GOLD NANOPARTICLES-BASED RADIOPHARMACEUTICALS FOR NUCLEAR MOLECULAR IMAGING AND THERAPY APPLICATIONS

Livia Elena CHILUG1,2, Radu-Anton LEONTE3,4, Maria Daniela CIUCĂ5, Vasile LAVRIC6

Gold nanoparticles (AuNPs) have attracted great interest in a variety of medical applications such as computed tomography (CT), nuclear imaging, therapy, photoacoustic, ultrasound, and magnetic resonance imaging (MRI). Due to their surface chemistry, structure properties, and biocompatibility, AuNPs are a key feature for targeted drug delivery and enhanced imaging as a contrast agent. This paper describes a new method for AuNPs labelling with 68Ga through chelator method and covers recent advances in positron emission tomography (PET), single-photon emission tomography (SPECT), and radiotherapy using gold nanoparticles-based radiopharmaceuticals.

Keywords: radiolabelled nanoparticles, gold nanoparticles, radiolabelling, nuclear imaging, PET, SPECT, radiotherapy

1. Introduction

Gold nanoparticles (AuNPs) have emerged as highly promising in nanomedicine as their unique physical, and optical properties have rapidly promoted them for drug delivery, multimodal imaging applications, and targeted treatment [1]. One of the most important fields in which AuNPs have been applied is nuclear medicine. The possibility to use a single nanotracer for functional imaging, like positron emission tomography (PET), single photon emission

1 PhD student, Doctoral School “Applied Chemistry and Materials Science” IOSUD University POLITEHNICA of Bucharest, Romania,
2 Junior Researcher, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Romania, e-mail: livia.chilug@nipne.ro
3 Scientific Researcher, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Romania, e-mail: radu.leonte@nipne.ro
4 PhD, Department of Physics, University POLITEHNICA of Bucharest, Romania, e-mail: radu.leonte@physics.pub.ro
5 Student, Faculty of “Applied Chemistry and Materials Science”, University POLITEHNICA of Bucharest, Romania, e-mail: maria_daniela.ciuca@stud.chimie.upb.ro
6 Prof., Director of Doctoral School “Applied Chemistry and Materials Science”, IOSUD-University POLITEHNICA of Bucharest, Romania, e-mail: vasile.lavric@upb.ro (to whom all correspondence should be sent)
tomography (SPECT), also for cancer therapy, conferred an advantage to AuNPs against conventional radiopharmaceuticals approved by the European Medicines Agency (EMA) and U.S. Food, and Drug Administration (FDA), like: $[^{18}\text{F}]\text{FDOPA}$ (dihydroxyphenylalanine), ^{68}Ga-DOTA-TOC (Tyr3-octreotide acetate), $[^{11}\text{C}]\text{MET}$ ($[^{11}\text{C}-\text{methyl}]\text{methionine}$), ^{177}Lu-DOTA-TATE (octreotate) or ^{99m}Tc-MDP ($[\text{methyl}]\text{diphosphonate}$). The mandatory requirements that nanotracers must fulfil to be applied in nuclear medicine are: high chemical, and radiochemical purity, stability, low toxicity, favourable pharmacokinetic profile with fast renal clearance and prolonged blood circulation, predominant accumulation in the targeted tissue and no uptake in non-targeted organs.

To meet these requirements, nanoparticles have been formulated in terms of size, surface coating, functionalization with various biomolecules and different strategies for labelling with radioisotopes were evaluated [2].

In this paper, the recent progress on the development of radiopharmaceutical agents that uses gold nanoparticles as targeting system for PET and SPECT molecular imaging and radiotherapy is presented, along with a new fast and reproducible labelling method for AuNPs with ^{68}Ga radioisotope.

