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REMAINING USEFUL LIFE PREDICTION BASED ON A
JOINT MODEL WITH DEGRADATION-FAILURE

ASSOCIATION STRUCTURES

Xin HUY, Xinbo QIAN?, Xiao YANG?®

Since the failures depend not only on internal degradation processes but also
on external working conditions, failure thresholds of the performance indicator are
stochastic for failure events. To improve remaining useful life (RUL) prediction
accuracy, it is necessary to integrate both failure events and monitoring data, such
as covariate-based hazard models. For most of the covariate-based hazard modeling
methods, they essentially have a two-stage framework, degradation modeling first
and then hazard modeling. However, the current two-stage method may ignore the
influence of hazard on the degradation process, which may lead to significant bias
in RUL prediction. A joint model is proposed to improve the RUL prediction
performance by identifying the potential association structures between degradation
and failures. The engine case study shows that the prediction performance of the is
better than the two-stage method. Moreover, the effectiveness of the proposed
method is reinforced by identifying the optimal association structure between

degradation and failure.

Keywords: remaining useful life prediction, failure event, degradation, joint
model, association structure identification

1. Introduction

Remaining useful life (RUL) prediction is one of the most important
stages to prevent catastrophic failures in industrial systems. Accurate RUL
prediction will effectively contribute to preventing unnecessary system
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unavailability and massive downtime losses [1-2]. The commonly used methods
to predict RUL are: physical-based, data-driven, and hybrid method. Hybrid
method is one of the important methods for degradation prediction [3].

When only historical failure time data is available, the reliability model
can be used for RUL prediction. However, when the failure time data is lacking,
this reliability-based method does not perform well [4]. As the development of
data acquisition techniques, more condition monitoring data can be available.
Moreover, a feasible method is to apply the degradation models to RUL prediction
[5]. Specifically, based on a large amount of condition monitoring (CM) data, the
system degradation signal which is highly related to health status can be obtained.
Such as the light intensity of the Light Emitting Diode and the resistance of the
battery, which are commonly referred to in engineering as degradation signals of
components. Evolution of these signals may lead to deterioration and final fail of
component operation [6]. In the existing literature, a great deal of research work
focused on the prediction of RUL by using observed data. Degradation is
traditionally considered as a measured performance characteristic of cumulative
changes over time leading to system failures. Moreover, many studies assume a
constant failure threshold beyond which the degradation of the system will fail
[7].

However, it is difficult, if not impossible, to predetermine such failure
thresholds for devices with high-dimensional monitoring data. A typical example
is the failure behavior of turbofan engine in aircraft system. Figure 1 shows
lifetime and degradation data of turbofan engine [8], each broken line represents
the degradation path of a specific engine, and the end of the straight line indicates
engine failure. The data set was generated by commercial modular simulation
software simulator (C-MAPSS) developed by NASA [9]. The lifetime of the
degradation process of turbofan engines can be significantly influenced by the
LPT coolant bleed factor. It is clear that due to external conditions, each engine
fails at a different degradation level, and the influence of LPT coolant bleed rate
on the lifetime is variable. Therefore, it may be difficult to define a specific failure
threshold in advance. As Lee and Whitmore [10], Liu [11], and Song [12] et al. ,
RUL with fixed thresholds may underestimate or overestimate the real lifetime,
resulting in additional costs or unexpected system failures. This fault behavior
influenced by external conditions is not uncommon in practice.
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Fig. 1. Schematic diagram of random degradation threshold for failure events of aero-engines.

The data comes from literature [8].

To predict RUL with stochastic thresholds, one possible approach is to
assume that the failure thresholds follow a specified distribution [13]. However,
the random threshold model lacks physical interpretation, so it may be difficult to
correctly determine the fault threshold distribution for accurate RUL prediction.
The literature [14] mentioned the poor prediction of RUL for lithium electronic
batteries since the complexity of the electrochemical reactions inside the cell
made modeling difficult. And it is difficult to collect data set based on the same
operating conditions to characterize the degradation state of lithium batteries
under real operating conditions [15]. Therefore, it is urgent to analyze failure time
and degradation data together to improve the accuracy of the RUL prediction.
Currently, it is popular to propose a two-stage method with degradation model and
covariate-based hazard model for for two stages respectively [16]. The
degradation data can be treated as a time-varying covariate and substituted into
the proportional hazards model for risk analysis. It is better to integrate the
equipment service lifetime information with various state information. For
example, Man et al [17] used the covariate-based hazard model for RUL
prediction through simulation data, and adopted the two-stage method to estimate
the parameters. According to the parameter estimation and degradation data, the
conditional probability density function of in-service units was obtained, and then
the RUL of in-service units was obtained. However, this method ignores the



