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REMAINING USEFUL LIFE PREDICTION BASED ON A 

JOINT MODEL WITH DEGRADATION-FAILURE 

ASSOCIATION STRUCTURES 

Xin HU1,, Xinbo QIAN2,, Xiao YANG3 

Since the failures depend not only on internal degradation processes but also 

on external working conditions, failure thresholds of the performance indicator are 

stochastic for failure events. To improve remaining useful life (RUL) prediction 

accuracy, it is necessary to integrate both failure events and monitoring data, such 

as covariate-based hazard models. For most of the covariate-based hazard modeling 

methods, they essentially have a two-stage framework, degradation modeling first 

and then hazard modeling. However, the current two-stage method may ignore the 

influence of hazard on the degradation process, which may lead to significant bias 

in RUL prediction. A joint model is proposed to improve the RUL prediction 

performance by identifying the potential association structures between degradation 

and failures. The engine case study shows that the prediction performance of the is 

better than the two-stage method. Moreover, the effectiveness of the proposed 

method is reinforced by identifying the optimal association structure between 

degradation and failure. 

Keywords: remaining useful life prediction, failure event, degradation, joint 

model, association structure identification 

1. Introduction 

Remaining useful life (RUL) prediction is one of the most important 

stages to prevent catastrophic failures in industrial systems. Accurate RUL 

prediction will effectively contribute to preventing unnecessary system 

 
1 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, 

Wuhan University of Science and Technology, Wuhan, China, e-mail: shiwuxinya@163.com 
2 Corresponding author: Associate Professor, Hubei Key Laboratory of Mechanical Transmission 

and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China, 

e-mail: xinboqian@wust.edu.cn  
3 Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan, China 

mailto:shiwuxinya@163.com
mailto:shiwuxinya@163.com


162                      Xin Hu, Xinbo Qian, Xiao Yang 

unavailability and massive downtime losses [1-2]. The commonly used methods 

to predict RUL are: physical-based, data-driven, and hybrid method. Hybrid 

method is one of the important methods for degradation prediction [3].  

When only historical failure time data is available, the reliability model 

can be used for RUL prediction. However, when the failure time data is lacking, 

this reliability-based method does not perform well [4]. As the development of 

data acquisition techniques, more condition monitoring data can be available. 

Moreover, a feasible method is to apply the degradation models to RUL prediction 

[5]. Specifically, based on a large amount of condition monitoring (CM) data, the 

system degradation signal which is highly related to health status can be obtained. 

Such as the light intensity of the Light Emitting Diode and the resistance of the 

battery, which are commonly referred to in engineering as degradation signals of 

components. Evolution of these signals may lead to deterioration and final fail of 

component operation [6]. In the existing literature, a great deal of research work 

focused on the prediction of RUL by using observed data. Degradation is 

traditionally considered as a measured performance characteristic of cumulative 

changes over time leading to system failures. Moreover, many studies assume a 

constant failure threshold beyond which the degradation of the system will fail 

[7].  

However, it is difficult, if not impossible, to predetermine such failure 

thresholds for devices with high-dimensional monitoring data. A typical example 

is the failure behavior of turbofan engine in aircraft system. Figure 1 shows 

lifetime and degradation data of turbofan engine [8], each broken line represents 

the degradation path of a specific engine, and the end of the straight line indicates 

engine failure. The data set was generated by commercial modular simulation 

software simulator (C-MAPSS) developed by NASA [9]. The lifetime of the 

degradation process of turbofan engines can be significantly influenced by the 

LPT coolant bleed factor. It is clear that due to external conditions, each engine 

fails at a different degradation level, and the influence of LPT coolant bleed rate 

on the lifetime is variable. Therefore, it may be difficult to define a specific failure 

threshold in advance. As Lee and Whitmore [10], Liu [11], and Song [12] et al. , 

RUL with fixed thresholds may underestimate or overestimate the real lifetime, 

resulting in additional costs or unexpected system failures. This fault behavior 

influenced by external conditions is not uncommon in practice.  
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Fig. 1. Schematic diagram of random degradation threshold for failure events of aero-engines. 

The data comes from literature [8]. 

