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RECEPTIVE FIELD-EXPANDED AND CONTEXT-AWARE
SINGLE SHOT DETECTOR

Jian ZHANG??, Yonghui ZHANG?*, Hong JIANG*, Ruonan LI1U?®, Jingxuan
HE®

Single-shot detector (SSD) ignores the context from the proposal boxes and is
not accurate enough for small object detection. In this paper, a new object detection
method, called RFCSSD, is proposed. The RFCSSD method enhances the context
information by extending the receptive field of the SSD target detector multi-scale
feature map and fuses the depth semantic abstraction to improve the accuracy of
small object detection. The experimental results show that the RFCSSD can
significantly improve the weakness of SSD and achieve more accurate detection
performance. The RFCSSD has better mAP than the existing algorithms.

Keywords: Receptive Field-extended, Context-aware, Dilate Convolution, SSD
1. Introduction

Multi-scale object detection has always been a key factor affecting the
performance of object detector. Using different scale feature maps to predict the
targets at different scales (see Fig. 1 (a)) is an inefficient method. The top-level
features are used to predict the bounding boxes with different scales and aspect
ratios (see Fig. 1 (b)). However, a single top-level feature map does not
accommodate the diversity of the target scales in the actual images. Although, the
top-level feature map has deep abstract semantic information, which is beneficial
for the expression of features, but the top-level features have fixed receptive fields
and low resolution that reduce the detection ability of small targets.
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The single-shot detector (SSD) [1] uses the bottom-up pyramid structure to
detect the targets of different scales and achieves good detection performance (see
Fig. 1 (c)). The bottom layer of the pyramid structure is used to detect the small-
scale targets, but the feature graph at the bottom layer only contains weak
semantic information, which is not conducive to the expression of small targets. In
a recent study, Cui et al. [2] attempted to utilize the characteristics of pyramid
structures by constructing top-down channels (see Fig. 1 (d)) and improved the
accuracy of target detection compared with the standard SSD. However, the
details of the small target lost after repeated convolution, which could not be
restored even after deconvolution. On the other hand, the lack of contextual
information in the underlying features of small receptive field has not been fully
supplemented.
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Fig. 1. Multi-scale target detection.

Ren et al. [3] stated that in order to correctly detect the target, the detector
should have three basic attributes: 1) the feature graph should have sufficient
resolution to represent the fine details of the object; 2) the function that converts
the input image into the feature image should be deep enough to abstractly
incorporate the appropriate high-level feature of the object into the feature graph;
3) the feature graph should contain appropriate contextual information that can be
used to obtain the accurate position of the small target. In the pyramid structure,
the shallow feature graph has small receptive field, insufficient contextual
information and abstract features, which cannot meet the requirements of 2) and
3). The deep feature graph has large receptive field, sufficient context information
and sufficient feature abstraction, but it does not satisfy requirement 1). The low
resolution of deep feature graph is not conducive to the recognition of small
targets and coordinate regression.

Numerous recent studies have improved the ability of SSD algorithms to
identify small targets by transferring the context information contained in the deep
feature map to the shallow layer through additional modules [3,4,6,7]. Yu et al. [8]
showed that the reduced convolution could expand the receptive field of the
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convolution kernel without reducing the resolution and achieved the optimal
accuracy in the semantic segmentation of the image. The CSSD [9] improved the
SSD algorithm by expanding and convolving the feature maps of different scales
to generate the context of different fields of perception. The CSSD method
increases the receptive fields of shallow output and does not reduce the resolution
of the feature map. However, the shallow feature maps of CSSD still lacks
sufficient semantic abstraction information. StairNet [10] starts at its deepest level
and incorporates a deep context layer by layer, leading to a deeper semantic
abstraction at each level, called progressive semantic aggregation. However, the
view of the underlying output in the StairNet has not been substantially expanded.