164 Xin Hu, Xinbo Qian, Xiao Yang

monitoring error caused by repeated measurement and intermittent collection of
monitoring values, and underestimates the association of model parameters. It
needs to be improved when applied to industrial system RUL prediction [18].

Joint modeling of longitudinal and survival data is currently a popular
framework in the medical field [19-20]. This modeling approach simultaneously
analyzes repeated measurements and event outcomes, which can reduce bias in
parameter estimation and improve the efficiency of statistical inference. However,
there is relatively limited research and application in the field of reliability
engineering. Moreover, there are many different characteristics in the degradation
process, which will affect the accuracy of the covariate-based hazard model for
RUL prediction. Such as the current value of the amount of degradation, the rate
of degradation and the cumulative effect under the degradation trajectory [21]. To
improve the accuracy of predicting RUL by the covariate-based hazard model, its
core is to identify the association structure between degradation and failure. At
present, the problem of selecting the most appropriate function form in a given
data set has not been solved, and most of the work is focused on the process of the
current degradation amount association failure time [22]. Therefore, this ignores
the fact that different characteristics of the amount of degradation may also have
an impact on the failure rate. The identification of potential association structures
for degradation and failure is imminent.

In order to tackle this challenge, this study proposes a novel RUL method.
Firstly, the failure events and degradation data are jointly modeled for RUL
prediction. Then, the optimal potential association structure between degradation
and failure is identified according to the prediction performance index of RUL.
Specifically, the linear mixed model is applied to characterize system degradation.
The potential degradation amount, degradation rate, and cumulative effect are
included in the covariate-based hazard model as built-in covariates that affect the
system failure rate. The model parameters are introduced into a Bayesian
framework for simultaneous estimation, followed by RUL prediction. The optimal
association structure for the joint model is identified based on the prediction
performance of validation set. And the validity of the model is verified by test set.
Moreover, this proposed method is applied to fit the data of turbofan engine in
Figure 1 [8], [9], compared to the existing popular two-stage method. The main
contributions of this work include:

» Compared with the existing two-stage model for modeling and analyzing
degradation and failure data. The proposed joint model considers the influence of
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failure rate on degradation process, and can estimate the parameters of
degradation process and failure rate model simultaneously to correct the
deviation.

» By identifying the fact that different characteristics of degradation have
an impact on the failure rate, this significantly increases the model generalization
for the industrial application.

The rest of the paper is organized as follows. Chapter II introduces the
joint model with association structure of degradation and failure. Chapter III
presents the association structure identification between degradation and failure.
Chapter IV applies the proposed method to the Case Study. Chapter V concludes
the study and discusses possible future works.

2. Joint model with association structure of degradation and failure

2.1 Joint modeling framework

This subsection focuses on the joint modeling framework with association
structure identification between degradation and failure. The flowchart of the
proposed method for RUL prediction with optimal association structure being
identified, is as follows.
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Fig. 2. Flowchart of the proposed method for RUL prediction by joint model with optimal
association structure identification
The proposed method includes three main parts: parameter estimation of
joint model, identification of association structure, and RUL prediction. The
parameter estimation of the joint model introduces the random effect describing



166 Xin Hu, Xinbo Qian, Xiao Yang

the difference of samples, which serves as a joint basis for the degeneration model
and the hazard model, and joint modeling of potential failure events and
degradation data. It mainly includes model variable selection of the AIC/BIC and
LPML/DIC criterion. And the posterior mean and posterior variance of the target
parameters are estimated by random sampling with Markov Monte Carlo
algorithm (MCMC) for Bayesian inference. The identification association
structure is based on the joint modeling of degradation and failure functions under
different association structures. Moreover, the optimal association structure is
output based on the prediction performance evaluation index (MAE). The RUL
predictions are mainly constructed by constructing the reliability function together
with the test set samples and the relevant parameters estimated by the joint model.
Then the reliability prediction function is obtained by updating the parameters
through Monte Carlo estimation. Finally, the prediction result of RUL is obtained
by integrating the reliability prediction function.

