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RECEPTIVE FIELD-EXPANDED AND CONTEXT-AWARE 

SINGLE SHOT DETECTOR 

Jian ZHANG12, Yonghui ZHANG3*, Hong JIANG4, Ruonan LIU5, Jingxuan 

HE6  

Single-shot detector (SSD) ignores the context from the proposal boxes and is 

not accurate enough for small object detection. In this paper, a new object detection 

method, called RFCSSD, is proposed. The RFCSSD method enhances the context 

information by extending the receptive field of the SSD target detector multi-scale 

feature map and fuses the depth semantic abstraction to improve the accuracy of 

small object detection. The experimental results show that the RFCSSD can 

significantly improve the weakness of SSD and achieve more accurate detection 

performance. The RFCSSD has better mAP than the existing algorithms. 
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1. Introduction 

Multi-scale object detection has always been a key factor affecting the 

performance of object detector. Using different scale feature maps to predict the 

targets at different scales (see Fig. 1 (a)) is an inefficient method. The top-level 

features are used to predict the bounding boxes with different scales and aspect 

ratios (see Fig. 1 (b)). However, a single top-level feature map does not 

accommodate the diversity of the target scales in the actual images. Although, the 

top-level feature map has deep abstract semantic information, which is beneficial 

for the expression of features, but the top-level features have fixed receptive fields 

and low resolution that reduce the detection ability of small targets. 
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The single-shot detector (SSD) [1] uses the bottom-up pyramid structure to 

detect the targets of different scales and achieves good detection performance (see 

Fig. 1 (c)). The bottom layer of the pyramid structure is used to detect the small-

scale targets, but the feature graph at the bottom layer only contains weak 

semantic information, which is not conducive to the expression of small targets. In 

a recent study, Cui et al. [2] attempted to utilize the characteristics of pyramid 

structures by constructing top-down channels (see Fig. 1 (d)) and improved the 

accuracy of target detection compared with the standard SSD. However, the 

details of the small target lost after repeated convolution, which could not be 

restored even after deconvolution. On the other hand, the lack of contextual 

information in the underlying features of small receptive field has not been fully 

supplemented. 

(a) (b)

(c) (d)  
Fig. 1. Multi-scale target detection. 

Ren et al. [3] stated that in order to correctly detect the target, the detector 

should have three basic attributes: 1) the feature graph should have sufficient 

resolution to represent the fine details of the object; 2) the function that converts 

the input image into the feature image should be deep enough to abstractly 

incorporate the appropriate high-level feature of the object into the feature graph; 

3) the feature graph should contain appropriate contextual information that can be 

used to obtain the accurate position of the small target. In the pyramid structure, 

the shallow feature graph has small receptive field, insufficient contextual 

information and abstract features, which cannot meet the requirements of 2) and 

3). The deep feature graph has large receptive field, sufficient context information 

and sufficient feature abstraction, but it does not satisfy requirement 1). The low 

resolution of deep feature graph is not conducive to the recognition of small 

targets and coordinate regression. 

Numerous recent studies have improved the ability of SSD algorithms to 

identify small targets by transferring the context information contained in the deep 

feature map to the shallow layer through additional modules [3,4,6,7]. Yu et al. [8] 

showed that the reduced convolution could expand the receptive field of the 
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convolution kernel without reducing the resolution and achieved the optimal 

accuracy in the semantic segmentation of the image. The CSSD [9] improved the 

SSD algorithm by expanding and convolving the feature maps of different scales 

to generate the context of different fields of perception. The CSSD method 

increases the receptive fields of shallow output and does not reduce the resolution 

of the feature map. However, the shallow feature maps of CSSD still lacks 

sufficient semantic abstraction information. StairNet [10] starts at its deepest level 

and incorporates a deep context layer by layer, leading to a deeper semantic 

abstraction at each level, called progressive semantic aggregation. However, the 

view of the underlying output in the StairNet has not been substantially expanded. 

This paper proposes the RFCSSD framework that expands the receptive 

field of the feature graph with the expansion convolution keeping the resolution 

unchanged. In addition, a simple and effective multi-level feature fusion module 

is designed that transmits powerful semantic information from top to bottom in 

the network. The proposed design enables the shallow feature mapping to obtain a 

large sensing field and retain sufficient object details, while the deep strong 

semantic information is also transferred to the shallow feature graph through the 

fusion layer by layer. The performance of the proposed framework is better than 

the most advanced single-level detector. 

The main contributions of this paper are as follows: 

The RFCSSD framework is proposed. The shallow feature graph obtains 

large receptive field and maintains high resolution through dilated convolution. 

Then the shallow feature graph is integrated with the depth feature to significantly 

improve the detection ability of small target. A multi-level feature fusion module 

is also designed. The new fusion feature has multi-scale representation and deep 

semantic information. 