 

To predict RUL with stochastic thresholds, one possible approach is to 

assume that the failure thresholds follow a specified distribution [13]. However, 

the random threshold model lacks physical interpretation, so it may be difficult to 

correctly determine the fault threshold distribution for accurate RUL prediction. 

The literature [14] mentioned the poor prediction of RUL for lithium electronic 

batteries since the complexity of the electrochemical reactions inside the cell 

made modeling difficult. And it is difficult to collect data set based on the same 

operating conditions to characterize the degradation state of lithium batteries 

under real operating conditions [15]. Therefore, it is urgent to analyze failure time 

and degradation data together to improve the accuracy of the RUL prediction. 

Currently, it is popular to propose a two-stage method with degradation model and 

covariate-based hazard model for for two stages respectively [16]. The 

degradation data can be treated as a time-varying covariate and substituted into 

the proportional hazards model for risk analysis. It is better to integrate the 

equipment service lifetime information with various state information. For 

example, Man et al [17] used the covariate-based hazard model for RUL 

prediction through simulation data, and adopted the two-stage method to estimate 

the parameters. According to the parameter estimation and degradation data, the 

conditional probability density function of in-service units was obtained, and then 

the RUL of in-service units was obtained. However, this method ignores the 
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monitoring error caused by repeated measurement and intermittent collection of 

monitoring values, and underestimates the association of model parameters. It 

needs to be improved when applied to industrial system RUL prediction [18]. 

Joint modeling of longitudinal and survival data is currently a popular 

framework in the medical field [19-20]. This modeling approach simultaneously 

analyzes repeated measurements and event outcomes, which can reduce bias in 

parameter estimation and improve the efficiency of statistical inference. However, 

there is relatively limited research and application in the field of reliability 

engineering. Moreover, there are many different characteristics in the degradation 

process, which will affect the accuracy of the covariate-based hazard model for 

RUL prediction. Such as the current value of the amount of degradation, the rate 

of degradation and the cumulative effect under the degradation trajectory [21]. To 

improve the accuracy of predicting RUL by the covariate-based hazard model, its 

core is to identify the association structure between degradation and failure. At 

present, the problem of selecting the most appropriate function form in a given 

data set has not been solved, and most of the work is focused on the process of the 

current degradation amount association failure time [22]. Therefore, this ignores 

the fact that different characteristics of the amount of degradation may also have 

an impact on the failure rate. The identification of potential association structures 

for degradation and failure is imminent. 

In order to tackle this challenge, this study proposes a novel RUL method. 

Firstly, the failure events and degradation data are jointly modeled for RUL 

prediction. Then, the optimal potential association structure between degradation 

and failure is identified according to the prediction performance index of RUL. 

Specifically, the linear mixed model is applied to characterize system degradation. 

The potential degradation amount, degradation rate, and cumulative effect are 

included in the covariate-based hazard model as built-in covariates that affect the 

system failure rate. The model parameters are introduced into a Bayesian 

framework for simultaneous estimation, followed by RUL prediction. The optimal 

association structure for the joint model is identified based on the prediction 

performance of validation set. And the validity of the model is verified by test set. 

Moreover, this proposed method is applied to fit the data of turbofan engine in 

Figure 1 [8], [9], compared to the existing popular two-stage method. The main 

contributions of this work include: 

• Compared with the existing two-stage model for modeling and analyzing 

degradation and failure data. The proposed joint model considers the influence of 
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failure rate on degradation process, and can estimate the parameters of 

degradation process and failure rate model simultaneously to correct the 

deviation. 

• By identifying the fact that different characteristics of degradation have 

an impact on the failure rate, this significantly increases the model generalization 

for the industrial application.  

The rest of the paper is organized as follows. Chapter II introduces the 

joint model with association structure of degradation and failure. Chapter III 

presents the association structure identification between degradation and failure. 

Chapter IV applies the proposed method to the Case Study. Chapter V concludes 

the study and discusses possible future works. 

2. Joint model with association structure of degradation and failure  

2.1 Joint modeling framework 

This subsection focuses on the joint modeling framework with association 

structure identification between degradation and failure. The flowchart of the 

proposed method for RUL prediction with optimal association structure being 

identified, is as follows. 

