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EFFECT OF DISTINCT CONDUCTIVE AND
THERMODYNAMIC TEMPERATURES ON THE
REFLECTION OF PLANE WAVES IN MICROPOLAR
ELASTIC HALF-SPACE

Marin MARIN'

The present investigation is concerned with wave propagation in micropolar
thermoelastic solid half' space with distinct conductive and thermodynamic
temperatures. Reflection of plane waves incident obliquely at the free surface of
micropolar generalized thermoelastic solid half space with two temperature is
investigated. Amplitude ratios various reflected waves are obtained in closed form
and it is found that these are function of angle of incidence, frequency and are
affected by the micropolar thermoelastic properties of the medium. Effect of two
temperatures is shown on these amplitude ratios for a specific model. Results of
some earlier workers have also been deduced from the present investigation as a
special case.

Keywords: Micropolar thermoelastic solid, Conductive and thermodynamic
temperatures, Elastic waves, Reflection coefficient, Transmission coefficient.

1. Introduction

Thermoelasticity with two temperature is one of the non-classical theories
of thermoelasticity of elastic solids. The main difference of this theory with
respect to the classical one is the thermal dependence. The theory of heat
conduction in a deformable body, formulated by Chen and Gurtin [1], Chen ,
Gurtin and William[2, 3] depends on two different temperatures, the conductive
temperature @ and thermodynamic temperature T. Boley and Tolins[4], Warren
and Chen [5] investigated the wave propagation in the two temperature theory of
thermoelasticity.Youssef [6], Puri and Jordan [7] studied the propagation of plane
waves in thermoelastic medium with two temperature model. Youssef, Al-
Lehaibi [8] and Youssef, Al-Harby [9] and Magana, Quintanilla [10] investigated
various problems on the basis of two temperature thermoelasticity with relaxation
time. Mukhopadhyay, Kumar [11] studied thermoelastic interaction on two
temperature generalized thermoelasticity in an infinite medium with a cylindrical
cavity. Recently, Roushan, Santwana [12] and Kaushal, Sharma Kumar [13]
studied the propagation of waves in generalized thermoelastic continua with two
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temperatures. Kaushal, Kumar and Miglani [14] studied the wave propagation in
temperature rate dependent thermoelasticity with two temperatures.

The comprehensive review on the micropolar elasticity was given by Eringen [15-
17] and Nowacki [18]. Touchert, Claus Armin [19] also derived the basic
equations of the linear theory of micropolar coupled thermoelasticity.

Dost, Taborrok [20] present a generalized Green and Lindsay theory.
Chandrasekharaiah [21] developed a heat flux dependent micropolar
thermoelsticity. Boschi and Iesan [22] presented micropolar thermoelasticity that
permits the transmission of heat as thermal waves at finite speed.

Parfitt and Eringen [23] and obtained the expressions for amplitude ratios of
different reflected waves in a closed form. Kumar and Singh [24], [25] studied the
problems of reflection of plane waves from the flat boundary of a micropolar
generalized thermoelastic with stretch and without stretch respectively. Tomar,
Kumar and Kaushik [26] obtained the reflection coefficients in micropolar elastic
half-space with stretch. Kumar [27] investigated the reflection coefficient in
micropolar viscoelastic generalized half-space.

Kumar and Sharma [28] obtained the amplitude ratios from the stress free
boundary in a micropolar thermoelastic half space without energy dissipation.
Hisa and Cheng [29] and Hisa, Chiu, Su and Chen [30] investigated propagation
of longitudinal and transverse waves in elastic micropolar porous media.
Singh[31], Kumar and Rupender [32, 33] investigated wave propagation at the
free surface of magneto thermo-microstretch elastic solid.

Marin investigated some theorems in micropolar thermoelastic materials
[36-38]. Marin [39] presented some results in nonlinear micropolar thermoelastic
bodies with voids. Lagrange identity method for microstretch thermoelastic
material was studied by Marin [40]. Recently Marin [41] investigated some weak
solutions in elasticity of dipolar bodies with stretch.

In this paper, we study the problem of reflection of plane waves at the free
surface of micropolar generalized thermoelastic solid half space with two
temperatures. Effect of two temperatures is depicted graphically on the amplitude
ratios for incidence of various plane waves, that is, Longitudinal displacement
wave (LD wave), Thermal wave (T wave), Coupled transverse wave (CD-I wave
and CD-II wave).

