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INDUCER SELECTION PRINCIPLES FOR DEEPFUSION
SYSTEMS

Mihai Gabriel CONSTANTIN!, Liviu-Daniel STEFAN?, Bogdan IONESCU?

The current landscape of ensemble learning or late fusion approaches
is dominated by methods that employ a very low number of inducer sys-
tems, while using traditional approaches with regards to the fusion engine,
predominantly statistical, weighted, Bagging or Random Forests. Even with
the advent of deep learning, few approaches use deep neural networks in
building the ensemble decision and improving the results of single-system
approaches. One of these methods is represented by the DeepFusion set of
approaches, that integrate a very large number of inducer systems, while
providing significantly improved final performance over the performance of
its component inducers. However, no attempt has yet been made for Deep-
Fusion with regards to reducing and optimizing the set of inducers, while
maintaining the same level of performance. Thus, this paper proposes a set
of methods for inducer selection and reduction, based on their performance
and on their similarity computed via clustering. Our methods are tested on
the popular Interestingness10k dataset, that provides data and inducers for
the prediction of image and video visual interestingness. We present an in-
depth analysis of the performance of the optimization methods, with regards
to the results according to the main performance metric associated with this
dataset, as well as the degree to which these methods reduce the number of
utilized inducers.

Keywords: DeepFusion, inducer selection, late fusion, ensembling, opti-
mization

1. Introduction

Despite the present advancements in information retrieval, single learners
do not perform well when working with data involving multipartite entangle-
ment including concept drift, noisy data, class imbalance, high-dimensionality,
etc. In this context, ensemble learning tries to fill this gap by exploiting a set
of machine learning algorithms through the combination of their individual
predictions. Here, ensemble learning is a general term for approaches that cre-
ate predictions using a pool of inducers, often in supervised machine learning
problems. Inducers are algorithms that map input instances to categories via a
consensus mechanism, encapsulated in a model (e.g., a classifier or regressor),
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Ficure 1. Illustration of a general ensembling framework.
Given a sample z, ensembling aims to expand the space of rep-
resentable functions, by combining the hypotheses F. The goal
is to find the optimal one, meaning that it should approximate
ground truth as close as possible to reduce the generalization
error, in contrast to single classifiers, where the target is to find
the optimal hypothesis in the given space H.

all tailored to the type of inputs being examined. Given a probability on a
hypothesis, the consensus methods may rely on majority voting, weighting or
statistical inference, or more intricate approaches, such as the use of hierarchi-
cal or network architectures. A general ensemble architecture is illustrated in
Figure 1.

An unsolved research question is how to choose the right collection of
inducers for a classification problem in order to produce an accurate ensemble.
Therefore, many factors must be considered when selecting the best ensemble
setting. One of the aspects to be considered is the selection of the inducers
that will be incorporated in the ensemble architecture. A good practice is to
construct an architecture with mutually complementary classifiers character-
ized by high diversity, although it is not guaranteed that boosting ensemble
diversity will increase its performance in practice [19]. Here diversity refers to
the variations in decisions or predictions output by the inducers when analyz-
ing the same instance. One hypothesis is to consider the correlations between
accuracy and diversity since ensemble predictive capability is constrained by
the rule of large numbers. This paradigm is supported by the no-free-lunch
theorem formulated by Wolpert [30], which states that “for any two learning
algorithms there are just as many situations appropriately weighted in which
algorithm one is superior to algorithm two as vice versa according to any of the
measures of superiority.” The best scenario is when the individual classifiers
of an ensemble are entirely complementary. In contrast, the worst scenario
implies that all the individual classifiers are identical, in both positive and
negative predictions.

For efficient learning in a wide range of applications (23, 22, 17], deep
neural networks (DNNs) have taken over as the de facto standard. Omne of
the major results of state-of-the-art deep learning architectures [16, 28] is that
they can detect subtle structures in large data sets because to their better rep-
resentation expertise for high-dimensional data, and when combined with their
classification abilities, they significantly outperform traditional descriptors and



Inducer selection principles for DeepFusion systems 237

classifiers. While ensemble learning has a fairly long history in machine learn-
ing, there is currently little literature on ensemble learning with DNNs.