2.2 Degradation modeling and hazard modeling

Let{y:(t;;)1,,6,:J=123...n;} denotes the data structure observed from n
individuals. Y:(t;;) denotes the monitoring data of the measured subject individual
Z at the time pointst;;andt, = min(T;,C,)is the time of observation of the event of
interest. It is assumed that the true event timeT, and the truncation timeC, are
independent of each other. The joint model of the data consists of two sub-models

defined by the failure events and the monitoring data [23]. The monitoring
eigenvalues are modeled using a linear mixed model as follows

y,t)=n,(t)+¢, (t):X; (t)IB+ZI (Db, +¢,(t), (D

where Y, (t) denotes the time series of monitoring data at any time point ¢ of the Ath
individual, X; denotes the design matrix of the fixed effects 8, andZ; is the
design matrix of the random effectb, , where b, ~N(0, D), ¢,(t) is the measurement
error, £, (t) U N(0,0°) . The error terms €, (t) and the random effectb, are independent
of each other, 7,(t) denotes the true value of the monitoring variable at time point
L.

For the failure processes, a proportional hazards model is used to describe
the risk of an event. Let the event timeT, =min(T;,C,) T, represent the actual
observed event time of the Athindividual and C; represent the truncation time. The
form of the proportional hazards model is as follows
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h, (tl H,(t),m,) :lmAitPr{tST; <t+Atl T, >t,H,(t),m,} .
= ho(t)exp[y’ m, + f {ﬂg(t)’b/wa}:l1 t>0,

where H, (t) =7,(s),0<s <tdenotes the historical time series of potential monitoring
values up to ¢, where hy(t) is the baseline risk function ,m; is the vector of baseline
covariates and the corresponding vector of regression coefficients is” . The
parameter vector @ describes the strength of the association between monitoring
eigenvalues and the event process, quantifying the impact of potential monitoring
datan,(t)on event risk during potential degradation. Letexp(r;) denotes the risk
ratio for a unit change in™,; at any time ¢, eXp() denotes the relative increase in
survival risk at the same timeexp(a) for each unit increase in7;(t) at time 7. The
various association structures of the functional form f{.) are described in detail in
chapter 3. To complete the description of the failure risk process, we need to make
appropriate assumptions about the baseline hazard function /y(¢). To model this
function while still considering flexibility, we use a penalized B-spline
approximation for the baseline hazard. In particular, the logarithm of the baseline
hazard function is expressed as

Q
log hy (t) = 74 +Zym’qu (t,v). (3)

Here B, (t,V) denotes the gth basis function of the B spline with nodeV,, ...,
Voand a vector of 7y spline coefficients, increasing the number of nodes Q

increases the flexibility of approximating logho(.). However, we should balance
the bias and variance to avoid overfitting. In the Bayesian framework, different
association structures can be specified by targeting the form of function f{.). The
detailed procedure is described in chapter 3.

In this paper, the deficit pool information criterion (AIC) and the Bayesian
information criterion (BIC) are used to select the variaes of the degradation model.
Wang (2007) [24] pointed out that the selection of adjustment parameters may
lead to overfitting and proposed the use of BIC for variable selection. The model
with the smallest AIC and BIC is usually chosen when selecting parameters from
a set of selected model variables. The bias information criterion (DIC) and the log
pseudo-marginal likelihood (LPML) are used for hazard model variable selection.
DIC is smaller indicate the better model fit, and the larger value of LPML
indicates the better model fit.

