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EFFECT OF DISTINCT CONDUCTIVE AND 
THERMODYNAMIC TEMPERATURES ON THE 

REFLECTION OF PLANE WAVES IN MICROPOLAR 
ELASTIC HALF-SPACE 

Marin MARIN1 

 

The present investigation is concerned with wave propagation in micropolar 
thermoelastic solid half space with distinct conductive and thermodynamic 
temperatures. Reflection of plane waves incident obliquely at the free surface of 
micropolar generalized thermoelastic solid half space with two temperature is 
investigated. Amplitude ratios various reflected waves are obtained in closed form 
and it is found that these are function of angle of incidence, frequency and are 
affected by the micropolar thermoelastic properties of the medium. Effect of two 
temperatures is  shown on these amplitude ratios for a specific model. Results of 
some earlier workers have also been deduced from the present investigation as a 
special case. 

Keywords: Micropolar thermoelastic solid, Conductive and thermodynamic 
temperatures, Elastic waves, Reflection coefficient, Transmission coefficient. 

1. Introduction 

Thermoelasticity with two temperature is one of the non-classical theories 
of thermoelasticity of elastic solids. The main difference of this theory with 
respect to the classical one is the thermal dependence. The theory of  heat 
conduction in a deformable body, formulated by Chen and Gurtin [1], Chen , 
Gurtin and William[2, 3] depends on two different temperatures, the conductive 
temperature Φ and thermodynamic temperature ܶ. Boley and Tolins[4], Warren 
and Chen [5] investigated the wave propagation in the two temperature theory of 
thermoelasticity.Youssef [6], Puri and Jordan [7] studied the propagation of plane 
waves in thermoelastic medium with two temperature model. Youssef,  Al-
Lehaibi [8] and Youssef, Al-Harby [9] and Magana, Quintanilla [10] investigated 
various problems on the basis of two temperature thermoelasticity with relaxation 
time. Mukhopadhyay, Kumar [11] studied thermoelastic interaction on two 
temperature generalized thermoelasticity in an infinite medium with a cylindrical 
cavity. Recently, Roushan,  Santwana [12] and Kaushal, Sharma Kumar [13] 
studied the propagation of waves in generalized thermoelastic continua with two 
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temperatures. Kaushal, Kumar and Miglani [14] studied the wave propagation in 
temperature rate dependent thermoelasticity with two temperatures.  
The comprehensive review on the micropolar elasticity was given by Eringen [15-
17] and Nowacki [18]. Touchert, Claus Armin [19] also derived the basic 
equations of the linear theory of micropolar coupled thermoelasticity.  
Dost, Taborrok [20] present a generalized Green and Lindsay theory. 
Chandrasekharaiah [21] developed a heat flux dependent micropolar 
thermoelsticity. Boschi and Iesan [22] presented micropolar thermoelasticity that 
permits the transmission of heat as thermal waves at finite speed. 
Parfitt and Eringen [23] and obtained the expressions for amplitude ratios of 
different reflected waves in a closed form. Kumar and Singh [24], [25] studied the 
problems of reflection of plane waves from the flat boundary of a micropolar 
generalized thermoelastic with stretch and without stretch respectively.Tomar, 
Kumar and Kaushik [26] obtained the reflection coefficients in micropolar elastic 
half-space with stretch. Kumar [27] investigated the reflection coefficient in 
micropolar viscoelastic generalized half-space.  

Kumar and Sharma [28] obtained the amplitude ratios from the stress free 
boundary in a micropolar thermoelastic half space without energy dissipation. 
Hisa and Cheng [29] and Hisa, Chiu, Su and Chen [30] investigated propagation 
of longitudinal and transverse waves in elastic micropolar porous media. 
Singh[31], Kumar and Rupender [32, 33] investigated wave propagation at the 
free surface of magneto thermo-microstretch elastic solid. 

Marin investigated some theorems in micropolar thermoelastic materials 
[36-38]. Marin [39] presented some results in nonlinear micropolar thermoelastic 
bodies with voids. Lagrange identity method for microstretch thermoelastic 
material was studied by Marin [40]. Recently Marin [41] investigated some weak 
solutions in elasticity of dipolar bodies with stretch. 