2. Basic equations
The field equations in an isotropic, homogeneous, micropolar elastic body

in the context of generalized theory of thermoelasticity with two temperatures,
without body forces, body couples and heat sources, [35], are given by

A+ 2u+K)V(V.U) — (u+ )V X (VX 1) +K(Vx$) —vVT :pg, (1)
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where T = (1 — aV?)® and the constitutive relations are
tij = Aur'r&-j + ﬂ(ui,j + u]"i) + K(uj',l‘ - Sijr(,br)—V(l - av2)®6ij, (4)
myj = agy.6;j+Bbi;+ve;, Ljir= 123 &)

where A and p are Lame’s constants. k, o, f and y are micropolar constants, p is
the density, j is the microinertia, i is the displacement VCCtOI‘,Tl)) is the
microrotation vector, t;;are the components of the stress tensor, m;; are the
components of couple stress tensor, T is the temperature change, @ is the
conductive temperature, ®, is the reference temperature, K* is the thermal
conductivity, c*is the specific heat at constant strain, 7, is the relaxation time, a is

the two temperature parameter, §;; is the Kronecker delta, €;j, is the alternating

symbol, v = (31 + 2u + k)ay, where ar is the coefficient of linear thermal
expansion.

3 Formulation of the problem

We consider a homogeneous, isotropic, micropolar, generalized
thermoelastic solid half space with two temperatures .The rectangular Cartesian
co-ordinate system Ox;Xx,Xx; having origin on the surface x3=0 with x;-axis
pointing vertically downward into the half space.

We consider two dimensional problem in x;x3-plane, so that the

d . . rd
displacement vector u and microrotation vector ¢ are taken as

= -
u= (u1(x1’x3). 0, u3(x1,x3)), ¢ = (0,¢(x1,%3),0) (6)
For convenience, the following non dimensional quantities are introduced
* * * 2
x,_a)xlx,_a)x3 u,_pa)clu u,_pa)clu ¢,__pcl¢
! o '3 ¢, YT T, YT oyr, T VT, "%’
, e . @ (O I 1 , w”* , . 7
t =w't, 1y =w't =—,t;; =—tj;j,m;=—=m;;, Tp=0'T
y U1 1 (DO' ij VTO ij ij C1VT0 ijo 0 0
c*c? A+2p+K
where w* = pK—*l, cf:T”

The displacement components u; and u; are related to the potential
functions ¢ and Y as
_2% _ov _29 o
T ox;  oxs Us =5 Vom, (8)
Using equation (8) in equations (1)-(3) and with the aid of equations (6)
and (7); (after suppressing the primes), we obtain

V20— (1—av?)d —22 = 9
- (1-av)0-22 -0, ©)

1
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2 2%y

V¢_a1¢2_a2§=0, (10)
aZ
Vi, — @3V — aupy — a5 SS2 =0, (11)
Vo = a6 (S + 1025 (1= aV®)) @ + ay (2 + 1025 ) V20 (12)
6\at * Oar2 7\at * "Oar2 ’

where

K _pctf ket ) _pjcf _ pcrefTy et
al_,u+lc'a2_y+1c' 3Ty w2 0= 203,05 = 'a6_K*(u*CI>0' Y = Kw

a2 22
0x12 = 0x3?%’

and V?=

4. Boundary Conditions

The boundary conditions at the free surface x3;=0 are the vanishing of
normal stress, tangential stress, tangential couple stress and temperature gradient.

Mathematically these can be written as

Tys= 0, Ts=0 myp=0 L=0 (13)

aX3
5. Reflection

We consider a Longitudinal displacement wave (LD-wave) or Thermal
wave (T-wave) or Coupled transverse and microrotational waves (CD-I wave and
CD-II wave) is incident at the plane x;=0 and making an angle 8, normal to the
surface. Corresponding to each incident wave, we get reflected LD-wave, T-wave,
CD-I and CD-II waves as shown in Fig.1.

In order to solve the equations (9)-(12), we assume the solutions of the form

{p, T, 0,9, ¢,} = {(j), T,®,1, @}exp [({k(x, sin @ — x5 cos ) — wt}] (14)

arbitrary constants. Making use of equation (14) in equations (9)-(12), after
simplification yield

V*+D,VZ+E =0, (15)
V*+D,V2+E, =0, (16)
where
=(“1“3_) r 1 [
5 _1+(a—%)a6(u4(i+ro)+a7w2 (i-}-ro) . _awz[a7(£+ro)—a6(é+ro)]
2= y B2 =

w2a6(£+‘[0)—1 as(é‘l"fo)_%

Equation (15) and (16) are quadratic in V2, therefore the roots of these
equations give four values of V2. Corresponding to each value of V2 in equation
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(15), there exist two types of waves in decreasing order of their velocities, namely
a LD-wave, T-wave. Similarly corresponding to each value of V? in equation
(16), there exist two types of waves, namely a CD-I wave, CD-II wave. Let V; ,V,
are the velocities of reflected LD-wave, T-wave and V3, V, are the velocities of
reflected CD-I wave, CD-II wave.