This paper proposes the RFCSSD framework that expands the receptive
field of the feature graph with the expansion convolution keeping the resolution
unchanged. In addition, a simple and effective multi-level feature fusion module
is designed that transmits powerful semantic information from top to bottom in
the network. The proposed design enables the shallow feature mapping to obtain a
large sensing field and retain sufficient object details, while the deep strong
semantic information is also transferred to the shallow feature graph through the
fusion layer by layer. The performance of the proposed framework is better than
the most advanced single-level detector.

The main contributions of this paper are as follows:

The RFCSSD framework is proposed. The shallow feature graph obtains
large receptive field and maintains high resolution through dilated convolution.
Then the shallow feature graph is integrated with the depth feature to significantly
improve the detection ability of small target. A multi-level feature fusion module
is also designed. The new fusion feature has multi-scale representation and deep
semantic information.

A large number of experiments are conducted to provide sufficient options
for designing the feature combinations.

The proposed RFCSSD achieves excellent performance on the datasets of
PASCL VOC2007 and PASCAL VOC2012, and maintains real-time processing
speed.

2. Related works

The target detectors based on deep learning can be divided into two
categories: candidate region-based methods [10-13] and regression-based methods
[1, 14]. The SSD [1] combines the idea of YOLO regression with the anchor
mechanism of Faster R-CNN, generates multiple bounding boxes for each anchor
point, and uses the pyramid structure to process the objects of different scales in
the prediction stage, achieving higher inference speed and accuracy than YOLO.
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The pyramid structure used by the SSD is a bottom-up structure, and its
deep feature mapping cannot provide the high resolution required by attribute 1).
The shallow feature graph is obtained by the shallow transformation function and
cannot meet the requirement of attribute 2). Each feature graph is only responsible
for the detection of the object of corresponding size, and the receptive field of the
shallow feature graph is extremely small, which cannot meet the requirement of
context information in attribute 3). The DSSD [4] adds additional deconvolution
structure to improve the recognition ability of small targets by integrating the
context information of each prediction layer and corresponding deconvolution
layer. However, the infer speed of DSSD is only 11.2 fps.

Several studies have improved the accuracy of detector by adding feature
maps of different scales to introduce additional context information [2,6,7,16,17].
Wei et al. [9] improved the pyramid structure of SSD by using deconvolution and
expansion convolution. Liu et al. [18] used the multi-branch convolution and the
expansion convolution of different cores to enhance the discriminability and the
robustness of features. Qin et al. [20] conducted multi-scale feature fusion of the
shallow three-layered feature map of pyramid structure using expansion
convolution and deconvolution. The MDSSD [2] designed a concise
deconvolution fusion module to add the high-level features with semantic
information to the low-level features in order to obtain feature mapping with rich
information. StairNet [21] introduced a feature composition module to scale up a
strong semantic abstraction in a top-down manner in order to address the lack of
sufficient semantic information in the shallow layer when detecting small targets.
Wu et al. [22] proposed a bidirectional pyramid structure (BPN) to integrate deep
and shallow layers. Zhou et al. [23] used the DenseNet as the backbone network
and combined it with scale transfer module (STM) to construct the STDN single-
stage object detector. The expanded convolution [8] can exponentially expand the
receptive field without compromising the resolution and the coverage. The
expanded convolution can achieve optimal performance in image semantic
segmentation. Using the ResNet as the base network, DetNet [24] redesigned the
backbone network specifically for target detection, which used the expansion
convolution to expand the receptor field while maintaining the resolution of the
feature map without shrinking. Parallel pyramid network [25] improved the
identification performance by widening the network width instead of the depth.
Wei et al. [9] improved the pyramid structure of SSD by using deconvolution and
expansion convolution.

After large step down-sampling, the information of the small target is
deteriorated or even disappeared. Since the deep feature graph lacks the
information for small target, it is futile to transmit the deep information to the
shallow layer. Therefore, dilated convolution is used in the proposed framework
to expand the receptive field and maintain the resolution of feature map, so that
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the details and the positioning information of small targets will not deteriorate. In
addition, a semantic fusion module is designed that fuses the deep semantic
information layer by layer into the shallow feature layer. The final model, called
RFCSSD, effectively satisfies the three essential attributes of the detector.