2.3 Parameter estimation for joint model

To fully consider the potential relationships between the data, the potential
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measurements of the degradation process, i.e., the true values without errors, and
the failure time data are jointly modeled. The model parameters are estimated by
using JMbayes package of the R software [25]. The identification is mainly based
on Markov chain Monte Carlo (MCMC). Under the premise of given random
effect, it is assumed that the degradation process and the failure process are
independent, and the time series responses of each subject is independent. The
likelihood function expression of the model parameters is derived as follows

p(Y. T8, b,,8)=p(y,l b,.4)p(T,.5,] b,.4), (4)
p(y/1|| b41¢)=H p(y/ll |bzv¢)v %)

where #is the full parameter vector and P() is the appropriate probability density
function. Under these assumptions, the posterior distribution is similar to

p(¢.b) oc]lﬂ_ﬂ[p(ym b,.¢) p(T,.6,! b,,¢) p(b;.¢) p(e), (6)

p(yﬁ.l b1!¢) :eXp{[yu‘/’,u (bi)_c{l//ﬂl (bﬁ)}}/a((P)_d (y/u’(P)}! @)

where ¢' =(4'.4,.4) denotes the complete parameter vector, ¢ denotes the
parameters of the event time outcome, ¢, denotes the parameters of the
degradation outcome, and ¢, denotes the unique parameters of the random effects
covariance matrix. Formula (7) v, (b,) and ? respectively represent the natural and
dispersion parameters in the index family, and c(), a() ,and d() are known
functions that specify the members of the index family. For the survival function
part

p(T,.0,l b,.¢)=h, (T, HA(TA))% exp{—ﬂihl(sl Hi(s))ds} : 8)
h,()is given by formula (2)
s, (1l H,(),m,) =epo ‘() exp[y m, +  {n, (s),a}]ds}. ©)

For the parameter ¢, this paper adopts the standard prior distribution. In
particular, for the fixed effects vector of the degradation model £, the regression
parameters of the survival model”, the vector of spline coefficients of the
baseline hazard 7y, and the association parameter @ , which use an independent
univariate diffusion normal prior. The joint likelithood function of the failure
events and the degradation data integrates all the information of the two parts of
the data and has a more complex structure. Therefore, it is difficult to obtain an
analytic solution for the posterior 7(¢|D). In this paper, MCMC simulation
iterations based on the Metropolis Hasting sampling method is used to obtain
Monte Carlo samples. Then, according to these Monte Carlo samples, the
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posterior mean and posterior variance of parameters are estimated, and Bayesian
inference is made.

3. Association structure identification between degradation and failure

In the joint framework, different association structures can be identified
for the form of the function f{.) of formula (2) in chapter 2.2. In this paper,
according to the reference [26], where also consider mainly three kinds of
association structures in the failure process.

3.1 Association structure between current degradation value and failure

The current value indicates that the event failure rate at moment ¢ is related to the
degradation trajectory. The degradation and failure potential association structure
are to establish the association between the potential measurement process in the
degradation process, i.e., the measurement process that does not contain errors,
with failure events. At this point, the joint model association term is f()=an,(t).
The specific expression of the failure event is shown in formula (10)

h/1 = ho ®) eXp{7m,1 +armn, 0} (10)

Here hy() is the baseline risk function, M, is the vector of baseline covariates, and
the corresponding vector of regression coefficients is”. The parameter vector @
describes the strength of the association between potential monitoring eigenvalues
and failure time. And it quantifies the effect of the potential measurement process
1, (t) on the risk of failure during degradation.

3.2 Association structure between current value and slope of degradation and
failure

The current value and slope indicates that the event failure rate at moment
t is related to the degenerate trajectory and the slope of the degenerate trajectory at
moment 7. The potential association structure between degradation and failure
events is to associate potential measurement processes in the degradation process,
1.e., measurement processes that do not contain errors with failure events. At this
point, the joint model association term is f()=an,({t)+an,(t). The specific
expression for the failure event is shown in formula (11)

dn, (1

h, (t) =hy(t) exp{ym, + a7, (1) + 0!277'1 (9)2 77I1 t= dt (11)

Here hy() is the baseline risk function, M, is the vector of baseline covariates, and
the corresponding vector of regression coefficients is” . The parameter vector &
describes the strength of the association between the potential monitoring
eigenvalues and the failure time. The parameter vector @, describes the strength of
the association between the slope of the monitoring trajectory and the failure time.
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And it quantifies the influence of the potential measurement process 7, (t) and the
slope 7, (t) on the failure risk during the degradation process.