 
Fig. 2. Flowchart of the proposed method for RUL prediction by joint model with optimal 

association structure identification 

The proposed method includes three main parts: parameter estimation of 

joint model, identification of association structure, and RUL prediction. The 

parameter estimation of the joint model introduces the random effect describing 
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the difference of samples, which serves as a joint basis for the degeneration model 

and the hazard model, and joint modeling of potential failure events and 

degradation data. It mainly includes model variable selection of the AIC/BIC and 

LPML/DIC criterion. And the posterior mean and posterior variance of the target 

parameters are estimated by random sampling with Markov Monte Carlo 

algorithm (MCMC) for Bayesian inference. The identification association 

structure is based on the joint modeling of degradation and failure functions under 

different association structures. Moreover, the optimal association structure is 

output based on the prediction performance evaluation index (MAE). The RUL 

predictions are mainly constructed by constructing the reliability function together 

with the test set samples and the relevant parameters estimated by the joint model. 

Then the reliability prediction function is obtained by updating the parameters 

through Monte Carlo estimation. Finally, the prediction result of RUL is obtained 

by integrating the reliability prediction function. 
 

2.2 Degradation modeling and hazard modeling 

Let{ ( ), , ; 1, 2,3...... }jy t t j n     = denotes the data structure observed from n 

individuals. ( )jy t  denotes the monitoring data of the measured subject individual

 at the time points jt and
*min( , )t T C  = is the time of observation of the event of 

interest. It is assumed that the true event time
*T and the truncation time C are 

independent of each other. The joint model of the data consists of two sub-models 

defined by the failure events and the monitoring data [23]. The monitoring 

eigenvalues are modeled using a linear mixed model as follows 

 ( ) ( ) ( )=X ( ) ( ) + ( ),  T Ty t t t t Z t b t         = + +  (1) 

where ( )y t denotes the time series of monitoring data at any time point t of the th

individual, 
TX  denotes the design matrix of the fixed effects  , and

TZ is the 

design matrix of the random effect b , where )  (  0b N D ～ ， ,   ( )t is the measurement 

error,
2( ) (0, )t N  . The error terms ( )t and the random effect b are independent 

of each other, ( )t denotes the true value of the monitoring variable at time point 

t. 

For the failure processes, a proportional hazards model is used to describe 

the risk of an event. Let the event time
*min( , )T T C  = ,

*T represent the actual 

observed event time of the th individual and C represent the truncation time. The 

form of the proportional hazards model is as follows 
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where ( ) ( ),0t s s t =  H denotes the historical time series of potential monitoring 

values up to t, where 0 ( )h t is the baseline risk function , m is the vector of baseline 

covariates and the corresponding vector of regression coefficients is  . The 

parameter vector describes the strength of the association between monitoring 

eigenvalues and the event process, quantifying the impact of potential monitoring 

data ( )t on event risk during potential degradation. Let exp( )j denotes the risk 

ratio for a unit change in jm at any time t, 1exp( ) denotes the relative increase in 

survival risk at the same time 1exp( ) for each unit increase in ( )t at time t. The 

various association structures of the functional form f(.) are described in detail in 

chapter 3. To complete the description of the failure risk process, we need to make 

appropriate assumptions about the baseline hazard function h0(t). To model this 

function while still considering flexibility, we use a penalized B-spline 

approximation for the baseline hazard. In particular, the logarithm of the baseline 

hazard function is expressed as
 

 
0 00 ,0 ,

1

log ( ) ( , ).
Q

h h q q

q

h t B t 
=

= + v  (3)
 

Here ( , )qB t v denotes the qth basis function of the B spline with node 1v , ..., 

Qv and a vector of 0h spline coefficients, increasing the number of nodes Q 

increases the flexibility of approximating logh0(.). However, we should balance 

the bias and variance to avoid overfitting. In the Bayesian framework, different 

association structures can be specified by targeting the form of function f(.). The 

detailed procedure is described in chapter 3. 

In this paper, the deficit pool information criterion (AIC) and the Bayesian 

information criterion (BIC) are used to select the variaes of the degradation model. 