The remainder of the paper proceeds as follows. We first position our
work in the literature, discussing related approaches and concepts in Section 2.
Furthermore, the proposed optimization schemes are presented in Section 3,
while the experimental setup and results are presented in Section 4. The paper
concludes with Section 5.

2. Previous work

In the literature, multiple terms have been employed to denote a set of
functions that collaborate to resolve a machine learning problem, such as ag-
gregation, committee, late fusion and ensembles [18, 12, 3|. Ensemble learning
is a methodology that employs a pool of learners to generate ensemble predic-
tion by combining the members’ predictions via a consensus method. Instead
of relying on a single robust classifier, ensembling advocates improving sys-
tem accuracy by combining multiple classifiers, as summarized in [5]. In a
traditional setting, ensemble methods comprise two phases: the generation of
predictive models, and the learning process. The former describes how the clas-
sifiers are built, and the latter specifies how the classifiers are organized within
the ensemble and how their predictions are used to form the overall ensemble
prediction. An additional intermediate phase called ensemble pruning [20, 2]
is also proposed in the literature, responsible for the selection of the inducers
prior to combination. Popular boosting methods like AdaBoost [13] with it’s
variants, e.g., soft margin AdaBoost [26], Gradient boosting machines [14],
and XGBoost [7], represent one of the goto approaches when creating ensem-
bles. Other notable approaches include Bagging [4], Random Forests [6], and
Extremely randomized trees codes [15].

Despite DNNs’ recent success, there is limited research on the incorpo-
ration of ensemble learning in deep neural networks. One of the first pure
ensembling approaches use DNNs is represented by the DeepFusion set of
methods [27, 8]. While these networks bring significant improvements with
over single-system predictors, no study has yet been performed with regards
to optimizing and reducing the set of inducers they employ. A study in this
direction would allow for comparable or even better system performance, while
reducing the computational need of these systems by reducing the number of
inducers.

In this context, the contribution of this work is as follows: (i) we propose
a set of three inducer selection methods that would allow for optimization
based on inducer performance and clustering; (ii) we test these methods on the
Interestingness10k dataset, comparing their performance with the performance
of the original DeepFusion approaches; (iii) we analyze the results, while taking
into account the gain in performance compared with how efficient the selection
method is with regards to the reduced set of inducers.
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3. Proposed approach

Our approach starts from the DeepFusion [9] ensembling methods, rep-
resenting a continuation of our experiments on the prediction of media inter-
estingness, using inducer data gathered during the MediaEval benchmarking
competition’, corresponding to the Interestingness10K dataset [10]. We ex-
plore different methods of inducer selection, with the main target of attaining
comparable or better results compared with our previous experiments, while
considerably reducing the number of inducers used in the experiments. This
would address one of the problems often cited with regards to ensemble build-
ing - the considerable cost and system requirements necessary for training and
especially running a large number of inducers.

In theory, given the system described in Figure 1, the proposed ap-
proaches involve pruning the set of k£ inducers. We can thus reduce the input
space for the ensemble policies from the Fy(x) to a new F,.(x) set of hypoth-
esis. This aspect is presented in Figure 2. Thus, given the initial space of
hypothesis, H(k), the role of the reduction function R(H(k)) is to provide a
new set of inducers H(r), so that the new set is a subset of the original one:
H(r) C H(k). Therefore, no transformation is applied to the inducer functions
themselves, as some of them are just taken out of the final decision and are
no longer used as inducers. Thus, the new H(r) set of inducers is a subset of
H (k). We propose several methods to achieve this optimization, as follows:

e Performance-based selection - where inducers that perform below a certain
threshold are dropped;

e Middle-out-based selection - where inducers between certain thresholds
are dropped;

e Cluster-based selection - where certain representatives of clusters of sim-
ilar inducers are dropped.