In this paper, we study the problem of reflection of plane waves at the free 
surface of micropolar generalized thermoelastic solid half space with two 
temperatures. Effect of two temperatures is depicted graphically on the amplitude 
ratios for incidence of various plane waves, that is, Longitudinal displacement 
wave (LD wave), Thermal wave (T wave), Coupled transverse wave (CD-I wave 
and CD-II wave). 

2. Basic equations  

The field equations in an isotropic, homogeneous, micropolar elastic body 
in the context of generalized theory of thermoelasticity with two temperatures, 
without body forces, body couples and heat sources, [35], are given by 

ߣ) ൅ ߤ2 ൅ .׏ሺ׏ሻߢ ሬԦሻݑ െ ሺߤ ൅ ׏ሻߢ ൈ ሺ׏ ൈ ሬԦሻݑ ൅ ׏൫ߢ ൈ ߶ሬԦ൯ െ ܶ׏ߥ ൌ ߩ డమ௨ሬሬԦ
డ௧మ ,        (1) 
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ሺߙ ൅ ߚ ൅ .׏൫׏ሻߛ ߶ሬԦ൯ െ ׏ߛ ൈ ൫׏ ൈ ߶ሬԦ൯ ൅ ׏ߢ ൈ ሬԦݑ െ ሬԦ߶ߢ2 ൌ ଔ̂ߩ డ
మథሬሬሬԦ

డ௧మ  ,         (2) 

K׏כଶΦ ൌ ρcכ ቀபT
ப୲

൅ τ଴
பమT
ப୲మ ቁ ൅ νΦ଴ ቀ ப

ப୲
൅ τ଴

பమ

ப୲మቁ ሺ׏. uሬԦሻ,           (3) 
where ܶ ൌ ሺ1 െ  ଶሻΦ  and the constitutive relations are׏ܽ
௜௝ݐ ൌ ௜௝ߜ௥,௥ݑߣ ൅ ௜,௝ݑ൫ߤ ൅ ௝,௜൯ݑ ൅ ௝,௜ݑ൫ߢ െ –௜௝௥߶௥൯ߝ ሺ1ߥ െ  ௜௝,        (4)ߜଶሻΦ׏ܽ
݉௜௝ ൌ ௜௝ߜ௥,௥߶ߙ ൅ ௜,௝߶ߚ ൅ ,݅       , ௝,௜߶ߛ ݆, ݎ ൌ   1, 2, 3           (5) 
where λ and μ are Lame’s constants. κ, α, β and γ are micropolar constants,  is ߩ
the density, ଔ̂ is the microinertia, ݑሬԦ  is the displacement vector, ߶ሬሬሬԦ is the 
microrotation vector,  ݐ௜௝ are the components of the stress tensor, ݉௜௝ are the 
components of couple stress tensor, T is the temperature change, Φ is the 
conductive temperature,   Φ଴ is the reference temperature, כܭ is the thermal 
conductivity, ܿכis the specific heat at constant strain, 0τ  is the relaxation time, a is 
the two temperature parameter, ߜ௜௝ is the Kronecker delta, ߳௜௝௥ is the alternating 
symbol, ߥ ൌ ሺ3ߣ ൅ ߤ2 ൅  is the coefficient of linear thermal  ்ߙ where ,்ߙሻߢ
expansion.  

3 Formulation of the problem 

We consider a homogeneous, isotropic, micropolar, generalized 
thermoelastic solid half space with two temperatures .The rectangular Cartesian 
co-ordinate system Oݔଵݔଶݔଷ having origin on the surface ݔଷ=0 with ݔଷ-axis 
pointing vertically downward into the half space. 

We consider two dimensional problem in ݔଵݔଷ-plane, so that the 
displacement vector ݑሬԦ and microrotation vector ߶ሬԦ are taken as 
ሬԦݑ ൌ ൫ݑଵሺݔଵ, ,ଷሻݔ 0, ,ଵݔଷሺݑ ଷሻ൯,             ߶ሬԦݔ ൌ ሺ0 , ߶ଶሺݔଵ, ,ଷሻݔ 0ሻ         (6) 
For convenience, the following non dimensional quantities are introduced  
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where  ߱כ ൌ  ఘ௖כ௖భ
మ

௄כ  ,      ܿଵ
ଶ ൌ ఒାଶఓା఑

ఘ
      

The displacement components ݑଵ ܽ݊݀ ݑଷ are related to the potential 
functions ߶ and  ߰  as   
ଵݑ ൌ డథ