3.3 Association structure between cumulative effect of degradation and failure

The cumulative effect indicates that the event failure rate at moment ¢ is
related to the entire area under the degraded trajectory up to moment ¢. The
potential association structure between degradation and failure is to associate
potential measurement processes in the degradation process, i.e., measurement
processes that do not contain errors with failure events. At this point, the joint

model association term is f () = agjg 1n,(s)ds. The specific expression for the failure

event is shown in formula (12)

h, (t) = hy () explym, +at, [ 7, ()ds}. (12)

Here hy() is the baseline risk function, M, is the vector of baseline covariates, and
the corresponding vector of regression coefficients is”. The parameter vector 2,
describes the strength of the association between the entire area under the
potential degradation trace and the failure event. And it quantifies the influence of

the entire area L:m (s)ds under the potential degradation trace on the failure risk

during degradation.

3.4 Identification of association structure between degradation and failure by
RUL prediction

To identify the optimal association structure, this chapter focuses on the
RUL prediction based on the joint model of different association structures
between degradation and failure, and then identifies it based on the predicted
performance index (MAE). Please see the Appendix for details on how to do this.
The joint model is fitted on a sample of size n , based on the monitoring data
¥, () ={y,(s);0<s<t}of the new object i, indicating the degradation process up to
the moment ¢ degradation data. The RUL prediction is predicated on obtaining the
conditional reliability of the sample test set. We pay more attention to the survival
time u>¢, and get the expression of the built reliability function as follows [27]

R, (ult)=Pr(T, >u|T; >u,y,(),D,), (13)

the formula D, ={T,,5,,y,;4=1....n}represents the fitted joint model sample data,
when the test samplet >t recorded new information can be updated prediction.
According to this, the prediction is made according to formula (8), and formula
(13) can be expressed as

R,(u[t) = [Pr(T; >u|T; >t.y,(1).4)p(¢] D,)d¢, (14)



Remaining useful life prediction based on a joint model [...] association structures 171

the first part of the quilt product function is calculated by making full use of the
conditional independence assumptions of formulas (4) and (5), and the first part of
the quilt product function can be rewritten as

PR(T, 2U[T; 2t,y,(t).4) = [Pr(T; 2u|T; 2tb,(1).9)p(b, |T; 2t,y, (t), Acb,

=SB By 171y, 0,090,

S,{tIH,(t.b,). 4}
where S;()is given by formula (9) and the degenerate historical dataH,()is a
function of random effects and parameters and is approximated by a linear mixed
model. The first part of the quantile function, as shown above, is given by formula
(15). In the second part, i.e., the posterior distribution of the parameters given the
observed data, we use the standard asymptotic Bayesian approach with ¢ denoting

(15)

the great likelihood estimate and H denoting the asymptotic variance matrix. And
the posterior converges to a multivariate normal distribution{s| D,}~ N(¢,H) when

the sample # is sufficiently large. The Metropolis-Hastings algorithm is combined
with formulas (14) and (15) and multivariate ¢ for Monte Carlo estimation, and the
following results are obtained

R,(u[t)= " RO [b), (16)

where L denotes the number of Monte Carlo samples, when u>t, the prediction of
the RUL of the joint model at the ith sample at a time  in the future is denoted as

RUL, =f° R, (ult), (17)

the evaluation index of the predictive performance of the joint model, mean
absolute error (MAE), is used to identify the degradation and failure potential
association structure, and the optimal joint model of association structure between
degradation and failure is output. The specific expression is as follows

K
MAE = K™Y |RUL,(t;) - RUL,(t,)| (18)
A=1

Here K denotes the sample capacity of the test set, and RUL, (t;) and RUL, (t;) denote

the RUL predicted and true values of the Athsample at the starting moment ¢ of
the prediction, respectively.