3.1. Performance-based selection

Given the H(k) set of inducers, and the R optimization function, we
propose selecting only those inducers that perform above a certain threshold
o, where the performance of each inducer is computed using a function I'.
We theorize that, by dropping inducers that perform badly, we may be able to
help the network learn from better performing inducers, thus increasing its final
results. Thus, the performance of each individual inducer can be computed as
['(H(i))%,. The condition for keeping or dropping a certain inducer and the
final set of optimized inducers H(r) can be expressed as H(r) = {H(i)|0 <
i< k,T(H(i)) >0}

"https://multimediaeval.github.io/



Inducer selection principles for DeepFusion systems 239

o Optimization
Classifiers Method
"""""""""""" ] Reduced Classifiers
O S e N
N e L RHG) - P e
! ) k > > - r '—)
| L | i
: ) , i ——
[ — i
L | H(r)
H(k)

Ficure 2. Illustration of a general optimization method for en-
semble classification. Given k classifiers that produce the output
Fi(x), the role of the optimization method is to create a func-
tion R that will select a subset of inducers and will only run
the inference on that subset. Thus, the input to the Ensemble
Policies will consist of a reduced F,.(x) set.

3.2. Middle-out-based selection

Thresholding is again the main focus of the second type of inducer selec-
tion. However, this time, we theorize that the fusion system may be able to
learn even from inducers that perform badly. Theoretically, inducers that are
below a lower threshold o may positively help the learning process of the Deep-
Fusion system, serving as negative examples in the training phase. Therefore,
we propose only dropping inducers with performances between two thresholds,
intuitively the inducers that perform neither well nor badly. We call these two
thresholds « (the lower one) and S (the higher one), and the set of optimized
inducers can be expressed as H(r) = {H(:)|0 < < k,a < T'(H(i)) < B}.

3.3. Cluster-based selection

For the final optimization method, we theorize that clusters of inducers
may naturally be created, as different classifiers may converge towards the
similar conclusions regarding the data. We thus create these clusters by using
a distance metric between two sets of predictions ¢ and j as denoted as I'; ;. The
natural formation of clusters can be visualized in Figure 3, where a similarity
matrix between all the possible pairs of inducers is presented. We used a
hierarchical Aglomerative Clustering [21] method for computing the clusters
of inducers. Using an average scheme for creating the clusters, the measure of
dissimilarity between two clusters X and Y can be expressed as:

d(X,Y !Xll ZZny (1)

zGX yey
Given this distance, a maximum distance dmax can be used as the valid
distance for cluster creation at training time, so that clusters can only be
created if d(X,Y) < dmaxr An update decision regarding the joining of two
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FIGURE 3. Similarity matrix between different runs. Simmilar
runs (r > 0) are presented in red, while dissimilar ones (r < 0)
are presented in blue. We can observe the formation of several
clusters, generally around runs submitted by the same teams.

clusters X and Y, with nx and ny elements in them, can be expressed as a
distance comparison to any other cluster Z:

nxd(X, Z) + nyd(Y, Z)
nx + Ny

(2)

In the final step we drop the worst performing inducer from each cluster
containing more than one inducer. We theorize that this type of approach
should reduce network input redundancy to a certain point, while directly

targeting and dropping the lowest performing inducer from certain important
clusters.
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4. Experimental results

The following section will present details regarding the data used, the
inducers and their sources and the results of the three selection methods.

4.1. Experimental data

We propose a set of experiments derived from those presented in [9].
Concretely, we use the version of Interestingness10k associated with the Medi-
aEval 2017 Predicting Media Interestingness task [11]. 9,831 photos and videos
make up the dataset, including 2,435 samples in the testing set (testset) and
7,396 samples in the development set (devset). The benchmarking competition
required participants to create and train their media interestingness prediction
algorithms on the devset and run the systems on samples from the testset. We
target both the image and video subtasks, and use the systems and predictions
submitted by the participants as inducers for our DeepFusion system. A high
number of systems are available: 33 inducers for the image subtask and 42 for
the video subtask.