2. Radioisotope labelling methods

One of the most important features of a radiopharmaceutical is the in vivo stability. Due to the variety of compositions and pH of biological environments, nanodrugs can interact with constituents of biological mediums by steric, electrostatic or hydrophobic interactions [3, 4]. Therefore, they can form aggregates, can be degraded, or can be recognized by the reticuloendothelial system (RES). Thus, the stable incorporation of radionuclide is essential, and the synthesized nanocomposite must remain intact in biological environments. So far, four methods have been developed for labelling gold nanoparticles with radioisotopes:

a) Direct chemisorption on the surface of AuNPs: driven by chemical reaction of halide ions with various inorganic and organic compounds on the surface of gold nanoparticles;

b) Complexation of radiometallic ions (e.g. ^{99m}Tc, ^{68}Ga, ^{64}Cu, ^{177}Lu) with chelators via coordination chemistry,

c) Intrinsic radiolabelling by activation of gold nanoparticles through direct bombardment with thermal neutrons, using $^{197}\text{Au}(n,\gamma)^{198}\text{Au}$ nuclear reaction;

d) Intrinsic labelling by radiochemical doping using a mixture of radioactive (“hot”) and non-radioactive (“cold”) precursors during the synthesis process.

These main labelling methods of AuNPs with radioisotopes are graphically illustrated in Fig. 1. Each of these methods has its advantages and
limitations, as presented in Table 1, the selection of the optimal method depending on the purpose, the incorporated radioisotope, and the structure of the gold nanocomposite.

The complexation method (Fig.1.b) uses small molecules, named bifunctional chelators (BFCs), that trap (by coordinate bonding) the radiometallic ion using several electron-donor atoms and are bound to a biomolecule or nanoparticle [5].
Table 1

Advantages and limitations of gold nanoparticles labelling methods with radioisotopes

<table>
<thead>
<tr>
<th>Labelling method</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct chemisorption</td>
<td>• good stability of radioisotope-nanoparticle complex; • high labelling yield.</td>
<td>• the stability of the complex is dependent on the environmental conditions to which it is exposed, and so far, no in vivo stability studies were reported.</td>
</tr>
<tr>
<td>Complexation of radiometallic ions</td>
<td>• enables the possibility of labelling with a variety of radioisotopes; • requires short labelling time, which enables the use of short-lived radioisotopes.</td>
<td>• depending on the affinity of the chelator for the radioisotope, there is a possibility of trans-chelation of the radiometallic ion in vivo due to competition with other natural chelators within the body (e.g. ferritin, lactoferrin or transferrin), and uptake in non-targeted tissue; • depending on the stability of the biomolecule, there is a probability of blood degradation and rapid elimination of NPs from bloodstream.</td>
</tr>
<tr>
<td>Intrinsic radiolabelling by neutron activation</td>
<td>• the most stable labelled AuNPs, as 198Au atoms forms the crystalline structure of the nanoparticles.</td>
<td>• requires special nuclear facilities (reactors); • requires high neutron flux to have a good reaction yield; • requires additional radiation safety measures; • can only be used for labelling with the 198Au radioisotope.</td>
</tr>
<tr>
<td>Intrinsic labelling by radiochemical doping</td>
<td>• one-step process, simultaneously with the synthesis of AuNPs; • fast labelling time.</td>
<td>• in vivo studies revealed small amounts of dissociated radioisotope from the AuNPs complex and their accumulation in the liver, but extensive research is required.</td>
</tr>
</tbody>
</table>

The main drawback of chelator approach is the trans-chelation of the radiometallic ion that can lead to radioisotope uptake in non-targeted tissues [6]. To avoid this situation, in vivo thermodynamic and kinetic stability of different metal-chelator pairs were previously assessed. Several bifunctional chelators have been used for labelling AuNPs with radioisotopes, such as DOTA (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid), NOTA (1,4,7-triazacyclononane-N,N',N''-triacetic acid) or NODAGA (1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid). The radiolabelling of AuNPs using BFC can be achieved by two approaches: binding the chelator on NPs surface followed by the coupling of the radioisotope, or by coordinating the radiometal with BFC and then binding the complex on gold nanoparticles.
3. Gold nanoparticles labelling with ⁶⁸Ga radioisotope

An example of a short-lived radioisotope often used in nuclear medicine for PET nuclear imaging is ⁶⁸Ga, that disintegrates 88.9% by β⁺ emission, being easily available by irradiation of ⁶⁸Zn targets with protons at cyclotron or by elution of ⁶⁸Ge/⁶⁸Ga radioisotope generator [7]. The chemical form of gallium used for labelling is the Ga³⁺ cation, which forms stable complexes with various chelators, like DOTA, NOTA or NODAGA. Further functionalization of the ⁶⁸Ga-biomolecule target vector on the AuNPs surface allows it to be used for in vivo imaging applications, or for in vitro biological studies.

