Using this formula, the known Curzon-Ahlborn result for endoreversible
machines follows naturally.

Even though here we detailed the endoreversible case only, essentially the
same procedure can be used to compute the average power when the machine also
has internal irreversibilities — which can be given by FST. This makes the tripoles
framework a valuable tool for optimizing thermal machines in a relevant way for
practical engineering situations.
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