We select a RSKF75 approach, as defined in [9]: we split the inducer
predictions according to a Random Stratified K-Fold approach, where 75% of
the data is kept for training, and 25% of the data is used for testing the re-
sults of the proposed approaches. We also select the same baseline systems
for comparing our performance with the current literature, namely: the sys-
tem with the top performance during the MediaEval competition, the system
with the top performance from the current literature on the Interestingness10k
dataset, and a set of state-of-the-art traditional fusion methods. We will ulti-
mately compare the results of the optimized DeepFusion approaches with the
un-optimized versions of DeepFusion.

4.2. Results

The results of our experiments are presented in Table 1, where the three
selection schemes are presented as follows: performance-based selection is rep-
resented as O1, middle-out-based selection as O2, and cluster-based selection
as O3. It is encouraging to note that, while O2 has low levels of success, O1
and O3 represent better approaches across both image and video prediction.
Consequently, we propose that middle-out optimization does not represent a
good additions for the inducer ensemble. It is also interesting to note that the
most successful approach varies from task to task. For the image task, the most
successful approach is the performance-based selection approach, resulting in a
MAP®@10 value of 0.3568. On the other hand, for the video task, the most suc-
cessful approach is the cluster-based selection method, with a MAP@10 value
of 0.2891. This may be an effect of the data and the inducers themselves,
and while there is no general conclusion with regards to the better performer
between O1 and O3, we theorize that, for future tasks and implementations of
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TABLE 1. Optimization results are compared with baseline runs
published in the literature (b), results from the best performing
traditional fusion methods, namely AdaBoost (a), the results of
the DeepFusion experiments (d), as well as the results of the
proposed optimization schemes (p). The three selection schemes
are represented as O1 (performance-based selection), O2 (mid-
dlebased selection), and O3 (cluster-based selection).

Image Video
Type || System MAP@10 || System MAPQ@10
(b) [25] 0.1385 1] 0.0827
[24] 0.1985 [29] 0.093
(a) || [13] 0.1674 | [13] 0.1129

Dense 0.3355 Dense 0.2677
Attn 0.3389 Attn 0.2750

(d) Conv 0.3436 Conv 0.2799

CSF 0.3403 || CSF 0.2825
o1 0.3568 || O1 0.2711
(p) | 02 0.3119 || 02 0.2303
03 0.3428 | O3 0.2891

this system, both approaches must be tested and implemented in order to se-
lect the most appropriate approach. The improvement over the un-optimized
DeepFusion approaches is approximately 3.84% for O1 in the image prediction
subtask, while for the video subtask, O3 optimizer improves the performance
by 2.33%. These performances are achieved with a lower number of inducers,
reducing the computational demand, as we will show in the following section.

4.3. Analysis

We perform a performance analysis on the three proposed methods, al-
tering the parameters used for selecting the inducers (i.e., o for performance-
based selection, the («, () pair for middle-out-based selection) and creat-
ing the clusters (i.e. the dmax distance for cluster-based selection). Fig-
ure 4 presents the results of this series of experiments. Values for the pa-
rameters were chosen empirically, mainly because parameters have different
effects depending on the task they are applied to. For example, while ex-
periments with a ¢ value of 0.09 can be performed on the Image task, this
value would be too high for the Video task as it would drop almost all the
inducers. Values tested for the (a, ) pairs for middle-out optimization are
as follows: {(0.07,0.09), (0.065,0.09), (0.0650.095), (0.06,0.095)} for the Im-
age task, and {(0.052,0.059), (0.05,0.06), (0.05,0.065), (0.048,0.067)} for the
Video task. Results show a decrease in performance when compared with the
base DeepFusion Dense approach of 7.03% for the Image task and of 13.9% for
the Video task.