డ௫భ
െ డట

డ௫య
ଷݑ               , ൌ డథ

డ௫య
൅ డట

డ௫భ
            (8) 

Using equation (8) in equations (1)-(3) and with the aid of equations (6) 
and (7); (after suppressing the primes), we obtain  
߶ଶ׏ െ ሺ1 െ ଶሻΦ׏ܽ െ డమథ

డ௧మ ൌ 0 ,                (9) 
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ଶ߰׏ െ ܽଵ߶ଶ െ ܽଶ
డమట
డ௧మ ൌ 0 ,            (10) 

ଶ߶ଶ׏ െ ܽଷ׏ଶ߰ െ ܽସ߶ଶ െ ܽହ
డమథమ
డ௧మ ൌ 0 ,           (11) 

ଶΦ׏ ൌ  ܽ଺ ቀ డ
డ௧

൅ ߬଴
డమ

డ௧మ ሺ1 െ ଶሻቁ׏ܽ Φ ൅ ܽ଻ ቀ డ
డ௧

൅ ߬଴
డమ

డ௧మቁ  ଶΦ ,        (12)׏
where   
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ଵܿߩ

ଶ

ߤ ൅ ߢ  , ܽଷ ൌ
ଵܿߢ

ଶ

ଶכ߱ߛ  , ܽସ ൌ 2 ܽଷ , ܽହ ൌ
ଔ̂ܿଵߩ

ଶ

ߛ  , ܽ଺ ൌ
ଵܿכܿߩ

ଶ
଴ܶ

Φ଴כ߱כܭ
 , ܽ଻ ൌ

ଵܿߥ
ଶ

     כ߱כܭ

and ׏ଶൌ డమ

డ௫భమ ൅ డమ

డ௫యమ. 

4. Boundary Conditions 

The boundary conditions at the free surface ݔଷ=0 are the vanishing of 
normal stress, tangential stress, tangential couple stress and temperature gradient. 
Mathematically these can be written as   

ଷܶଷ ൌ  0 ,      ଷܶଵ ൌ 0,       ݉ଷଶ ൌ 0,       డ்
డ௫య

ൌ 0         (13) 

5. Reflection  

We consider a Longitudinal displacement wave (LD-wave) or Thermal 
wave (T-wave) or Coupled transverse and microrotational waves (CD-I wave and 
CD-II wave) is incident at the plane ݔଷ=0 and making an angle ߠ଴ normal to the 
surface. Corresponding to each incident wave, we get reflected LD-wave, T-wave, 
CD-I and CD-II waves as shown in Fig.1. 
In order to solve the equations (9)-(12), we assume the solutions of the form 
ሼ߶, ܶ,Φ, ߰, ߶ଶሽ ൌ ൛߶෨, ෨ܶ ,Φ෩, ෨߰, ߶ଶ෪ൟexp ሾߡሼ݇ሺݔଵ sin ߠ െ ଷݔ cos ሻߠ െ  ሽሿ      (14)ݐ߱
where ݇ is the wave number and ߱ is the angular frequency and ߶෨, ෨ܶ ,Φ෩, ෨߰, ߶ଶ෪  are 
arbitrary constants. Making use of equation (14) in equations (9)-(12), after 
simplification yield 

ܸସ ൅ ଵܸଶܦ ൅ ଵܧ ൌ 0  ,         (15) 
ܸସ ൅ ଶܸଶܦ ൅ ଶܧ ൌ 0 ,          (16) 

where 
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1
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 ,  

ଶܦ ൌ
1 ൅ ቀܽ െ 1
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߱ ൅ ߬଴ቁ ൅ ܽ଻߱ଶ ቀ ߡ

߱ ൅ ߬଴ቁ

߱ଶܽ଺ ቀ ߡ
߱ ൅ ߬଴ቁ െ 1

 , ଶܧ ൌ
ܽ߱ଶሾܽ଻ ቀ ߡ

߱ ൅ ߬଴ቁ െ ܽ଺ ቀ ߡ
߱ ൅ ߬଴ቁሿ

ܽ଺ ቀ ߡ
߱ ൅ ߬଴ቁ െ 1

߱ଶ

 

Equation (15) and (16) are quadratic in ܸଶ, therefore the roots of these 
equations give four values of ܸଶ. Corresponding to each value of ܸଶ in equation 
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(15), there exist two types of waves in decreasing order of their velocities, namely 
a LD-wave, T-wave. Similarly corresponding to each value of ܸଶ in equation 
(16), there exist two types of waves, namely a CD-I wave, CD-II wave. Let ଵܸ , ଶܸ 
are the velocities of reflected LD-wave, T-wave and ଷܸ, ସܸ are the velocities of 
reflected CD-I wave, CD-II wave. 