Wang (2007) [24] pointed out that the selection of adjustment parameters may 

lead to overfitting and proposed the use of BIC for variable selection. The model 

with the smallest AIC and BIC is usually chosen when selecting parameters from 

a set of selected model variables. The bias information criterion (DIC) and the log 

pseudo-marginal likelihood (LPML) are used for hazard model variable selection. 

DIC is smaller indicate the better model fit, and the larger value of LPML 

indicates the better model fit.
 

2.3 Parameter estimation for joint model  

To fully consider the potential relationships between the data, the potential 
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measurements of the degradation process, i.e., the true values without errors, and 

the failure time data are jointly modeled. The model parameters are estimated by 

using JMbayes package of the R software [25]. The identification is mainly based 

on Markov chain Monte Carlo (MCMC). Under the premise of given random 

effect, it is assumed that the degradation process and the failure process are 

independent, and the time series responses of each subject is independent. The 

likelihood function expression of the model parameters is derived as follows 

 ( ) ( ) ( ), , , , , , ,p T p p T          =∣ ∣ ∣y b y b b  (4) 
  

 ( ), = ( | , ),l lp y p y b   



 ∣b  (5) 

where is the full parameter vector and (.)p is the appropriate probability density 

function. Under these assumptions, the posterior distribution is similar to
  

 ( ) ( ) ( )
1 1

( , ) , , , , ( ),
nn

l

l

p p y p T p p


    



     
= =

 ∣ ∣b b b b  (6) 
 

 ( ) ( ) ( )  ( ) , exp / ( ) , ,l l l l lp y y c a d y          = − − ∣b b b  (7) 
 

where ( , , )T T T T

t y b   = denotes the complete parameter vector, t denotes the 

parameters of the event time outcome, y denotes the parameters of the 

degradation outcome, and b denotes the unique parameters of the random effects 

covariance matrix. Formula (7) ( )l b  and respectively represent the natural and 

dispersion parameters in the index family, and (.)c , (.)a ,and (.)d are known 

functions that specify the members of the index family. For the survival function 

part 

 ( ) ( )( ) ( ) 0
, , exp ( )  ,

T

p T h T T h s s ds
 

     



    = −∣ ∣ ∣H Hb   (8)
 

 

(.)h is given by formula (2) 

 
( )   0

0
( ), exp ( )exp ( ), .

t

S t t h s f s ds     = − + ∣ •H m γ m α  (9)
 

 

For the parameter , this paper adopts the standard prior distribution. In 

particular, for the fixed effects vector of the degradation model  , the regression 

parameters of the survival model  , the vector of spline coefficients of the 

baseline hazard 0h , and the association parameter , which use an independent 

univariate diffusion normal prior. The joint likelihood function of the failure 

events and the degradation data integrates all the information of the two parts of 

the data and has a more complex structure. Therefore, it is difficult to obtain an 

analytic solution for the posterior ( | )D  . In this paper, MCMC simulation 

iterations based on the Metropolis Hasting sampling method is used to obtain 

Monte Carlo samples. Then, according to these Monte Carlo samples, the 
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posterior mean and posterior variance of parameters are estimated, and Bayesian 

inference is made. 
  

3. Association structure identification between degradation and failure  

In the joint framework, different association structures can be identified 

for the form of the function f(.) of formula (2) in chapter 2.2. In this paper, 

according to the reference [26], where also consider mainly three kinds of 

association structures in the failure process. 

3.1 Association structure between current degradation value and failure 

The current value indicates that the event failure rate at moment t is related to the 

degradation trajectory. The degradation and failure potential association structure 

are to establish the association between the potential measurement process in the 

degradation process, i.e., the measurement process that does not contain errors, 

with failure events. At this point, the joint model association term is (.) ( )f t= . 

The specific expression of the failure event is shown in formula (10)
 

 0( ) ( )exp{ ( )}.h t h t m t   = +   (10) 
 

Here 0 (.)h is the baseline risk function, m is the vector of baseline covariates, and 

the corresponding vector of regression coefficients is  . The parameter vector

describes the strength of the association between potential monitoring eigenvalues 

and failure time. And it quantifies the effect of the potential measurement process
( )t on the risk of failure during degradation.  