3. Method

In this section, the SSD framework is first reviewed and the feature fusion
is analyzed. Then the process of expanding the receptive field of the feature graph
through dilated convolution is described. Next, the multi-level feature fusion
module is introduced. Lastly, the proposed RFCSSD network architecture and
training strategy are presented.

3.1 SSD framework

The standard SSD uses the truncated VGG16 [29] as feature extractor, and
then adds additional multi-scale prediction structure to predict the targets of
different scales. The multi-scale prediction improves the target detection
performance and maintains real-time detection speed. However, the shallow
feature map lacks sufficient context information and semantic abstraction, and the
detection performance of SSD for small targets is poor.

The multi-scale feature graph of SSD can be expressed with a simple
mathematical formula as follows:

fn =C, ( fn—l) =C, (Cn—l(---Cl(I ) 1)

Detection = D(z, (f,),....7,  (f,)),n>k>0 2

where | is the input image, f is the feature graph of the nth layer, and
C,()is the nth nonlinear transformation, including convolution, pooling, ReLU

and other operations. 7,(-) is the function that converts the feature graph of the nth

layer into detection result within a specific size range and D is the final detection
output. Obviously, whenk is relatively large, the depth of pyramid structure will
decrease layer by layer, and the semantic level of feature graph of each layer will
also gradually decrease. Thus, the shallowest layern —n—k only contains weak
semantic information. In addition, the research of Xiang et al. [9] showed that the
size of the real receptive field was far smaller than the theoretical one, and the
effective receptive field of the Conv4_3 layer used to predict small targets in SSD
was only 58.6, accounting for only 1/26 of the original image region. It is easy to
see that the layer f _, used to detect small targets has insufficient contextual

information. Obviously, the shallow features defined by formula (2) violate
attributes 2) and 3). In this regard, the existing studies have attempted to fuse the
features of different scales to improve the performance of the algorithm. The SSD
of feature fusion can be described as follows:
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DeteCtion = [S(Tn (Fn (H )’ z-n—l(l:n—l(H ))l"'! z'n—k (Fn—k (H )) (3)
H={f,f ,..f . .}hn>k>0
where His the set of all feature graphs and F(-)is the function that

performs fusion of the feature graph. The study in reference [9] showed that the
multi-scale dilated convolution could rapidly expand the TRF size of each
prediction layer and ensure large enough region for each feature point. Different
from pooling, the dilated convolution will not reduce the resolution of the feature
graph. On this basis, if the feature graph f of formula (3) has the following

characteristics and can meet the requirements of attributes 1) ~3):
fn'—k = q)(¢n—k ( fn—k) + fn—k+1)
(4)
f,=f,
Where < (-) performs dilated convolution on feature graph and < (-)
is the nonlinear processing of the feature after fusion. Compared with formula (3),
formula (4) is based on multi-scale feature representation of SSD and expands a
larger receptive field to each layer of feature graph through dilated convolution in
order to obtain broader contextual information and maintains the resolution of the
feature graph. These features satisfy attributes 1) and 3). At the same time, the

deep strong semantic information can also be transferred to the shallow feature
graph layer by layer to satisfy attribute 2).

3.2 Dilation block

The dilated convolution injects holes into standard convolution maps to
replace the convolution with a step size greater than 2 or pooling, to generate
higher-resolution feature graphs and obtain a wider range of receptive fields to
capture the contextual information. This approach has achieved good results in
semantic segmentation [26] and target detection [1,27].

3*3dilate2 | | 3*3,dilate3 | | 3*3dilate4 | | 3*3,dilate5 || 1*1Conv

Elsewise add

Elsewise add

Fig. 2. Dilation block.
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In this paper, the expanded convolution block shown in Fig. 2 is
introduced to expand the receptive field of the shallow feature map without losing
the information in order to ensure each output contains a large range of context
information.

3.3 Fusion module

The attribute 2) requires the feature map to have sufficient semantic
abstraction. A cascading feature fusion module is designed in this paper to
enhance the semantic information of the shallow feature map. The feature fusion
module transfers the high-level abstract features to the shallower layer.