In view of equation (14), the appropriate solutions of equations (9)-(12) 
are assumed of the form 
ሼ߶,Φሽ ൌ ∑ ሼ1 , ௜݂ሽଶ

௜ୀଵ ܵ଴௜ሾexp ሾߡሼ݇௜ሺݔଵ sin ଴௜ߠ െ ଷݔ cos ଴௜ሻߠ െ ߱௜ݐሽሿ ൅ ௜ܲሿ ,       (17) 
ሼ߰, ߶ଶሽ ൌ ∑ ൛1 , ௝݂ൟସ

௝ୀଷ ଴ܶ௝݁݌ݔሾߡ൛ ௝݇൫ݔଵ sin ଴௝ߠ െ ଷݔ cos ଴௝൯ߠ െ ௝߱ݐൟ ൅ ௝ܲሿ ,      (18) 
where 

௜ܲ ൌ ௜ܵ expሾߡሼ݇௜ሺݔଵ sin ଴௜ߠ ൅ ଷݔ cos ଴௜ሻߠ െ ߱௜ݐሽሿ, 
௝ܲ ൌ ௝ܶ݁ߡൣ݌ݔ൛ ௝݇൫ݔଵ sin ଴௝ߠ ൅ ଷݔ cos ଴௝൯ߠ െ ௝߱ݐൟ൧,   

and ܵ଴௜ are the amplitudes of incident (LD-wave, T-wave) and ଴ܶ௝ are the 
amplitudes of incident (CD-I, CD-II) waves respectively. ௜ܵ are the amplitudes of 
reflected (LD-wave, T-wave) and  ௝ܶ are the amplitudes of reflected (CD-I, CD-II) 
waves respectively. 
In order to satisfy the boundary conditions, we use the extension of  Snell’s law 
ୱ୧୬ ఏబ

௏బ
ൌ ୱ୧୬ ఏభ

௏భ
ൌ ୱ୧୬ ఏమ

௏మ
ൌ ୱ୧୬ ఏయ

௏య
ൌ ୱ୧୬ ఏర

௏ర
           (19) 

where    ݇ଵ ଵܸ ൌ ݇ଶ ଶܸ ൌ ݇ଷ ଷܸ ൌ ݇ସ ସܸ ൌ ߱,  at ݔଷ=0.         (20) 
Making use of the values of ߶, ߰,Φ and ߶ଶ from (17) and (18) in boundary 
conditions (13) and with the aid of equations (4)-(8) and using the equations (19) 
and (20), we obtain a system of four non-homogeneous equations which can be 
written as  

∑ ܽ௜௝ ௝ܼ ൌସ
௝ୀଵ ௜ܻ ; ሺ݅ ൌ 1, 2, 3, 4ሻ,             (21) 

where  
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ଶ
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(i =1, 2 and j =3, 4) and 
ܼଵ ൌ ௌభ

஺כ  ,   ܼଶ ൌ ௌమ
஺כ  ,   ܼଷ ൌ య்

஺כ  ,   ܼସ ൌ ర்
஺(22)         , כ  

ሺ1ሻ  For incident LD-wave: 
כܣ ൌ ܵ଴ଵ , ܵ଴ଶ ൌ ଴ܶଷ ൌ ଴ܶସ ൌ 0, ଵܻ ൌ െܽଵଵ ,   ଶܻ ൌ ܽଶଵ , ଷܻ ൌ ܽଷଵ ൌ 0 , ସܻ ൌ ܽସଵ, 

ሺ2ሻ  For incident T-wave: 
כܣ ൌ ܵ଴ଶ , ܵ଴ଵ ൌ ଴ܶଷ ൌ ଴ܶସ ൌ 0 , ଵܻ ൌ െܽଵଶ , ଶܻ ൌ ܽଶଶ , ଷܻ ൌ ܽଷଶ ൌ 0 , ସܻ ൌ ܽସଶ, 
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(3)  For incident CD-I wave: 
כܣ ൌ ଴ܶଷ , ܵ଴ଵ ൌ ܵ଴ଶ ൌ ଴ܶସ ൌ 0, ଵܻ ൌ ܽଵଷ , ଶܻ ൌ െܽଶଷ , ଷܻ ൌ ܽଷଷ ,   ସܻ ൌ ܽସଷ ൌ 0, 