3.2 Association structure between current value and slope of degradation and 

failure    

The current value and slope indicates that the event failure rate at moment 

t is related to the degenerate trajectory and the slope of the degenerate trajectory at 

moment t. The potential association structure between degradation and failure 

events is to associate potential measurement processes in the degradation process, 

i.e., measurement processes that do not contain errors with failure events. At this 

point, the joint model association term is 
'

1 2(.) ( ) ( )f t t    = + . The specific 

expression for the failure event is shown in formula (11) 

 
' '

0 1 2

( )
( ) ( ) exp{ ( ) ( )} ( ) .

d t
h t h t m t t t

dt


    


    = + + =，   (11) 

  

Here 0 (.)h is the baseline risk function, m is the vector of baseline covariates, and 

the corresponding vector of regression coefficients is  . The parameter vector 1

describes the strength of the association between the potential monitoring 

eigenvalues and the failure time. The parameter vector 2 describes the strength of 

the association between the slope of the monitoring trajectory and the failure time. 
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And it quantifies the influence of the potential measurement process ( )t and the 

slope
' ( )t on the failure risk during the degradation process. 

3.3 Association structure between cumulative effect of degradation and failure   

The cumulative effect indicates that the event failure rate at moment t is 

related to the entire area under the degraded trajectory up to moment t. The 

potential association structure between degradation and failure is to associate 

potential measurement processes in the degradation process, i.e., measurement 

processes that do not contain errors with failure events. At this point, the joint 

model association term is 3
0

(.) ( )
t

f s ds =  . The specific expression for the failure 

event is shown in formula (12) 

 
0 3

0
( ) ( )exp{ ( ) }.

t

h t h t m s ds    = +    (12) 
  

Here 0 (.)h is the baseline risk function, m is the vector of baseline covariates, and 

the corresponding vector of regression coefficients is  . The parameter vector 3

describes the strength of the association between the entire area under the 

potential degradation trace and the failure event. And it quantifies the influence of 

the entire area
0

( )
t

s ds under the potential degradation trace on the failure risk 

during degradation.  

3.4 Identification of association structure between degradation and failure by 

RUL prediction 

To identify the optimal association structure, this chapter focuses on the 

RUL prediction based on the joint model of different association structures 

between degradation and failure, and then identifies it based on the predicted 

performance index (MAE). Please see the Appendix for details on how to do this. 

The joint model is fitted on a sample of size n , based on the monitoring data
( ) { ( );0 }y t y s s t =   of the new object i, indicating the degradation process up to 

the moment t degradation data. The RUL prediction is predicated on obtaining the 

conditional reliability of the sample test set. We pay more attention to the survival 

time u>t, and get the expression of the built reliability function as follows [27] 

 
* *( | ) Pr( | , ( ), ),nR u t T u T u y t D   =    (13)

 

the formula { , , ; 1,...... }nD T y n   = = represents the fitted joint model sample data, 

when the test sample 't t recorded new information can be updated prediction. 

According to this, the prediction is made according to formula (8), and formula 

(13) can be expressed as 

 
( )* *( | ) Pr( | , ( ), ) ,R u t T u T t y t p d      =   n| D  (14)
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the first part of the quilt product function is calculated by making full use of the 

conditional independence assumptions of formulas (4) and (5), and the first part of 

the quilt product function can be rewritten as 

 

* * * * *

*

Pr( | , ( ), ) Pr( | , ( ), ) ( | , ( ), )    

{ | }
                                          = ( | , ( ), )  ,

(

{ |

, ),

( , ), }

T u T t y t T u T t b t p b T t t

u b

y db

S u

t
p b T

S b
t y t db

t

         


   

 

 



  




  =   






H

H

(15)

 
where (.)S is given by formula (9) and the degenerate historical data (.)H is a 

function of random effects and parameters and is approximated by a linear mixed 

model. The first part of the quantile function, as shown above, is given by formula 