Inducer selection principles for DeepFusion systems 243

@ ®
03565 F
035 03355 03436 02677 02711 02698

. 03341
02531
025
030 02958
02619 02054
025 020
2 020 5
® Bo1s
015
010
010
005
00
000 000

dense conv 003 005 0075 009 dense =3 004 0.05 0055 006

() «

035 03436 02825

03355
02677
03119 03098
030 025
02865 02303
02018
025
02354 020 01845 01861
g 020 s
® Bo1s
015
010
010
005
0.05
0.00 000

dense conv (0.07, 0. osy m 065, 0.09) (0.065, 0.095) (0.6, 0.095) dense = (0.052, 0. 059) m 050, 0.06) (0050, 0.065) (0.048, 0.067)
B v

030
035 03436 03428 03419 02025 02891

03355 3
03241 02677 02661
02994
030 o025 02478
025
020 01947
5020 ]
§’ Qo1s
015 H
010
010
005 005
000 000
n conv e X ¥

FIGURE 4. Result analysis for the three optimization methods
with regards to their parameters. We present results on the Im-
age (in blue — a, ¢, e) and Video (in brown — b, d, f) tasks, while
varying the o parameter for O1 (a, b), the o and f parameters
for O2 (c, d) and dmax for O3 (e, f).

With regards to the performance-based optimization schemes, we pro-
pose the following o values: {0.03,0.05,0.075,0.09} for O1 scheme on the
Image task, and {0.04,0.05,0.055,0.06} on the Video task respectively. The
best result for O1 on the Image task is achieved with the parameter o = 0.05
and represents a value of MAPQ10 = 0.3568, a 6.3% increase over the basic
DeepFusion Dense approach and 3.84% increase over the DeepFusion Convo-
lutional approach, the best performing result with the un-optimized version
of DeepFusion. With the help of this scheme, the number of inducers was
decreased from 33 to 28. On the other hand, for the Video task, the best
results are attained with ¢ = 0.04, reducing the number of inducers from 42
to 40, and reaching a performance of 0.2711. This represents a 1.27% increase
over the un-optimized Dense approach and a decrease of 4.03% decrease when
compared with the CSF approach.
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Finally, the cluster-based selection method uses the following dmax val-
ues for the Image task: {0.1,0.2,0.3,0.4} and for the Video task: {0.05,0.1,0.15,
0.2}. The best result for the O3 scheme on the Image task is achieved with a
dmazx value of 0.2 reaching a M APQ@10 value of 0.3428, representing a 2.17%
increase over the DeepFusion Dense approach, and a decrease of 0.23% com-
pared with the Convolutional approach, reducing the number of inducers from
33 to 27. For the Video task, the best results are obtained with a dmax value
of 0.1, scoring a M AP@Q10 value of 0.2891. This scheme reduces the number
of inducers from 42 to 36, while it increases performance by 7.99% over the
Dense DeepFusion approach, and 2.33 % over the CSF approach.

5. Conclusions

This work presents the creation and performance of several optimization
schemes for DeepFusion approaches. We propose three optimization schemes,
with the target of reducing the number of inducers used by the system, while
maintaining comparable, or even increased performance. The following ap-
proaches were proposed: (i) performance-based selection, where the worst per-
forming inducers are dropped; (ii) middle-out-based selection, where inducers
between certain thresholds are dropped; (iii) the cluster-based selection, where
the worst performing representatives of inducer clusters are dropped.

Results are tested on the Interestingness10k dataset, composed of an Im-
age and a Video prediction task, while the inducers associated with this dataset
are used as inputs for the proposed systems. In our experiments we show that
the performance- and cluster-based methods both lower the necessary induc-
ers by dropping them according to each optimization scheme’s principles, while
even managing in some cases to have better results. We theorize that higher
performance is most likely the result of lowering the noise the bad inducers
create in the input space.

We also propose that optimization schemes, for DeepFusion approaches
in particular, and for all kinds of late fusion approaches in general, represent
an interesting and worthwhile direction of study, reducing the computational
and cost impact of implementing such approaches. While different schemes
and parameters represented the top performing approach in the Image and
Video prediction scenarios, we believe that other sets of inducers and data
may behave differently, favoring either of these two schemes, while parameters
would have to be adapted to each new task.
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