In order to combine the information uploaded from the deep layer with the
corresponding information from the shallow layer, the Decblock (orange in Fig. 3)
is introduced. The Decblock takes the deep fusion feature as the input with a
convolution kernel size of 3 x 3, and scaled by the deconvolution layer with an
up-sampling rate of 2. The output of Decblock has 256 channels, and the
convolution of 1 X 1 is used to reduce the dimension and reconstruct the features.
Since the features of different layers represent different scale distributions, they
are normalized first. Then the features are fused using eltwise add operation
(yellow in Fig. 3). The fusion module delivers the deep high-level semantic
abstraction to the shallow feature map layer by layer.

77N o
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Shallower layer 1*1 Conv

Fig. 3. Fusion module.

The convolution layer of 3 % 3 (red in Fig. 3) is used to mix the current
layer and the deeper information in order to construct the enhanced feature map
before the classifier. The enhanced feature map has the same spatial resolution as
the original feature map, with larger receptive field and enhanced semantic
information.

3.4 RFCSSD
The proposed RFCSSD detector still uses the multi-scale, single-stage
detection framework of the original SSD. Fig. 4 shows the architecture of the
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proposed RFCSSD. After the multi-scale feature output, the Dilation block
proposed in section 3.2 is embedded to obtain the feature map with high
resolution and large receptive field. Different from literature [9], the Dilation
block is only added in the shallowest layer. It is believed that since the resolution
of the deepest feature map is too small (3X3 and 1X1), it is not suitable to apply
the dilated convolution of rate of 5. It is also believed that expanding the receptive
field of each layer will introduce excessive background noise, thereby reducing
the accuracy, which is also confirmed by the study in Section 4.2. Then, the
feature fusion module proposed in section 3.3 is applied to the top-level feature
output to transfer the deep semantic information to the shallow feature map layer
by layer.

\4

Feature Fushion

>
>

Dilation Block

TG

3*300*300 Conv4_3  Conv5_x Convé(FC6) Conv7(FC7) Conva_2 Conv9_2  Convi0_2 Convll_2

uondarg

Fig. 4. The architecture of RFCSSD.

Recent studies have shown that using the new backbone network to
replace VGG16 improves the feature extraction ability [4,5,21,22], and using the
focus loss [28] and combining the two-stage method [17] to solve the problem of
category imbalance in training can significantly improve the performance of the
detector. However, this paper currently focuses on the framework structure of the
original SSD to compare the performance of the proposed approach.

3.5 Training

In this paper, the same training process as the original SSD is followed.
The SGD with momentum of 0.9 was used for optimization, weight attenuation
was set at 0.0005, and batch was set at 32. Using the same learning strategy as the
SSD, 120K iterations were trained, learning rate of 0.001 was used in the first
80K iterations, and then the learning rate was reduced by 10 times per 20K
iterations.
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4. Experiment

The experiments were conducted on PASCAL VOC2007 and VOC2012
datasets to compare the performance of the proposed method with that of other
typical algorithms. The reported performance parameters of the algorithms are
used for the comparison. All the experiments in this paper are based on Caffe’s
framework.

4.1 PASCAL

The proposed model was trained on PASCAL VOC2007 and PASCAL
VOC2012 and evaluated using the VOC2007test and VOC2012test test sets.
Table 1 shows the test results on the PASCAL2007 test set. The mAP of the
RFCSSD reached 79.1, which was 1.6 higher than the original SSD, and better
than CSSD [9], DSSD [4], and StairNet [10]. The RFCSSD infer speed reached
57.7 FPS on GTX1080ti*2 platform, which was faster than the DSSD (11.2fps),

and slightly lower than the 67fps of the original SSD.
Table 1

Detection results on PASCAL VOC 2007 test set. (VOC 07+12:07 trainval+12trainval)

mA
method |Data| P
(%)

aer|bik|bir|bo|bott|Bu carlcat cha| co |tab|do [Hor| mbi | per [pla|she [sofitrai

ole|d|at|le|s irwlegsekesnntepantV

SSD300|07+|77.79.|83. 76 69.|50. 87 85./88./60.|81. 77 86.(87. 83.9 79.152.|77.(79./87.|76.
[1] |12|5|5|9 6|5 7111315 115,774 |13|19|5|6/|8