One such nanotracer is ⁶⁸Ga-NODAGA-NOC-AuNP, where the [¹-NaN₃]-octreotide peptide (NOC) was labelled with ⁶⁸Ga radioisotope and functionalized by chemical absorption on the NPs surface. NOC peptide is a ligand exhibiting high affinity for three somatostatin receptor subtypes (SSTR2, SSTR3, SSTR5), which are overexpressed on the cell membrane of neuroendocrine tumour cells, being a potential in vivo vector for targeting this type of tumours.

Materials:
In this study we have optimized the labelling method of gold nanoparticles with ⁶⁸Ga by chelator approach, using the following materials: ⁶⁸Ge/⁶⁸Ga radioisotope generator (ITG Isotope Technologies Garching GmbH, Germany), semi-automated synthesis module Galigand GAL-102 (Veenstra, The Netherlands), suprapur® HCl (Merck KGaA, Germany), ammonium acetate buffer solution (Carl Roth GmbH, Germany), Strata™-X solid phase extraction cartridges (Phenomenex Inc., USA), saline solution (0.9% NaCl, B. Braun Melsungen AG, Germany), ultrapure water prepared in-house on a Millipore Milli-Q Direct 8 (Merck KGaA) system, NODAGA-NOC peptide (piChem, Austria), 20 nm gold nanoparticles stabilized in citrate buffer (Merck KGaA, Germany).

Method and results:
The labelling process begins with the elution of the ⁶⁸Ge/⁶⁸Ga generator with 0.05 M HCl. The useful amount of ⁶⁸Ga eluate, containing the highest activity, consists of 2 ml only, further used in synthesis process. The useful fraction, in form of ⁶⁸GaCl₃, is added to the reaction vessel pre-heated to 95 °C (suitable temperature for NODAGA chelator), along with nanomoles of NODAGA-NOC peptide which has been previously buffered with ammonium acetate solution to prevent its degradation (as the pH of the ⁶⁸GaCl₃ eluate is ~1.5-2). After labelling, the solution is passed through a solid phase extraction cartridge to trap the ⁶⁸Ga-labelled peptide and pass free ⁶⁸Ga to waste. The peptide is rinsed on the cartridge, then is recovered with ethanol, and transferred directly to a pre-heated evaporation vessel at 95 °C where the ethanol is evaporated, and the peptide reconstituted in saline solution (0.9% NaCl).
Further functionalization of the gold nanoparticles is performed at room temperature, under continuous stirring (~450 revolutions/minute) for 15 minutes.

Fig. 3 Semi-automated synthesis module Veenstra Galigand GAL-102 used for labelling molecules with 68Ga radioisotope coupled to an ITG 68Ge/68Ga generator.
The absorption of the peptide at the AuNPs surface allows their functionalization, this process being identified in the UV-Vis spectrum of the nanoparticles by a slight red shift of the absorption-corresponding peak (520 nm).

At the end of this process, a labelling yield greater than 80% can be obtained, within ~ 30 minutes of total preparation time, suitable for short-lived radioisotopes such as 68Ga (with half-life $T_{1/2} = 67.83$ min.).

The radiochemical purity of the radiolabelled peptide evaluated by radio high-performance liquid chromatography (radio-HPLC) is > 95% (Fig. 4).

4. PET imaging applications of AuNPs

The most precise functional imaging techniques used in nuclear medicine is PET, which allows quantitative imaging of radiopharmaceuticals distributed inside the body. In PET imaging, positron emitting radioisotopes are used, which decays by emitting a positron (particle with mass equal to that of the electron, but of opposite charge) and a neutrino (ν). The positron will be further annihilated with an electron from the close tissue during the anti-matter – matter interaction. As a result of the annihilation process, two gamma photons of 511 keV each will be scattered in opposite directions. The PET scanner is based on the coincidence detection of these two gamma photons, using scintillator detectors (e.g. bismuth germanate BGO, thallium-doped sodium iodide NaI(Tl), etc.), that can enable a resolution of 4.4 mm in human PET scanners and 0.5 mm in micro-PET scanners dedicated to small animals (like rats or mice). In order to improve the localization of the signal obtained by PET, the PET scanner is in-line coupled with a computed tomography (CT) or magnetic resonance imaging (MRI) scanner, combining the advantages of both techniques. The obtained fusioned images
provide the functional information with the advantage of a detailed anatomical representation. The commonly used PET radioisotopes are: 68Ga, 18F ($T_{1/2} = 1.83$ h), 11C ($T_{1/2} = 20.36$ min.), 15O ($T_{1/2} = 2$ min.), 64Cu ($T_{1/2} = 12.7$ h), 124I ($T_{1/2} = 4.17$ days). They are usually produced in cyclotrons by irradiation of the targets with protons [7], or can be obtained from generators, such as 68Ga, which is obtained from 68Ge/68Ga generator, by elution with HCl [8]. New applications of gold nanoparticles in PET molecular imaging have been developed in recent years, taking advantage of the large specific surface area of AuNPs on which various drugs can be loaded, which offers the possibility of improving the PET/CT dual imaging modality. Some representative examples of the latest applications are presented in Table 2.