In view of equation (14), the appropriate solutions of equations (9)-(12)
are assumed of the form
{¢, @} = X7_,{1, fi} Soi[exp [t{k;(x; sin Op; — x3 cos O;) — wit}] + P],  (17)
Y, p,} = Z}*zg{l i} Tojexplifk;(x; sin6y; — x5 cos 6y;) — w;t} + Pj],  (18)
where
P; = S; exp[u{k;(x; sin By; + x5 cos 8y;) — w;t}],
P = Tjexp[t{kj (x1 sin 6 + x3 cos HOj) - a)jt}],
and Sy; are the amplitudes of incident (LD-wave, T-wave) and Ty; are the
amplitudes of incident (CD-I, CD-II) waves respectively. S; are the amplitudes of
reflected (LD-wave, T-wave) and T; are the amplitudes of reflected (CD-I, CD-II)
waves respectively.
In order to satisfy the boundary conditions, we use the extension of Snell’s law

sinfy _ sinf; _ sinf, _ sinf; _ sinf,
o v v v T (19)
where k1V1 = szz = k3V3 = k4V4 = w, at X3:0. (20)

Making use of the values of ¢, 1, ® and ¢, from (17) and (18) in boundary
conditions (13) and with the aid of equations (4)-(8) and using the equations (19)
and (20), we obtain a system of four non-homogeneous equations which can be
written as

Z?zl a;;jZ; =Y;;(i=1,23,4), (21)
where
ay; = (d1 +d,(1 - %sin2 90))% + (1 —-tpw)(1+ a%)fl-,

v Yoo v v,
a,; = o*Ve sinf, |1 v sin? 0, ay; = —(2d, + ds) e sinf, |1 v sin? 6,

v? v} vi
= ] J gin2 J_cin?
ay; = (Zd4 == jzsin 6y) — ds vz Sin 90) —dsfj,

17 V'Z V: 2 2
a5; =0, az; == [1—Lsin26,f:,a; =1—(1+a—5) [1—-Lsin26,f;, a,; =0
! I w V2 ) w? V2 ' J
(i=1,2andj=3,4)and
S o, 8% o, T o, _Th
Zl - A* 4 ZZ - A* ) Z3 A* ) Z4- A* > (22)

(1) For incident LD-wave:

A" =801, So2=To3 =Tpsa =0,Y; = —ay;, Yo =0ay1,V3 =03, =0,Y, = ay,,
(2) For incident T-wave:

A" =802,801=Tos3 =Toa =0,Y; = —a4,, Y, = a3, V3 = a3, =0,Y, = ay,,
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(3) For incident CD-I wave:
A" =To3,501 =S02 =Toa =0,Y; =ay3,Y, = —ay3, Y5 =a33, ¥, = a3 =0,
(4) For incident CD-II wave:
A" =TosSo1 =S02 =Toz3 = 0,Y; = 14, Y, = —ays, Y3 =034, V4 =au, =0,
where Z,, Z,, Z3, Z, are the complex amplitude ratios of reflected LD-wave, T-
wave and coupled CD-I, CD-II waves.

6. Particular cases

In the absence of two temperature effect, we obtain the amplitude ratios at the free
surface of micropolar generalized thermoelastic solid half space as

Za,”—, =1,2,3,4),

Where the values of a;; are given by

v o vZ
(d1 +d,(1- —sm2 90)) + (1 —tpw)f;, =d, wZIVO sin 8, ,1 - V—;Zsm2 8o,
3 V-z
=—d, + d5) sm 0 |1-— V—;Zsirl2 0o,

VZ VZ s ij -
2d4—(1 - —sm 6y) — (dswz—vozsm 0o) | — dsfj,

2
a3i:0’ a3]- 1——Sln 00}3 a4L—l ’1__5111 eoﬁ a4‘j:0’
S2

and
S T:
Zl:A_i' ZZ=;f Z3=A_?:" Z4_; 5 (23)

where Z;, Z,, Zs, Z, are the amplitude ratios of reflected LD-wave, T-wave and
coupled CD-I, CD-II waves .

The above results are in agreement with those obtained by Singh and
Kumar [25]by changing the dimensionless quantities into physical quantities.

7. Numerical results and discussion

For numerical computations, we take the following values of relevant
parameters. Following [35], the values of micropolar constants are taken as:
A=9.4x101°Nm2, u=4.0x101Nm=2, k=1.0x 101°Nm™2,
y=779x1071°N, j=2x10"2m?, p=174x%x103Kgm™3
and thermal parameters are taken as:

T, = 0.298K, ®, = 0.295 K, v =2.68 X 10°Nm™2K1,
c* =1.04x103Jkg K1, K*=1.7%x10))m s 1K', w =1,75 = 0.02
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In Figs. 2-13, we represent the solid line for micropolar generalized
thermoelastic solid (a=0), small dashes line for micropolar generalized
thermoelastic solid with two temperature (a¢=0.3), and large dashes line for
micropolar generalized thermoelastic solid with two temperature(a=0.9).