(15). In the second part, i.e., the posterior distribution of the parameters given the 

observed data, we use the standard asymptotic Bayesian approach with denoting 

the great likelihood estimate and H denoting the asymptotic variance matrix. And 

the posterior converges to a multivariate normal distribution{ | } ~ ( , )nD N  H when 

the sample n is sufficiently large. The Metropolis-Hastings algorithm is combined 

with formulas (14) and (15) and multivariate t for Monte Carlo estimation, and the 

following results are obtained 

 

1 ( )

1

( | ) ( | ),
L

l

l

R u t L R u t 

−

=

=   (16)

 

where L denotes the number of Monte Carlo samples, when u>t, the prediction of 

the RUL of the joint model at the thi sample at a time u in the future is denoted as     

 
( | ),

t
RUL R u t 



=   (17)

 
the evaluation index of the predictive performance of the joint model, mean 

absolute error (MAE), is used to identify the degradation and failure potential 

association structure, and the optimal joint model of association structure between 

degradation and failure is output. The specific expression is as follows 

 

1

1

| ( ) ( ) |.  
K

j jRUL t RUM LAE tK 




−

=

= −  (18)

 

Here K denotes the sample capacity of the test set, and ( )jRUL t and ( )jRUL t denote 

the RUL predicted and true values of the th sample at the starting moment tj of 

the prediction, respectively. 

4. Case Study 

4.1 Introduction to the case dataset 

In this case study, the proposed joint model will be implemented and 
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evaluate based on the degradation data set of turbofan engines provided in 

reference [9]. The turbofan engine data is derived from the simulation software 

C-MAPSS and contains data on the life of the engine as it degrades to 

non-functional with increasing operating time. The monitoring data for each flight 

cycle consists of 26 dimensions of characteristic data (such as W32(LPT coolant 

flow )), 3 dimensions are the common flight conditions of the aircraft (containing 

flight altitude (OS1), Mach numbers(OS2) and temperature (OS3)). For the original 

data information, First of all, the data set is divided, then noise reduction is applied. 

To eliminate the dimensional influence of data indicators, data standardization is 

required, and the Min-Max Normalization method is used.  

To demonstrate the effectiveness of the proposed model, the authors adopt 

the Monte Carlo Cross Validation method for validation. The original data were 

randomly divided into training set GTraini, validation set GValidationi and test set 

according to 88:11:1, i denotes the number of divisions, the sample segmentation 

was repeated i=10 times. In each segmentation, RUL prediction was performed 

for k=11 sample devices in the validation set under different prediction starting 

points, and k denotes the sample size of GValidationi. The prediction starting points 

were divided according to the percentage of the full lifetime of the samples. That 

is, tj=10%,20%,30%......90%. The average absolute error (MAE) of the prediction 

RUL for different GValidationi is calculated, and the box line plots are drawn based 

on different prediction starting points and the prediction performance is compared 

with the two-stage method. Then, the association structure is identified based on 

the prediction performance criterion MAE, and the optimal joint model of 

association structure between degradation and failure is output. This specific 

method is provided in Appendix. The generalization ability of the optimal model 

is evaluated by test set. 

4.2 Model variables selection 

The hazard function significance analysis was performed on the monitored 

variables by R language, and the p-value results are shown in Table 1. 

Degradation model using the linear mixed effects model, the most significant 

variable W32 (LPT coolant flow) was selected as the dependent variable of the 

degradation model. Three flight conditions (flight altitude, Mach number, and 

temperature) that do not vary with time were considered as fixed effects. The 

redundant variables temperature is eliminated, and the interaction between time 

and altitude is considered. The differences in monitoring moments of different 

samples were considered as random effects, and monitoring errors are considered. 

Since the linear mixed effects model requires the assumption that the data set is to 

obey a normal distribution, a normality test is done for the W32 data set, and the 
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data meet the characteristic requirements of the linear mixed effects model 

requiring a normal distribution. 

Table 1 

P-value of the variable 

Parameter Type OS1 OS2 W32 

p-value 0.1662 0.0783 0.0230 

A linear mixed effects model with all variables is 

 0 1 2 1 3 2 4 1 0 1. . . . . . ,y year os os os year z z year      = + + + + + + +  (19)

 
Data analysis using a linear mixed effects model yielded the following 

table of p-values for the coefficient estimates of each variable. 