4. Case Study
4.1 Introduction to the case dataset

In this case study, the proposed joint model will be implemented and
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evaluate based on the degradation data set of turbofan engines provided in
reference [9]. The turbofan engine data is derived from the simulation software
C-MAPSS and contains data on the life of the engine as it degrades to
non-functional with increasing operating time. The monitoring data for each flight
cycle consists of 26 dimensions of characteristic data (such as W32(LPT coolant
flow )), 3 dimensions are the common flight conditions of the aircraft (containing
flight altitude (OS1), Mach numbers(OS») and temperature (OS3)). For the original
data information, First of all, the data set is divided, then noise reduction is applied.
To eliminate the dimensional influence of data indicators, data standardization is
required, and the Min-Max Normalization method is used.

To demonstrate the effectiveness of the proposed model, the authors adopt
the Monte Carlo Cross Validation method for validation. The original data were
randomly divided into training set GTraini, validation set Gvaidationi and test set
according to 88:11:1, i denotes the number of divisions, the sample segmentation
was repeated =10 times. In each segmentation, RUL prediction was performed
for k=11 sample devices in the validation set under different prediction starting
points, and k& denotes the sample size of Gvaiidaiioni. The prediction starting points
were divided according to the percentage of the full lifetime of the samples. That
is, £=10%,20%,30%......90%. The average absolute error (MAE) of the prediction
RUL for different Gvaidationi 1s calculated, and the box line plots are drawn based
on different prediction starting points and the prediction performance is compared
with the two-stage method. Then, the association structure is identified based on
the prediction performance criterion MAE, and the optimal joint model of
association structure between degradation and failure is output. This specific
method is provided in Appendix. The generalization ability of the optimal model
is evaluated by test set.

4.2 Model variables selection

The hazard function significance analysis was performed on the monitored
variables by R language, and the p-value results are shown in Table 1.
Degradation model using the linear mixed effects model, the most significant
variable W32 (LPT coolant flow) was selected as the dependent variable of the
degradation model. Three flight conditions (flight altitude, Mach number, and
temperature) that do not vary with time were considered as fixed effects. The
redundant variables temperature is eliminated, and the interaction between time
and altitude is considered. The differences in monitoring moments of different
samples were considered as random effects, and monitoring errors are considered.
Since the linear mixed effects model requires the assumption that the data set is to
obey a normal distribution, a normality test is done for the W32 data set, and the
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data meet the characteristic requirements of the linear mixed effects model
requiring a normal distribution.

Table 1
P-value of the variable
Parameter Type (0N 0S: w32
p-value 0.1662 0.0783 0.0230
A linear mixed effects model with all variables is
y, = B, + B.year + f3,.0s, + [3,.0s, + 3,.0S,.year + z, +z,.year + ¢, (19)

Data analysis using a linear mixed effects model yielded the following
table of p-values for the coefficient estimates of each variable.

Table 2
P-values of the coefficient estimates for each variable
Variables (Intercept) | year 0S; 0S; | OS;.year
p-value 0.0923 | 0.8932 | 0.5158 | 0.7663 | 0.9263

According to Table 2, we can analyze the p values of the four variables in
formula (19) year, OS;, OS2, and OS;year are insignificant. So the stepwise
method is used to select the appropriate variables, and the results are shown in
Table 3.

Table 3
Comparison of degradation models with different variable selection
Variables | Formula | Remove | Remove | Remove | Remove | Remove | Remove | Remove
(24) year (0N, oS> year OS; | year OS> | 0S10S; | year OS;
0S;
AIC -48870.2 | -48880.2 | -48870.6 | -48874.6 | -48880.9 | -48884.6 | -48875.1 | -48885.4
BIC -48799.3 | -48817.2 | 24448.1 | -48811.6 | -48825.7 | -48829.5 | -48820.0 | -48838.2
Loglik 244441 | -48807.1 | 24443.3 | 244453 | 244475 | 24449.3 | 24444.6 | 24448.7

Preference is given to the linear mixed effects model with the minimum
AIC and BIC value as the object of the final monitoring data for the selected
model

Y, =+, 0s.year +z,+z.year +¢,.