The most challenging and sought-after radiopharmaceuticals are those capable of passing through the blood-brain barrier (BBB) that protects the central nervous system (CNS) and facilitate the selective transport of some molecules within the systemic circulation. The development of BBB-permeable radiopharmaceuticals allows the detection of malignant brain tumours such as glioma and neurodegenerative diseases (e.g. Alzheimer’s, Parkinson’s, or Huntington's). For these types of applications, Frigell et al. [9] developed a novel water-soluble glucose-coated AuNPs (GlcC5Au) functionalized with enkephalin peptide and glycosylated opioid peptides that can access the brain, both peptides being labelled with 68Ga-NOTA-C11/Lip. They assessed the BBB permeation in vivo of the synthetized nanotracers and have shown that targeted AuNPs bearing 68Ga-NOTA-Lip-enkephalin can improve the brain uptake by 3-fold of injected dose compared to non-targeted AuNPs. Other gold nanoparticles-based radiopharmaceuticals labelled with 68Ga radioisotope were reported to offer promising results for neuroendocrine cancer cells detection [10].

$[^{18}F]$-Fluorodeoxyglucose ($[^{18}F]$FDG) is the most widely used radiopharmaceutical in PET imaging, as it can be distributed in tissues with intense cellular metabolism, that increases the glucose consumption. The use of $[^{18}F]$FDG along with gold nanoparticles can improve the quality of PET/CT imaging, this combination being tested by Unak et al. [11], who functionalized on the surface of AuNPs both $[^{18}F]$FDG and the antibody anti-MTDH for the detection of breast cancer cells. The PET/CT images evidenced the high uptake in MCF7 breast cancer cells and increased cells’ apoptosis, from 2% to 20%.

Another short-lived emerging radioisotope is 64Cu which has gained increased attention due to its β^+ ($E_{\beta^+} = 0.653$ MeV, 17.5%) decay, β^- decay ($E_{\beta^-} = 0.578$ MeV, 38.4%), and emitted Auger electrons that make it suitable for both PET imaging and radionuclide therapy. Additionally, copper is involved in several physiological processes and is essential for iron transport, respiration, metabolism, haemostasis, and cell growth [12]. Chen et al. [13] used glutathione (GSH) tripeptide labelled with 64Cu and functionalized on AuNP-PEG
nanoparticles for dynamic PET/CT imaging of both healthy BALB/c mice and mice with acute kidney injury (AKI). Their study emphasized the renal clearance mechanism of nanoparticles with 130 times shorter biological half-life of 64Cu-NOTA-Au-GSH than previously reported nanoparticles, which promotes this radiopharmaceutical for fast diagnosis of kidney diseases in the future.

Lee et al. previously reported a novel synthetic approach for tannic acid-coated gold nanoparticles (TA-AuNPs), labelled with positron emitter 124I for in vivo dendritic cells tracking through PET/CT imaging [14]. Further, they modified the AuNPs coating with polyethylene glycol and conducted in vivo targeting studies of breast cancer tumours [15], and in vivo photothermal therapy in mice with colon tumours [16]. The results indicate not only effective targeting of tumour lesions through EPR effect, but also the possibility of macrophage-mediated delivery of PEG-124I-Au@AuCBs as photothermal therapeutic and imaging nanoplatform.