(4)  For incident CD-II wave: 
כܣ ൌ ଴ܶସ, ܵ଴ଵ ൌ ܵ଴ଶ ൌ ଴ܶଷ ൌ 0, ଵܻ ൌ ܽଵସ, ଶܻ ൌ െܽଶସ ,   ଷܻ ൌ ܽଷସ ,   ସܻ ൌ ܽସସ ൌ 0, 
where ܼଵ, ܼଶ, ܼଷ, ܼସ are the complex amplitude ratios of reflected LD-wave, T-
wave and coupled CD-I, CD-II waves. 

6. Particular cases 

In the absence of two temperature effect, we obtain the amplitude ratios at the free 
surface of micropolar generalized thermoelastic solid half space as   

( )43,2,1,=;=
4

1=
iYZa ijij
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∑ ,

 
where the values of ܽ௜௝ are given by 

ܽଵ௜ ൌ ቀ݀ଵ ൅ ݀ଶሺ1 െ ௏೔
మ

௏బ
మ sinଶ ଴ሻቁߠ ௏೔

మ

ఠమ ൅ ሺ1 െ ߬ଵ߱ߡሻ ௜݂ ,   ܽଵ௝ ൌ ݀ଶ
௏ೕ

య

ఠమVబ
sin ଴ߠ ඨ1 െ

௏ೕ
మ

௏బ
మ sinଶ   ,଴ߠ

ܽଶ௜ ൌ െሺ2݀ସ ൅ ݀ହሻ ௜ܸ
ଷ

߱ଶV଴
sin ଴ߠ ඨ1 െ ௜ܸ

ଶ

଴ܸ
ଶ sinଶ  ,଴ߠ

ܽଶ௝ ൌ ቆ2݀ସ
௝ܸ
ଶ

߱ଶ ሺ1 െ ௝ܸ
ଶ

଴ܸ
ଶ sinଶ ଴ሻߠ െ ሺ݀ହ

௝ܸ
ଶ

߱ଶ
଴ܸ
ଶ sinଶ ଴ሻቇߠ െ ݀ହ ௝݂, 

ܽଷ௜ ൌ 0 ,    ܽଷ௝ ൌ ߡ
௏ೕ

ఠ
ඨ1 െ

௏ೕ
మ

௏బ
మ sinଶ ଴ߠ ௝݂  , ܽସ௜ ൌ ߡ ௏೔

ఠ
ට1 െ ௏೔

మ

௏బ
మ sinଶ ଴ߠ ௜݂ ,     ܽସ௝ ൌ 0, 

and 
ܼଵ ൌ ௌభ
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where ܼଵ, ܼଶ, ܼଷ, ܼସ are the amplitude ratios of reflected LD-wave, T-wave and 
coupled CD-I, CD-II waves  

The above results are in agreement with those obtained by Singh and 
Kumar [25]by changing the dimensionless quantities into physical quantities. 

7. Numerical results and discussion 

For numerical computations, we take the following values of relevant 
parameters. Following  [35], the values of micropolar constants are taken as: 
ߣ ൌ 9.4 ൈ 10ଵ଴ܰ݉ିଶ, ߤ ൌ 4.0 ൈ 10ଵ଴ܰ݉ିଶ, ߢ ൌ 1.0 ൈ 10ଵ଴ܰ݉ିଶ, 
ߛ ൌ 7.79 ൈ 10ିଵ଴ܰ, ଔ̂ ൌ 2 ൈ 10ିଶ଴ ݉ଶ , ߩ ൌ 1.74 ൈ 10ଷି݉݃ܭଷ 
and thermal parameters are taken as: 

଴ܶ ൌ Φ଴            , ܭ 0.298 ൌ ߥ         ,ܭ 0.295 ൌ 2.68 ൈ 10଺ܰ݉ିଶିܭଵ , 
כܿ ൌ 1.04 ൈ 10ଷି݃݇ܬଵିܭଵ,   כܭ ൌ 1.7 ൈ 10ଶି݉ܬଵିݏଵିܭଵ , ߱ ൌ 1 , ߬଴ ൌ 0.02  
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In Figs. 2-13, we represent the solid line for micropolar generalized 
thermoelastic solid (a=0), small dashes line for micropolar generalized 
thermoelastic solid with two temperature (a=0.3), and large dashes line for 
micropolar generalized thermoelastic solid with two temperature(a=0.9). 