Table 2
 

 
 P-values of the coefficient estimates for each variable

 
Variables (Intercept) year OS1 OS2 OS1.year 

p-value 0.0923 0.8932 0.5158 0.7663 0.9263 

According to Table 2, we can analyze the p values of the four variables in 

formula (19) year, OS1, OS2, and OS1∙year are insignificant. So the stepwise 

method is used to select the appropriate variables, and the results are shown in 

Table 3. 

Table 3 

Comparison of degradation models with different variable selection 

Variables Formula 

(24) 

Remove 

year 

Remove 

OS1 

Remove 

OS2 

Remove 

year OS1 

Remove 

year OS2 

Remove 

OS1 OS2 

Remove 

year OS1 

OS2 

AIC -48870.2 -48880.2 -48870.6 -48874.6 -48880.9 -48884.6 -48875.1 -48885.4 

BIC -48799.3 -48817.2 24448.1 -48811.6 -48825.7 -48829.5 -48820.0 -48838.2 

Loglik 24444.1 -48807.1 24443.3 24445.3 24447.5 24449.3 24444.6 24448.7 

 

Preference is given to the linear mixed effects model with the minimum 

AIC and BIC value as the object of the final monitoring data for the selected 

model 

 0 4 1 0 1. . . .y os year z z year   = + + + +  (20)   

According to the previous Table 1, the most significant variable affecting 

the hazard function is W32 (LPL cooling flow), followed by OS2. Similarly, OS2 is 

excluded as a baseline covariate of the proportional hazards model, this method is 
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based on the joint LPML and DIC quasi-measurement analysis. The expressions 

are as follows 

 
 0 ( )exp ( ), , ,      0.( )h h t f tt t  =  b α  (21) 

4.3 Joint model results of difficult association structures 

The results of the joint model with association structure between current 

degradation value and failure (Table 4), Which reveal the potential degradation 

trajectory is significantly influenced by the strength of the association with the 

failure event process. The results of the joint model with association structure 

between current value and slope of degradation and failure are found (Table 4). 

The potential degradation trajectory has a significant effect on the strength of 

association with the failure event process, and the potential degradation rate has a 

non-significant effect on the strength of association with failure events. The 

results of the joint model with association structure between degradation and 

failure of cumulative effect (Table 4), which reveal that the cumulative effect of 

potential degradation trajectories is significantly influenced by the strength of the 

association with the failure event process. Thus, the RUL prediction performance 

of the joint Bayesian model based on different degradation and failure association 

structures is continued to be investigated. The results of the joint model 

construction are shown in the following table. 

Table 4 

 Joint model results of different association structures between degradation and failure   

 Variables Coefficient Standard Error std.Dev P value 

Current 

value 

Intercept 0.4665 7e-04 2e-03 <0.001 

OS1.year -0.0005 1e-04 1e-04 <0.001 

Assoct -4.0318 0.0706 0.7724 <0.001 

Current 

value+ 

slope 

Intercept 0.4695 7e-04 0.0019 <0.001 

OS1.year -0.0008 1e-04 0.0001 <0.001 

Assoct -3.8814 0.0843 0.8267 <0.001 

AssoctE -0.0020 0.1551 3.1339 0.989 

Cumulative 

effect 

Intercept 0.471 4e-04 0.0016 <0.001 

OS1.year -0.0001 1e-04 0.0001 0.0905 

Assoct -0.015 0.0009 0.0065 <0.001 

4.4 Joint model with association structure optimization 

In this paper, Monte Carlo Cross Validation method is used to randomly 
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divide train set GTraini and validation set GValidationi (excluding test set) of the 

sample data. The percentage of the whole lifetime based on the test set data is 

used as the prediction starting point, calculate the performance index MAE 

predicted by test set RUL. The results of using different joint models of 

association structure between degradation and failure after cross-validation is 

presented in Figure 3. 