Table 2

<table>
<thead>
<tr>
<th>Radiopharmaceutical</th>
<th>Radioisotope</th>
<th>Molecule</th>
<th>Labelling method</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>68Ga-DOTA-TOC- AuNP</td>
<td>68Ga</td>
<td>Octreotide peptide (TOC)</td>
<td>Coordination of 68Ga to bifunctional chelator DOTA</td>
<td>In vitro binding assay on AR42J pancreatic cancer cells [10]</td>
</tr>
<tr>
<td>68Ga-DOTA-PEG(4)-BBN(7-14)-AuNP</td>
<td>68Ga</td>
<td>Bombesin (BBN), neuromedin B(NMB), neuromedin N (NMN) , and neurotensin (NT) peptides</td>
<td>Coordination of 68Ga to bifunctional chelator DOTA</td>
<td>In vivo study on DU-145 prostate and HT-29 colon carcinomas [17]</td>
</tr>
<tr>
<td>68Ga-DOTA-NMB-AuNP</td>
<td>68Ga</td>
<td>Bombesin (BBN), neuromedin B(NMB), neuromedin N (NMN) , and neurotensin (NT) peptides</td>
<td>Coordination of 68Ga to bifunctional chelator DOTA</td>
<td>In vivo study on DU-145 prostate and HT-29 colon carcinomas [17]</td>
</tr>
<tr>
<td>68Ga-DOTA-NMN-AuNP</td>
<td>68Ga</td>
<td>Enkephalin (Enk) peptide and glycosylated opioid peptide (Glycopep)</td>
<td>Coordination of 68Ga to bifunctional chelator NOTA</td>
<td>Brain imaging studies [9]</td>
</tr>
<tr>
<td>68Ga-cRGD-Au@DTDTPA</td>
<td>68Ga</td>
<td>Integrin peptide cRGD</td>
<td>Coordination of 68Ga to DTDTPA chelator</td>
<td>PET/MRI imaging study of U87MG glioblastoma tumours [18]</td>
</tr>
<tr>
<td>C(AuNP)LPFFD-C(AuNP)K(18F-SFB)</td>
<td>18F</td>
<td>Amphipathic peptide CLPFFD and dipeptide CK</td>
<td>Indirect method by covalent binding of 18F-SFB to CK peptide</td>
<td>PET imaging studies [19]</td>
</tr>
<tr>
<td>$[^{18}$F]FDG-AuNP-AntiMTHD</td>
<td>18F</td>
<td>Anti-MTHD antibody</td>
<td>Intrinsic labelling</td>
<td>In vitro evaluation on MCF7 breast cancer cell line</td>
</tr>
</tbody>
</table>
5. SPECT imaging applications of AuNPs

Single photon emission computed tomography (SPECT) imaging is based on gamma photon detection emitted by the radioisotope after electron capture or isomeric transition decay to a lower-energy nuclear state [23]. The SPECT system is composed of a gamma camera (or a set of gamma cameras) mounted on a gantry so that the detectors can record the gamma rays emitted by the radioisotopes. During the analysis, the gamma camera rotates around the patient at regular time intervals. The signal recorded at each location is reconstructed in sets of projections and then in slices of the body. The radioisotopes used in SPECT imaging include: 99mTc ($T_{1/2} = 6$ h), 111In ($T_{1/2} = 67.2$ h), 123I ($T_{1/2} = 13.27$ h), 131I ($T_{1/2} = 8.02$ days), 67Ga ($T_{1/2} = 3.26$ days). SPECT imaging technique is commonly used to study cerebral blood flow [24], metabolic changes, bone diseases [25], and oxygen levels in neurodegenerative diseases such as Alzheimer’s and Parkinson’s [26]. Table 3 lists the gold nanoparticle-based SPECT radiopharmaceuticals and their use in some investigated applications.
Ocampo-Garcia et al. [27] evaluated the biological behaviour of 99mTc EDDA/HYNIC-GGC-AuNP-mannose for sentinel lymph node (SLN) imaging. The *ex vivo* biodistribution studies and *in vivo* μSPECT/CT images of Wistar rats indicated high lymph node uptake, with 11.58±1.98 % IA (injected activity) after 1 h post-injection (p.i.), and stable binding of the AuNP-based radiopharmaceutical as it was retained during 24 h p.i.