A large number of experiments are conducted to provide sufficient options 

for designing the feature combinations. 

The proposed RFCSSD achieves excellent performance on the datasets of 

PASCL VOC2007 and PASCAL VOC2012, and maintains real-time processing 

speed. 

2. Related works 

The target detectors based on deep learning can be divided into two 

categories: candidate region-based methods [10-13] and regression-based methods 

[1, 14]. The SSD [1] combines the idea of YOLO regression with the anchor 

mechanism of Faster R-CNN, generates multiple bounding boxes for each anchor 

point, and uses the pyramid structure to process the objects of different scales in 

the prediction stage, achieving higher inference speed and accuracy than YOLO. 
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The pyramid structure used by the SSD is a bottom-up structure, and its 

deep feature mapping cannot provide the high resolution required by attribute 1). 

The shallow feature graph is obtained by the shallow transformation function and 

cannot meet the requirement of attribute 2). Each feature graph is only responsible 

for the detection of the object of corresponding size, and the receptive field of the 

shallow feature graph is extremely small, which cannot meet the requirement of 

context information in attribute 3). The DSSD [4] adds additional deconvolution 

structure to improve the recognition ability of small targets by integrating the 

context information of each prediction layer and corresponding deconvolution 

layer. However, the infer speed of DSSD is only 11.2 fps.  

Several studies have improved the accuracy of detector by adding feature 

maps of different scales to introduce additional context information [2,6,7,16,17]. 

Wei et al. [9] improved the pyramid structure of SSD by using deconvolution and 

expansion convolution. Liu et al. [18] used the multi-branch convolution and the 

expansion convolution of different cores to enhance the discriminability and the 

robustness of features. Qin et al. [20] conducted multi-scale feature fusion of the 

shallow three-layered feature map of pyramid structure using expansion 

convolution and deconvolution. The MDSSD [2] designed a concise 

deconvolution fusion module to add the high-level features with semantic 

information to the low-level features in order to obtain feature mapping with rich 

information. StairNet [21] introduced a feature composition module to scale up a 

strong semantic abstraction in a top-down manner in order to address the lack of 

sufficient semantic information in the shallow layer when detecting small targets. 

Wu et al. [22] proposed a bidirectional pyramid structure (BPN) to integrate deep 

and shallow layers. Zhou et al. [23] used the DenseNet as the backbone network 

and combined it with scale transfer module (STM) to construct the STDN single-

stage object detector. The expanded convolution [8] can exponentially expand the 

receptive field without compromising the resolution and the coverage. The 

expanded convolution can achieve optimal performance in image semantic 

segmentation. Using the ResNet as the base network, DetNet [24] redesigned the 

backbone network specifically for target detection, which used the expansion 

convolution to expand the receptor field while maintaining the resolution of the 

feature map without shrinking. Parallel pyramid network [25] improved the 

identification performance by widening the network width instead of the depth. 

Wei et al. [9] improved the pyramid structure of SSD by using deconvolution and 

expansion convolution. 

After large step down-sampling, the information of the small target is 

deteriorated or even disappeared. Since the deep feature graph lacks the 

information for small target, it is futile to transmit the deep information to the 

shallow layer. Therefore, dilated convolution is used in the proposed framework 

to expand the receptive field and maintain the resolution of feature map, so that 
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the details and the positioning information of small targets will not deteriorate. In 

addition, a semantic fusion module is designed that fuses the deep semantic 

information layer by layer into the shallow feature layer. The final model, called 

RFCSSD, effectively satisfies the three essential attributes of the detector. 

3. Method 

In this section, the SSD framework is first reviewed and the feature fusion 

is analyzed. Then the process of expanding the receptive field of the feature graph 

through dilated convolution is described. Next, the multi-level feature fusion 

module is introduced. Lastly, the proposed RFCSSD network architecture and 

training strategy are presented. 

3.1 SSD framework 

The standard SSD uses the truncated VGG16 [29] as feature extractor, and 

then adds additional multi-scale prediction structure to predict the targets of 

different scales. The multi-scale prediction improves the target detection 

performance and maintains real-time detection speed. However, the shallow 

feature map lacks sufficient context information and semantic abstraction, and the 

detection performance of SSD for small targets is poor. 