(20)

According to the previous Table 1, the most significant variable affecting
the hazard function is W32 (LPL cooling flow), followed by OS>. Similarly, OS> is
excluded as a baseline covariate of the proportional hazards model, this method is
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based on the joint LPML and DIC quasi-measurement analysis. The expressions
are as follows

h,(t) =h,()exp| f {7,(t),b,,a}], t>0. 1)

4.3 Joint model results of difficult association structures

The results of the joint model with association structure between current
degradation value and failure (Table 4), Which reveal the potential degradation
trajectory is significantly influenced by the strength of the association with the
failure event process. The results of the joint model with association structure
between current value and slope of degradation and failure are found (Table 4).
The potential degradation trajectory has a significant effect on the strength of
association with the failure event process, and the potential degradation rate has a
non-significant effect on the strength of association with failure events. The
results of the joint model with association structure between degradation and
failure of cumulative effect (Table 4), which reveal that the cumulative effect of
potential degradation trajectories is significantly influenced by the strength of the
association with the failure event process. Thus, the RUL prediction performance
of the joint Bayesian model based on different degradation and failure association
structures is continued to be investigated. The results of the joint model
construction are shown in the following table.

Table 4

Joint model results of different association structures between degradation and failure
Variables Coefficient Standard Error std.Dev P value

Current Intercept 0.4665 7e-04 2e-03 <0.001
value OS,.year -0.0005 le-04 le-04 <0.001
Assoct -4.0318 0.0706 0.7724 <0.001

Current Intercept 0.4695 7e-04 0.0019 <0.001
value+ OS,.year -0.0008 le-04 0.0001 <0.001
slope Assoct -3.8814 0.0843 0.8267 <0.001
AssoctE -0.0020 0.1551 3.1339 0.989

Cumulative Intercept 0.471 4e-04 0.0016 <0.001
effect OS,.year -0.0001 le-04 0.0001 0.0905
Assoct -0.015 0.0009 0.0065 <0.001

4.4 Joint model with association structure optimization

In this paper, Monte Carlo Cross Validation method is used to randomly




Remaining useful life prediction based on a joint model [...] association structures 175

divide train set Grmin; and validation set Gvalidationi (€Xcluding test set) of the
sample data. The percentage of the whole lifetime based on the test set data is
used as the prediction starting point, calculate the performance index MAE
predicted by test set RUL. The results of using different joint models of
association structure between degradation and failure after cross-validation is
presented in Figure 3.
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Fig. 3. The MAE of the RUL prediction from the Monte Carlo Cross Validation method

From the Figure 3, the prediction performance of the joint model of
association structure between current degradation value and failure is significantly
better than that of the traditional two-stage method. And it is especially significant
at the early stage (i.e., the starting point of prediction is located at 10%-30% of the
whole lifetime). The validity of the model is verified. Furthermore, regarding the
identification of association structure, the joint model with association structure
between current value and slope of degradation and failure has the best overall
performance. And in the early stage, the middle stage (40%-60%) and the late
stage (70%-90%). The second best prediction performance of RUL is the
association structure between current degradation value and failure. The third
predictive performance of RUL is the association structure between current
degradation value and failure, which has a slow decreasing trend in the late stage.
The prediction accuracy is improved with the increase of data, which verifies the
validity of the model again.

To better illustrate the effectiveness of the proposed model in this paper,
Figure 4 shows in detail the RUL prediction results of the joint model with
different association structures between degradation and failure for individual #5
by test set.
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Fig. 4. The true and the estimated RUL of individual #5 at different prediction starting points via
different association structures, the band shows the 95% prediction interval.

For individual #5, it is found that 95% of the prediction intervals contained
the true RUL for all predicted moments #. Nevertheless, the RUL prediction is
more important when the individual approaches its lifetime, the RUL prediction
becomes much more accurate and approaches the true value when more data are
collected. In the experimental results, it is verified that the joint model with
association structure between current value and slope of degradation and failure
has the best prediction performance. And in the early stage (i.e., the prediction
starting point moment is located at 10%-30% of the whole lifetime), the middle
stage (40%-60%) and the late stage (70%-90%). More detailed prediction results
are provided for Individual #5 under the joint model with different association
structures. The predicted starting time based on the estimated reliability function

and point-wise quartiles is located at 30% and 80% of lifetime as shown in Figure
5.
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different Prediction starting points. The solid red and green lines depict the mean and median

values of the reliability curves, respectively, the black dashed line indicates the 95% confidence

interval. (a) at 30% of the lifetime, (b) at 80% of the lifetime.