Usually, studies focus on optimizing the surface coating of AuNPs so that the circulatory proteins called opsonin cannot bind to the NPs, and the macrophages of the reticuloendothelial system (RES) do not clean the nanocarrier from the bloodstream. Li et al. [28] relied on RES clearance of 99mTc-labelled gold nanoparticles for specific targeting of apoptotic macrophages with in pathological process identification of atherosclerosis (AS) plaque. To specifically differentiate and target the apoptotic macrophages from normal ones, they functionalized AuNPs with Annexin V peptide that recognizes the phosphatidyl serine of apoptotic macrophages. The SPECT/CT images of 99mTc- MAG3-AuNP-Annexin V in C57/B mice showed that during the early period after injection, the nanotracer is located predominantly in the RES organs (liver, spleen, kidneys), covering the imaging signals form AS plaque. The gold nanocarrier is cleared from the body 5 h p.i., through intestinal and renal metabolism, and atherosclerosis plaques can be identified in the SPECT/CT images. These findings highlight the applicability of gold nanoparticles for targeting apoptotic macrophages and further detection of vulnerable atherosclerosis plaques.

Another gold nanoparticles application for SPECT imaging was reported by Ng et al. [29] who directly labelled AuNPs with 111In and further functionalized integrin cRGD peptide on the surface of nanoparticles for melanoma M21 and glioblastoma U87 tumours detection.

Table 3

AuNP-based radiopharmaceuticals for SPECT imaging applications

<table>
<thead>
<tr>
<th>Radiopharmaceutical</th>
<th>Radioisotope</th>
<th>Molecule</th>
<th>Labelling method</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>131I-AuPENPs-CTX</td>
<td>131I</td>
<td>Chlorotoxin (CTX)</td>
<td>Indirect method</td>
<td>SPECT imaging of glioblastoma tumours [30]</td>
</tr>
<tr>
<td>125I-GNR-PEG-cRGD</td>
<td>125I, 131I</td>
<td>Integrin c(RGDfK) peptide</td>
<td>Indirect by radioiodination method</td>
<td>SPECT imaging and radioimmunotherapy of A549 human lung carcinoma [31]</td>
</tr>
<tr>
<td>131I–C225–AuNP–PEG</td>
<td>131I</td>
<td>Cetuximab (C225) antibody</td>
<td>Indirect method (antibody labelling by iodogen method)</td>
<td>μSPECT/CT study on A549 adenocarcinoma bearing mice [32]</td>
</tr>
<tr>
<td>111In-AuNP-cRGD</td>
<td>111In</td>
<td>Integrin cRGD</td>
<td>Direct labelling</td>
<td>SPECT imaging</td>
</tr>
<tr>
<td>Peptide</td>
<td>Coordination</td>
<td>Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombesin peptide (BBN)</td>
<td>Coordination of 99mTc to DTDTPA chelator</td>
<td>Prostate cancer PC3 cells [33]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrin peptide: c(RGDfK(C))</td>
<td>Coordination of 99mTc to HYNIC chelator</td>
<td>Sentinel lymph node detection [27]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annexin V peptide</td>
<td>Coordination of 99mTc to MAG$_3$ chelator</td>
<td>Atherosclerosis plaque detection [28]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombesin peptide</td>
<td>Coordination of 67Ga to TDOTA chelator</td>
<td>PC3 Prostate cancer detection in xenograft Balb/c mice [35]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Radiotherapy application of AuNPs

The treatment of cancer by radiation induced cellular death is achieved through external irradiation of the targeted tissue or systemic delivery of specific radioisotopes, e.g. 177Lu ($T_{1/2} = 6.73$ days), 198Au ($T_{1/2} = 2.69$ days), 225Ac ($T_{1/2} = 10$ days), 223Ra ($T_{1/2} = 11.43$ days), 211At ($T_{1/2} = 7.21$ h), that decay emitting α particle, β^- or Auger electrons. The radiotherapy applications reported so far for functionalized gold nanoparticles are presented in Table 4.