The multi-scale feature graph of SSD can be expressed with a simple 

mathematical formula as follows: 

)))((...()( 111 ICCCfCf nnnnn −− ==                       (1) 

            0)),(),...,(( = −− knffDDetection knknnn                         (2) 

where I is the input image, nf is the feature graph of the nth layer, and 

)(nC is the nth nonlinear transformation, including convolution, pooling, ReLU 

and other operations. )(n is the function that converts the feature graph of the nth 

layer into detection result within a specific size range and D is the final detection 

output. Obviously, when k is relatively large, the depth of pyramid structure will 

decrease layer by layer, and the semantic level of feature graph of each layer will 

also gradually decrease. Thus, the shallowest layer knn −→   only contains weak 

semantic information. In addition, the research of Xiang et al. [9] showed that the 

size of the real receptive field was far smaller than the theoretical one, and the 

effective receptive field of the Conv4_3 layer used to predict small targets in SSD 

was only 58.6, accounting for only 1/26 of the original image region. It is easy to 

see that the layer knf − used to detect small targets has insufficient contextual 

information. Obviously, the shallow features defined by formula (2) violate 

attributes 2) and 3). In this regard, the existing studies have attempted to fuse the 

features of different scales to improve the performance of the algorithm. The SSD 

of feature fusion can be described as follows: 
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where H is the set of all feature graphs and )(F is the function that 

performs fusion of the feature graph. The study in reference [9] showed that the 

multi-scale dilated convolution could rapidly expand the TRF size of each 

prediction layer and ensure large enough region for each feature point. Different 

from pooling, the dilated convolution will not reduce the resolution of the feature 

graph. On this basis, if the feature graph f of formula (3) has the following 

characteristics and can meet the requirements of attributes 1) ~3): 
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Where )( performs dilated convolution on feature graph and )(  

is the nonlinear processing of the feature after fusion. Compared with formula (3), 

formula (4) is based on multi-scale feature representation of SSD and expands a 

larger receptive field to each layer of feature graph through dilated convolution in 

order to obtain broader contextual information and maintains the resolution of the 

feature graph. These features satisfy attributes 1) and 3). At the same time, the 

deep strong semantic information can also be transferred to the shallow feature 

graph layer by layer to satisfy attribute 2). 

3.2 Dilation block 

The dilated convolution injects holes into standard convolution maps to 

replace the convolution with a step size greater than 2 or pooling, to generate 

higher-resolution feature graphs and obtain a wider range of receptive fields to 

capture the contextual information. This approach has achieved good results in 

semantic segmentation [26] and target detection [1,27]. 

1*1Conv

3*3,dilate2 3*3,dilate4

1*1Conv

1*1Conv

Elsewise add

Elsewise add

3*3,dilate53*3,dilate3

 
Fig. 2. Dilation block. 
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In this paper, the expanded convolution block shown in Fig. 2 is 

introduced to expand the receptive field of the shallow feature map without losing 

the information in order to ensure each output contains a large range of context 

information. 

3.3 Fusion module 

The attribute 2) requires the feature map to have sufficient semantic 

abstraction. A cascading feature fusion module is designed in this paper to 

enhance the semantic information of the shallow feature map. The feature fusion 

module transfers the high-level abstract features to the shallower layer.  

In order to combine the information uploaded from the deep layer with the 

corresponding information from the shallow layer, the Decblock (orange in Fig. 3) 

is introduced. The Decblock takes the deep fusion feature as the input with a 

convolution kernel size of , and scaled by the deconvolution layer with an 

up-sampling rate of 2. The output of Decblock has 256 channels, and the 

convolution of  is used to reduce the dimension and reconstruct the features. 

Since the features of different layers represent different scale distributions, they 

are normalized first. Then the features are fused using eltwise add operation 

(yellow in Fig. 3). The fusion module delivers the deep high-level semantic 

abstraction to the shallow feature map layer by layer. 
 

+

1*
1 

Co
nv

1*1 Conv

3*3 DeConv

1*1 Conv

3*3 Conv

Current layer

Deeper layer

Shallower layer

 

Fig. 3. Fusion module. 

The convolution layer of  (red in Fig. 3) is used to mix the current 

layer and the deeper information in order to construct the enhanced feature map 

before the classifier. The enhanced feature map has the same spatial resolution as 

the original feature map, with larger receptive field and enhanced semantic 

information. 

3.4 RFCSSD 

The proposed RFCSSD detector still uses the multi-scale, single-stage 

detection framework of the original SSD. Fig. 4 shows the architecture of the 
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proposed RFCSSD. After the multi-scale feature output, the Dilation block 

proposed in section 3.2 is embedded to obtain the feature map with high 

resolution and large receptive field. Different from literature [9], the Dilation 

block is only added in the shallowest layer. It is believed that since the resolution 

of the deepest feature map is too small (3×3 and 1×1), it is not suitable to apply 

the dilated convolution of rate of 5. It is also believed that expanding the receptive 

field of each layer will introduce excessive background noise, thereby reducing 

the accuracy, which is also confirmed by the study in Section 4.2. Then, the 

feature fusion module proposed in section 3.3 is applied to the top-level feature 

output to transfer the deep semantic information to the shallow feature map layer 

by layer. 