7.1. LD-Wave Incident 

Fig. 2 shows that the amplitude ratios 1Z  increases monotonically with 
the angle of incidence for all values of a and attaining the maximum value 1 at the 
grazing incidence. 

Fig. 3 shows that the amplitude ratio 2Z  attains the maximum value 1 
near normal incidence and then it decreases monotonically with the angle of 
incidence for all values of a. The value of 2Z  converges to minimum value at the 
grazing incidence for all values of a. 

In Fig. 4 , the values of amplitude ratio 3Z  increases monotonically when 

00 43θ< <  and as 0θ increases further, it decreases for all values of a. The values 
of 3Z  remain more for 0a = in comparison to a 0.3= and 0.9 depicting the 
effect of two temperatures. 

Fig. 5 depicts that the values of amplitude ratio 4Z  increases monotoni-

cally for 00 45θ< <  and decrease monotonically as 0θ increase for all values of 
a. The values of 4Z  remain more for 0.9a = in comparison to a 0= and 0.3. 

7.2. T-Wave Incident 

Fig. 6 depicts that the values of amplitude ratio 1Z  begin with the value 1 
near normal incidence then it decreases monotonically with the angle of incidence 
and attaining the minimum value  at the grazing incidence for all values of a. 

Fig. 7 shows that the values of amplitude ratio 2Z  increases 
monotonically for all values of a with the angle of incidence and attaining the 
maximum value 1 at the grazing incidence. 

Fig. 8 depicts that the values of amplitude ratio 3Z  for a 0.3= and a= 0.9  

increase in the range 00 50θ< <  and then decrease as 0θ increases further 

whereas  for  0a = , the value of 3Z  increase in the interval 00 55θ< < and then 
decrease sharply for further range. 
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Fig.9 shows that as 0θ  lies between 00 30θ< < , value of 4Z  increase for 

all values of a and as 0θ increase further, the values of 4Z oscillate for all a and 
attaining the minimum value at the grazing incidence. 

7.3. CD-I Wave Incident 

Fig. 10 depicts that the values of amplitude ratio 1Z  increase 

monotonically for all values of a, as 0θ lies between 00 45θ< < and then 
decreases attaining its minimum value near the grazing incidence. It is evident 
that as a increase, the amplitude ratio decrease depicting the effect of two 
temperature. 

Fig. 11 shows that the values of amplitude ratio 2Z  first increases 
monotonically for all values of a as  0θ  increases and then decrease as 0θ  increase 
for all values of a . The maximum value of 2Z  is attained for 0a =  in the range 

055 65θ< < . 
Fig. 12 depicts that the values of amplitude ratio 3Z  for all values of a. 

The values of 3Z  for 0a = are more in comparison to 0.3a = and  0.9a = near 
the normal incidence, then it increases as angle of incidence increases and it 
attains its maximum value 1 at the grazing incidence. 

In Fig.13, the value of amplitude ratio 4Z is maximum near the normal 
incidence , then it decreases monotonically with angle of incidence and attains its 
minimum value at grazing incidence for all values of a. The values of 4Z  are 
more for 0.9a =  in comparison to 0a = and 0.3a = . 

 
Fig. 1 Geometry of the problem 
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Figs.2-5. Variations of amplitude ratios with the angle of incidence for LD-Wave 
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Figs.6-9. Variations of amplitude ratios with the angle of incidence for T-Wave 
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Fig. 10           Fig. 11 
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Figs.10-13. Variations of amplitude ratios with the angle of incidence for CD-I Wave 
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8. Conclusion 

Effect of two temperatures has significant impact on the amplitude ratios. 
It is depicted from the figures that the behavior and trend of variation of amplitude 
ratios is same for all the values of a. Also it is observed that the values of |ܼ௜|; 1 ൑
݅ ൑ 3, decreases with increase in the values of a that shows the effect of two 
temperatures, whereas the values of |ܼସ| increase with increase in the values of a. 
The research work is supposed to be useful in further studies, for both theoretical 
and observational wave propagation in more realistic models of the micropolar 
thermoelastic solid present in the earth’s interior. 
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