177Lu is one of the most preferred radioisotopes for radiotherapy, as it has a particulate emission of Auger electrons, β^- decay, and low-energy gamma photons ($E_\gamma = 0.208$ MeV (11%) and $E_\gamma = 0.113$ MeV (6.4%)) which make it suitable for both SPECT imaging and radiotherapy. Several radiopharmaceuticals have so far been reported with 177Lu [36, 37], in current clinical practice 177Lu being successfully applied in the treatment of metastatic bone tumours and the therapy of hepatocellular carcinoma. The applications of gold nanoparticles labelled with 177Lu reported so far are limited to the treatment of breast cancer [38-41], and studies on HeLa adenocarcinoma cells [42]. One of these studies, conducted by Yook et al. [38], describes for the first time the use of a novel dual-receptor targeted system, that bind to both EGFR and HER2 receptors co-expressed on MDA-MB-468 human breast cancer cells. They functionalized the gold nanoparticles with trastuzumab (TmAb) and panitumumab (PmAb) antibodies to target HER2 and EGFR receptors, and they labelled the AuNPs with 177Lu radioisotope via DOTA chelator. The AuNP-based radiopharmaceutical was
injected intratumourally or incorporated into a porous calcium alginate seed (with similar dimensions to the brachytherapy seeds), then implanted intratumourally. 177Lu-DOTA-TmAb-AuNP arrested the growth of EGFR-positive breast cells without causing toxicity to normal tissue. Same results were obtained for 177Lu-DOTA-PmAb-AuNP in breast tumours expressing HER2 receptors. The antitumour effect of the gold nanoparticles-based radiopharmaceuticals and the lack of toxicity to normal tissue are attributed to the anchoring properties of AuNPs that do not allow the migration of the 177Lu radioisotope to normal organs, thus limiting the radiation dose absorbed by the healthy tissue.

Jenitabar-Darzi et al. [43] studied the efficacy of AuNPs in radiotherapy of MCF7 and 4T1 breast cancer. They irradiated 197Au/PAMAMG4 liquid target with thermal neutron flux of 10^{11} neutrons·cm$^{-2}$·s$^{-1}$. The radioactive 198Au/PAMAMG4 solution was then checked for radionuclide impurities, stability, and morphology. The cytotoxicity study of these nanoparticles against MCF7 cells at 24 h, 48 h and 72 h suggested that the 198Au/PAMAMG4 radiopharmaceutical inhibits the growth of cancerous cells in a dose- and time-dependent manner, the lowest amount of variability determined after statistical analysis being observed at 72 h post-incubation. Moreover, microscopic visualization of the treated cells confirmed morphological alterations after incubation. Comparing the results with those obtained on C2C12 normal cells, it has been observed that at high concentrations it is more toxic to breast cancer cells than normal ones, which encourages further evaluation of this gold nanoparticle-based radiopharmaceutical for in vivo assays.

Several other studies were reported [44-47] for intrinsically labelled gold nanoparticles by neutron activation in nuclear reactors, for instance Chakravarty et al. [47] tested 198AuNP-cRGD in vivo on mice bearing melanoma tumours. They evaluated tumour regression after administration of several doses while keeping constant the number of nanoparticles injected. A rapid uptake of 4.9±1.3 %ID/g was observed in the tumour at 1 h p.i., reaching 8.7±2.1 %ID/g after 4 h, this percentage being maintained over the observation period of 168 h p.i. Unfortunately, high uptake and prolonged retention of 198AuNP-cRGD were also measured in the liver, spleen, and the kidneys. This is a major concern for the radiation-induced detriment to the non-targeted organs and additional studies are required to assess the long-term effects of the radiation absorbed dose in these organs.

The most attractive and efficient radioisotopes used in cancer therapy are α-emitters such as 211At ($T_{1/2} = 7.2$ h), 223Ra ($T_{1/2} = 11.43$ days), 225Ac ($T_{1/2} = 10$ days), that have the advantage of linear energy transfer within a short penetration depth in soft tissue, and high relative effectiveness independent of the cell cycle or hypoxia state. Dziawer et al. [48], published the only study reported so far for AuNPs labelled with an α-emitter radioisotope, who used 211At-AuNP-
PEG-TmAb as nanotherapeutic agent in HER2-overexpressing human ovarian SKOV-3 cell line. The results showed that the cytotoxic effect of 211At-AuNP-PEG-TmAb is seven times greater than that reported for 177Lu-DOTA-TmAb [49], despite the 22 times shorter half-life of 211At compared to 177Lu β-emitter radioisotope.