3*300*300

VGG16

Conv4_3 Conv5_x Conv7(FC7)Conv6(FC6) Conv8_2 Conv9_2 Conv10_2 Conv11_2

D
etection 

Dilation Block

Feature Fushion

 

Fig. 4. The architecture of RFCSSD. 

Recent studies have shown that using the new backbone network to 

replace VGG16 improves the feature extraction ability [4,5,21,22], and using the 

focus loss [28] and combining the two-stage method [17] to solve the problem of 

category imbalance in training can significantly improve the performance of the 

detector. However, this paper currently focuses on the framework structure of the 

original SSD to compare the performance of the proposed approach.  

3.5 Training 

In this paper, the same training process as the original SSD is followed. 

The SGD with momentum of 0.9 was used for optimization, weight attenuation 

was set at 0.0005, and batch was set at 32. Using the same learning strategy as the 

SSD, 120K iterations were trained, learning rate of 0.001 was used in the first 

80K iterations, and then the learning rate was reduced by 10 times per 20K 

iterations. 
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4. Experiment 

The experiments were conducted on PASCAL VOC2007 and VOC2012 

datasets to compare the performance of the proposed method with that of other 

typical algorithms. The reported performance parameters of the algorithms are 

used for the comparison. All the experiments in this paper are based on Caffe’s 

framework. 

4.1 PASCAL 

The proposed model was trained on PASCAL VOC2007 and PASCAL 

VOC2012 and evaluated using the VOC2007test and VOC2012test test sets. 

Table 1 shows the test results on the PASCAL2007 test set. The mAP of the 

RFCSSD reached 79.1, which was 1.6 higher than the original SSD, and better 

than CSSD [9], DSSD [4], and StairNet [10]. The RFCSSD infer speed reached 

57.7 FPS on GTX1080ti*2 platform, which was faster than the DSSD (11.2fps), 

and slightly lower than the 67fps of the original SSD. 
Table 1 

Detection results on PASCAL VOC 2007 test set. (VOC 07+12:07 trainval+12trainval) 
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For VOC2012 task, the training set composed of VOC2007test and 

VOC2012train was used for training and VOC2012test was used for testing. The 

results are shown in Table 2, which again validate that the proposed RFCSSD is 

superior to all other comparison algorithms 
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Table2  

Detection results on PASCAL VOC2012 test set 

(All models were trained on 07trainval+07test+12trainval) 

Method Network mAP(%) 

SSD300[1] VGG16 75.8 

StairNet[10] VGG16 76.4 

DSSD[4] ResNet101 76.3 

DSOD[32] DenseNet 76.3 

ours VGG16 76.6 

4.2 Ablation Study on VOC2007 

In order to understand the effectiveness of the improvement to the original 

SSD proposed in this paper, the models were run with different settings on 

VOC2007, and their recorded evaluations are shown in Table 3.  

The CSSD [9] adds expanded convolution structure to each multi-scale 

feature layer. However, it is believed that: 1) the deepest two layers have enough 

receptive fields, and their low resolution is not suitable for the use of rate=5 

expansion convolution; 2) excessive background noise is introduced while 

expanding the receptive field. The results in Table 3 confirm the inference. In the 

end, this paper adopts the method with the highest accuracy, only extending the 

receptive field to the shallowest conv4_3. 
Table3 

Effectiveness of dilation numbers on the VOC2007 test set. 

Dilation block 0 1 2 3 all 

mAP(%) 77.22 77.44 77.39 77.39 77.36 

Furthermore, the effects of the Dilation block and the feature fusion on the 

accuracy of the detector are also examined. Table 4 shows that the Dilation 

Block+Feature fusion used in this paper improves the accuracy of the original 

SSD detector by 2%. 
Table 4 

Effectiveness of various design on the VOC2007 test set. 

Component RFCSSD SSD 

Dilation Block √  √  

Feature Fusion block √ √   

mAP(%) 79.1 78.8 77.4 77.2 

5. Conclusion  

In this paper, an effective improved SSD framework is presented that can 

obtain more contextual information by expanding the receptive field without 

reducing the resolution in order to retain more details of small targets and transmit 
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high-level semantic information layer by layer for accurate target detection. 

Generally, the traditional detection method at each stage uses the pyramid 

structure to dispose multi-scale objects, which creates contradictions between 

shallow and deep feature maps in resolution, contextual information and advanced 

semantic abstraction. In order to resolve this issue, the dilated convolution module 

is used to expand the receptive field while keeping the resolution of the feature 

map unchanged, and the feature fusion module is used to transfer the deep strong 

semantic information to the shallow feature map layer by layer. The experimental 

results demonstrate that the accuracy of the proposed method is better than that of 

existing methods including DSSD, achieving the reasoning speed of 58fps. 
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