 

Fig. 3. The MAE of the RUL prediction from the Monte Carlo Cross Validation method 

From the Figure 3, the prediction performance of the joint model of 

association structure between current degradation value and failure is significantly 

better than that of the traditional two-stage method. And it is especially significant 

at the early stage (i.e., the starting point of prediction is located at 10%-30% of the 

whole lifetime). The validity of the model is verified. Furthermore, regarding the 

identification of association structure, the joint model with association structure 

between current value and slope of degradation and failure has the best overall 

performance. And in the early stage, the middle stage (40%-60%) and the late 

stage (70%-90%). The second best prediction performance of RUL is the 

association structure between current degradation value and failure. The third 

predictive performance of RUL is the association structure between current 

degradation value and failure, which has a slow decreasing trend in the late stage. 

The prediction accuracy is improved with the increase of data, which verifies the 

validity of the model again. 

To better illustrate the effectiveness of the proposed model in this paper, 

Figure 4 shows in detail the RUL prediction results of the joint model with 

different association structures between degradation and failure for individual #5 

by test set. 
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Fig. 4. The true and the estimated RUL of individual #5 at different prediction starting points via 

different association structures, the band shows the 95% prediction interval. 

For individual #5, it is found that 95% of the prediction intervals contained 

the true RUL for all predicted moments tj. Nevertheless, the RUL prediction is 

more important when the individual approaches its lifetime, the RUL prediction 

becomes much more accurate and approaches the true value when more data are 

collected. In the experimental results, it is verified that the joint model with 

association structure between current value and slope of degradation and failure 

has the best prediction performance. And in the early stage (i.e., the prediction 

starting point moment is located at 10%-30% of the whole lifetime), the middle 

stage (40%-60%) and the late stage (70%-90%). More detailed prediction results 

are provided for Individual #5 under the joint model with different association 

structures. The predicted starting time based on the estimated reliability function 

and point-wise quartiles is located at 30% and 80% of lifetime as shown in Figure 

5. 

 
(a) Prediction starting point 30%jt =
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(b)Prediction starting point 80%jt =

 
Fig. 5. Reliability function estimates for individual #5 with different association structures at 

different Prediction starting points. The solid red and green lines depict the mean and median 

values of the reliability curves, respectively, the black dashed line indicates the 95% confidence 

interval. (a) at 30% of the lifetime, (b) at 80% of the lifetime. 

As expected, the point-by-point interval becomes narrower as the available 

data increases, The accuracy of the prediction increases as more data becomes 

available. For comparison, the RUL prediction performance of the joint model 

with association structure of current value is better than that of the two-stage 

method when tj=30% and 80%, and the prediction results are also shown in Table 

5. Again, it validates the effectiveness of our proposed model. 
Table 5

 
 

Comparison of #5 prediction starting point tj=30%and tj=80% model RUL prediction results 

Prediction 

starting 

point tj
 

 

True value 

of life 

Association 

structure 

Bayesian joint model RUL 

predicted  

by two-stage 

method[16] 

Predicted 

value 

2.5% 97.5% 

 

30% 

 

149 

 

Current 159 144 174  

189 Current+slope 156 143 171 

Cumulative 167 144 189 

 

80% 

 

43 

Current 45 28 63  

53 Current+slope 44 31 61 

Cumulative 55 37 74 

5. Conclusion  

The work successfully proposed a more accurate RUL prediction method 
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by jointly analyzing degradation and failure data with association structure 

identification. In consideration of individual variability and monitoring errors, a 

linear mixed effects model is applied for the degradation process. To capture the 

interaction of degradation and failure, a proportional hazards model is utilized to 

combine the different characteristics of potential degradation processes as built-in 

covariates and failure time data. The optimal association structure for the joint 

model is identified based on the prediction performance of validation set. The 

application for the aircraft engine data sets shows that the joint model with 

association structure between current degradation value and failure outperforms 

the two-stage method without association structure in terms of RUL prediction 

accuracy, especially in the early stage. Moreover, the joint model with 

current-value association structure or current-slope association structure performs 

best overall. Therefore, the proposed joint model for RUL prediction with 

association structure identification may provide reference for other mechatronic 

equipments. 

In this study, the effect of only one monitoring variable on survival 

outcome was considered, and other monitoring variables were not considered, so 

there may be many other covariates affecting the risk of failure function. In 

addition, there may be other association structures such as lagged and random 

effects to influence the risk of failure function, and these conjectures need to be 

further analyzed and studied. 
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