As expected, the point-by-point interval becomes narrower as the available
data increases, The accuracy of the prediction increases as more data becomes
available. For comparison, the RUL prediction performance of the joint model
with association structure of current value is better than that of the two-stage

method when #=30% and 80%, and the prediction results are also shown in Table
5. Again, it validates the effectiveness of our proposed model.

Table 5
Comparison of #5 prediction starting point tj=30%and tj=80% model RUL prediction results
Prediction Association Bayesian joint model RUL
starting True value structure Predicted 2.5% 97.5% predicted
point ¢ of life value by two-stage
method!'®!
Current 159 144 174
30% 149 Current+slope 156 143 171 189
Cumulative 167 144 189
Current 45 28 63
80% 43 Current+slope 44 31 61 53
Cumulative 55 37 74

5. Conclusion

The work successfully proposed a more accurate RUL prediction method
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by jointly analyzing degradation and failure data with association structure
identification. In consideration of individual variability and monitoring errors, a
linear mixed effects model is applied for the degradation process. To capture the
interaction of degradation and failure, a proportional hazards model is utilized to
combine the different characteristics of potential degradation processes as built-in
covariates and failure time data. The optimal association structure for the joint
model is identified based on the prediction performance of validation set. The
application for the aircraft engine data sets shows that the joint model with
association structure between current degradation value and failure outperforms
the two-stage method without association structure in terms of RUL prediction
accuracy, especially in the early stage. Moreover, the joint model with
current-value association structure or current-slope association structure performs
best overall. Therefore, the proposed joint model for RUL prediction with
association structure identification may provide reference for other mechatronic
equipments.

In this study, the effect of only one monitoring variable on survival
outcome was considered, and other monitoring variables were not considered, so
there may be many other covariates affecting the risk of failure function. In
addition, there may be other association structures such as lagged and random
effects to influence the risk of failure function, and these conjectures need to be
further analyzed and studied.
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Appendix

psendocode

Algorithm: RUL prediction is based on a joint model with association structure identification between failure time and degradation data,
Input: Training and validation data set, including failure time and degradation data and the whole lifetime. Test data set, degradation data
and a part of the whole lifetime
Output: RUL prediction of the validation set data, RUL prediction error of the validation set data
Begin
For i=1 to simulation group number N, randomly select sample of 8/9 as training data set Gruw. and remaining is regraded as
validation data set Gvaligaon (excluding test set)
1) Establish basic framework of joint model
Selecting variables according to AIC/BIC criterion to build degradation model y,, (1) = 1, (1) + £, (1) =X/ () + Z, ()b, +&,, (1)
Selecting variables based on LPML/DIC criterion to build a hazard model 4, (1) = h () exp[ f {n, (). b, .a}].1 >0
2) Parameter estimation for joint model based on training data set G
Likelihood function p(,..7,,.5,| b,.¢)=p(¥.| by.¢)p (1.5, b,.4).
Bayesian estimation ¢ = (f. Do, a,a, «,.«,)
For / to starting time number M of RUL prediction for validation data sets
1) Rehability prediction for sample of validation data set Gyaigasions from given stating time £, 8, (¢|r,) =Function2(s. X(1), =1,
JMbayes parameters, 1-4). Size(Gvandaton)=K,
2) RUL prediction for individual A" of validation data set Guidaion from given stating time £,
3) RUL prediction of ¢ at the time of the jth simulation group number in K validation set sample
sizes: RULy(1,) = [ Roate|1,)ds ,
4) RUL prediction error for individual Ath of validation data set Gvawwon from given stating time 4, The /th simulation group
number is the prediction error of the remaining useful life at 4 in the sample size of K validation sets
Error_of RUL,,(¢,) =| RUL(t,)~ RUL,, (1) |.

5) RUL prediction error for validation data set Gyidaion from given stating time 4, the average absolute error of the ith analog
A

group number at the 4y moment: Error_of RUL, (1,) = MAE, = K~ 3| RUL y.(t,)~ RUL, ,(1,) |
g

errors at 4
Error_of RULAL )= median{ MAE,'" i =1: N}
End