7.1. LD-Wave Incident

Fig. 2 shows that the amplitude ratios |Zl| increases monotonically with

the angle of incidence for all values of a and attaining the maximum value 1 at the
grazing incidence.

Fig. 3 shows that the amplitude ratio |Zz| attains the maximum value 1

near normal incidence and then it decreases monotonically with the angle of
incidence for all values of a. The value of |Zz| converges to minimum value at the

grazing incidence for all values of a.

In Fig. 4 , the values of amplitude ratio |Z3| increases monotonically when
0< 6, <43° and as 6 increases further, it decreases for all values of a. The values
of |Z3| remain more for a=0in comparison to a=0.3 and 0.9 depicting the
effect of two temperatures.

Fig. 5 depicts that the values of amplitude ratio |Z4| increases monotoni-
cally for 0< 6, <45 and decrease monotonically as 6, increase for all values of

a. The values of |Z4| remain more for ¢ = 0.9 in comparison to a =0and 0.3.

7.2. T-Wave Incident

Fig. 6 depicts that the values of amplitude ratio |Zl| begin with the value 1

near normal incidence then it decreases monotonically with the angle of incidence
and attaining the minimum value at the grazing incidence for all values of a.

Fig. 7 shows that the values of amplitude ratio |Zz| increases

monotonically for all values of a with the angle of incidence and attaining the
maximum value | at the grazing incidence.

Fig. 8 depicts that the values of amplitude ratio |Z3| for a=0.3and a=0.9
increase in the range 0<6, <50° and then decrease as ¢, increases further

whereas for a =0, the value of |Z3| increase in the interval 0 < @, <55°and then

decrease sharply for further range.
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Fig.9 shows that as 6, lies between0 < 6, <30°, value of |Z,| increase for

all values of a and as 6 increase further, the values of |Z4| oscillate for all a and

attaining the minimum value at the grazing incidence.

7.3. CD-l Wave Incident

Fig. 10 depicts that the values of amplitude ratio |Zl| increase

monotonically for all values of a, as §lies between 0<6, <45 and then

decreases attaining its minimum value near the grazing incidence. It is evident
that as a increase, the amplitude ratio decrease depicting the effect of two
temperature.

Fig. 11 shows that the values of amplitude ratio |Zz| first increases
monotonically for all values of a as 6, increases and then decrease as 6, increase

for all values of a . The maximum value of |Zz| is attained for a =0 in the range

55<6,<65°.
Fig. 12 depicts that the values of amplitude ratio |Z3| for all values of a.
The values of |Z3| for a =0 are more in comparison to a =0.3 and a = 0.9 near

the normal incidence, then it increases as angle of incidence increases and it
attains its maximum value 1 at the grazing incidence.

In Fig.13, the value of amplitude ratio |Z4| is maximum near the normal

incidence , then it decreases monotonically with angle of incidence and attains its
minimum value at grazing incidence for all values of a. The values of |Z4| are

more for ¢ =0.9 in comparison to a =0and a=0.3.

LD (So1}

TS0z}

CO-1 (Tps)
4 CD-11 (Toq)

Xy

Fig. 1 Geometry of the problem



Effect of distinct conductive and thermodynamic temperatures [...] elastic half-space

129

Amplitude ratiolZ,

Amplitude ratiolZ,

Amplitude ratiolZ

o T T T ‘ T ‘ T ‘ T ‘ T T ‘
o 10 20 30 40 50 60 70 80 90 o 10 20 30 40 50 60 70 80 90
Angle of incidence 0, Angle of incidence 0,
Fig.2 Fig.3
025 — 016 —
02 —
012 —
015 — N 7
°
g
1 £ 008 —
2
=
01 — H
004 —
005 —
e e s et B B B L L L B BN B

0 10 20 30 40 50 60 70 80
Angle o incidence 0,

Fig. 4

0 10 20 30 40 50 60 70 80 90

Angle of incidence 0,

Fig. 5
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8. Conclusion

Effect of two temperatures has significant impact on the amplitude ratios.

It is depicted from the figures that the behavior and trend of variation of amplitude
ratios is same for all the values of a. Also it is observed that the values of |Z;|; 1 <
i < 3, decreases with increase in the values of a that shows the effect of two
temperatures, whereas the values of |Z,| increase with increase in the values of a.
The research work is supposed to be useful in further studies, for both theoretical
and observational wave propagation in more realistic models of the micropolar
thermoelastic solid present in the earth’s interior.
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