CSSD | 07+|78.(82.(85.(76,69.| 51. 86.86.| 5o | 61.|82.|76.|86.|87. |5 | 78.|54.  76. |77./88.|78.
O] [12|1|2|4|5|8| 1|44 6|7|4(5/9(°' 8296|902

DSSD |07+78.|81./84.|80.|68.| 53. |85./86.|88.|61.|83./78.|86.| 88. 86.7 79.|51. 78 80.|87.|79.
[4] 1216199549 (62|91 (5|7 (7|7 | " |7|7 9124

StairNet| 07+ |78.(81,(85.77./72.| 59. {86.(86.|87.| 62. 85.| . 84.|88. | . | 78.|54./77. | 188./79.
[10] |[12|8|3|4|8|1]|2|4|8|5|7|7 114 8|84 3|2

07+|79.(81./85.|76.|73.| 54. |87./87.|87.|61.|86.|79.|86.| 88. 86.1 79.153.]79.81./87.|78.

Ours |15 1111]0|8|7|6|5|0|3|8|1|4/|6]5 9(5/0|6/|5]|2

For VOC2012 task, the training set composed of VOC2007test and
VOC2012train was used for training and VOC2012test was used for testing. The
results are shown in Table 2, which again validate that the proposed RFCSSD is
superior to all other comparison algorithms
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Table2
Detection results on PASCAL VOC2012 test set
(All models were trained on O7trainval+07test+12trainval)

Method Network MAP(%)
SSD300[1] VGG16 75.8
StairNet[10] VGG16 76.4
DSSDJ4] ResNet101 76.3
DSODI[32] DenseNet 76.3
ours VGG16 76.6

4.2 Ablation Study on VOC2007

In order to understand the effectiveness of the improvement to the original
SSD proposed in this paper, the models were run with different settings on
VOC2007, and their recorded evaluations are shown in Table 3.

The CSSD [9] adds expanded convolution structure to each multi-scale
feature layer. However, it is believed that: 1) the deepest two layers have enough
receptive fields, and their low resolution is not suitable for the use of rate=5
expansion convolution; 2) excessive background noise is introduced while
expanding the receptive field. The results in Table 3 confirm the inference. In the
end, this paper adopts the method with the highest accuracy, only extending the
receptive field to the shallowest conv4_3.

Table3
Effectiveness of dilation numbers on the VOC?2007 test set.
Dilation block 0 1 2 3 all
MAP(%) 77.22 77.44 77.39 77.39 77.36

Furthermore, the effects of the Dilation block and the feature fusion on the
accuracy of the detector are also examined. Table 4 shows that the Dilation
Block+Feature fusion used in this paper improves the accuracy of the original
SSD detector by 2%.

Table 4
Effectiveness of various design on the VOC2007 test set.
Component RFCSSD SSD
Dilation Block \ \
Feature Fusion block \ S
MAP (%) 79.1 78.8 77.4 77.2

5. Conclusion

In this paper, an effective improved SSD framework is presented that can
obtain more contextual information by expanding the receptive field without
reducing the resolution in order to retain more details of small targets and transmit
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high-level semantic information layer by layer for accurate target detection.
Generally, the traditional detection method at each stage uses the pyramid
structure to dispose multi-scale objects, which creates contradictions between
shallow and deep feature maps in resolution, contextual information and advanced
semantic abstraction. In order to resolve this issue, the dilated convolution module
is used to expand the receptive field while keeping the resolution of the feature
map unchanged, and the feature fusion module is used to transfer the deep strong
semantic information to the shallow feature map layer by layer. The experimental
results demonstrate that the accuracy of the proposed method is better than that of
existing methods including DSSD, achieving the reasoning speed of 58fps.
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