Table 4

<table>
<thead>
<tr>
<th>Radiopharmaceuticals for radiotherapy applications</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiopharmaceutical</td>
<td>Radioisotope</td>
<td>Molecule</td>
<td>Labelling method</td>
<td>Application</td>
</tr>
<tr>
<td>177Lu-DenAuNP-folate-bombesin</td>
<td>177Lu</td>
<td>Bombesin peptide</td>
<td>Bifunctional chelator method using p-SCN-Bn-DOTA chelator</td>
<td>Human breast cancer (T47D cell line) therapy [41]</td>
</tr>
<tr>
<td>177Lu-DOTA-TATE-AuNP</td>
<td>177Lu</td>
<td>Peptide Tyr1-octreotate (TATE)</td>
<td>Bifunctional chelator method</td>
<td>In vitro studies on HeLa cells [42]</td>
</tr>
<tr>
<td>177Lu-DOTA-GGC-AuNP-c[RGDfK(C)]</td>
<td>177Lu</td>
<td>Integrin cRGD peptide</td>
<td>Bifunctional chelator method</td>
<td>In vitro studies on MCF7 breast cancer cells [40]</td>
</tr>
<tr>
<td>177Lu DOTA-TmAb-AuNP</td>
<td>177Lu</td>
<td>TmAb antibody</td>
<td>Bifunctional chelator method</td>
<td>In vivo studies on SK-BR-3, BT-474 and MDA-MB-361 breast carcinomas [38, 39]</td>
</tr>
<tr>
<td>198AuNP-GS</td>
<td>198Au</td>
<td>Glutathione (GS)</td>
<td>Intrinsic radiolabelling</td>
<td>Biodistribution in balb/c mice [44]</td>
</tr>
<tr>
<td>198Au/PAMAMG4</td>
<td>198Au</td>
<td>N/A</td>
<td>Intrinsic radiolabelling by neutron activation</td>
<td>In vitro toxicity studies on MCF7 and 4T1 breast cancer cells [43]</td>
</tr>
<tr>
<td>198AuNP-RGD</td>
<td>198Au</td>
<td>Integrin cRGD peptide</td>
<td>Intrinsic radiolabelling by neutron activation</td>
<td>In vivo studies on C57BL/6 mice bearing melanoma tumours [47]</td>
</tr>
<tr>
<td>198AuNP-EGCg</td>
<td>198Au</td>
<td>Epigallocatechin-gallate plant-based compound</td>
<td>Intrinsic radiolabelling</td>
<td>In vivo therapeutic efficacy in PC-3 prostate cancer tumours in SCID mice [46]</td>
</tr>
<tr>
<td>198AuNP-GA</td>
<td>198Au</td>
<td>GA glycoprotein</td>
<td>Intrinsic radiolabelling</td>
<td>Therapeutic efficacy studies on prostate tumour–bearing SCID mice [45]</td>
</tr>
<tr>
<td>211At-AuNP-S-PEG-TmAb</td>
<td>211At</td>
<td>TmAb</td>
<td>Direct chemisorption</td>
<td>In vitro study on SKOV-3 breast cancer cells [48]</td>
</tr>
</tbody>
</table>
7. Conclusions and future perspectives

The nanotechnology, and especially the gold nanoparticles have become an imaging/therapeutic tool in current medical practice, and several gold nanotracerers will be proposed for future extensive clinical applications. Several radiolabelling strategies have been reported for now, each of them having its one advantage and limitations, but in vivo applications emphasized that the intrinsic labelling method provides the most stable nanocarrier, contrary to the BFC approach, which exposes the radioisotope to natural chelators, such as transferrin, thus increasing the risk for trans-chelation. Despite this, the described new method of labelling AuNP using NODAGA chelator, proves that BFC methods are fast, reliable and can be easily used in the preclinical routine, since they are not as laborious as intrinsic labelling methods, and can be performed with ready to use reagents kits. Despite numerous successful studies, several improvements need to be addressed to translate AuNPs-based radiopharmaceuticals into clinical trials. One of the major challenges is to optimize the tissue-selective targeting to decrease the non-specific uptake into the RES-related organs such as liver, kidneys, spleen, lung, or stomach. In addition, prolonged blood circulation is desired, together with optimal high target-to-background ratio, to increase the contrast of the targeted tissue.

REFERENCES

Gold nanoparticles-based radiopharmaceuticals for nuclear molecular imaging and therapy (...)

