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STRONG CONVERGENCE OF AN EXTRAGRADIENT ALGORITHM

FOR VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS

Yonghong Yao1, Mihai Postolache2, Jen-Chih Yao3

In this paper, we consider the fixed point and variational inequality problems
in Hilbert spaces. We suggest an extragradient algorithm for finding a common element

of the set of fixed points of a pseudocontractive operator and the set of solutions of the

variational inequality problem. Strong convergence of the proposed algorithm is proved.
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1. Introduction

Let H denote a real Hilbert space with inner product 〈·, ·〉 and the induced norm ‖ ·‖.
Let C be a nonempty subset of H. Let A : C → H be a nonlinear operator. Let us consider
the variational inequality

find ũ ∈ C such that 〈Aũ, u− ũ〉 ≥ 0, ∀u ∈ C. (1)

Denote the solution set of variational inequality (1) by V I(C,A).
Assume that the following conditions are fulfilled:

(i) a set C ⊂ H is convex and closed;
(ii) the operator A is monotone and Lipschitz with a constant κ > 0;
(iii) V I(C,A) 6= ∅.

Many practical problems in mathematical physics and operations research can be
modelled as variational inequalities. A great number of algorithms have been proposed for
solving variational inequality (1), see, e.g., [2, 8, 9, 11, 16, 18, 19, 20, 25, 29, 33, 34, 37, 41].
In particular, gradient algorithms are offered to date to solve them. For fixed initial value
x0, compute the sequence {xn} iteratively by

xn+1 = projC [xn − λAxn], n ≥ 0, (2)

where projC : H → C denotes the orthogonal projection and λ > 0 is a constant.
Note that for the convergence of the gradient algorithm (2), some strengthened mono-

tonicity assumptions (strongly monotone or inverse strongly monotone) should be fulfilled
([45]). In order to overcome this restrictive condition, Korpelevich [14] introduced the so-
called extragradient algorithm for solving variational inequality (1). For fixed initial value
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x0, compute the sequence {xn} iteratively by{
yn = projC [xn − λAxn],

xn+1 = projC [xn − λAyn], n ≥ 0,
(3)

where λ ∈ (0, 1/κ).
In Korpelevich’s algorithm (3), one has to compute projections twice. Korpelevich’s

algorithm (3) has received so much attention by a range of scholars, who improved it in
several ways; see, e.g., [5, 6, 10, 31, 38, 39]. Especially, Tseng [28] proposed the following
modified extragradient algorithm for solving variational inequality (1): for fixed initial value
x0, compute the sequence {xn} iteratively by{

yn = projC [xn − λAxn],

xn+1 = yn + λ(Axn −Ayn), n ≥ 0,
(4)

where λ ∈ (0, 1/κ).
Obviously, in Tseng’s algorithm (4), we only need to compute one projection. But, we

have to compute the values of A at two different points. Recently, Malitsky [17] suggested the
following iteration for solving variational inequality (1): for fixed initial value x0, compute
the sequence {xn} iteratively by

xn+1 = projC [xn − λA(2xn − xn−1)], n ≥ 0, (5)

where λ ∈ (0,
√

2−1
κ ).

Remark 1.1. In Malitsky’s algorithm (5), we need to compute one projection and one
values of A in each iterative step.

Observe that we need to estimate the Lipschitz constant κ of operator A in algorithms
(3), (4) and (5). In order to overcome this drawback, Armijo-like search rule was used in
iterative algorithms, see, for instance, [12, 13, 15, 27].

On the other hand, iterative computation of fixed points of nonlinear operators has
been growing interest due to its applications in science and engineering. Iterative methods
for finding fixed points of nonexpansive operators and pseudocontractive operators have
received vast investigation, see, e.g., [3, 4, 7, 21, 22, 23, 24, 26, 30, 35, 40, 42, 43]. Our
another main purpose of the present paper is to find the fixed points of pseudocontractive
operators.

Very recently, Yao, Postolache and Yao [46] presented an iterative algorithm for find-
ing a common element of the set of fixed points of a pseudocontractive operator and the set
of solutions of the variational inequality problem and weak convergence analysis is given.

Motivated and inspired by the works in this field, the purpose of this paper is to find
a common element of the set of fixed points of a pseudocontractive operator and the set of
solutions of the variational inequality problem (1). We suggest an extragradient algorithm
and strong convergence of the proposed algorithm is proved.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that an
operator S : C → C is said to be
(i) ρ-Lipschitzian if ‖S(u)− S(u†)‖ ≤ ρ‖u− u†‖,∀u, u† ∈ C, where ρ > 0 is a constant. If

ρ = 1, S is called nonexpansive.
(ii) pseudocontractive if ‖Su− Su‡‖2 ≤ ‖u− u‡‖2 + ‖(I − S)u− (I − S)u‡‖2,∀u, u‡ ∈ C.
An operator B : H → H is said to be strongly positive, if there is a constant ξ > 0 with the
property

〈Bu, u〉 ≥ ξ‖u‖2, ∀u ∈ H.
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In a real Hilbert space H, there holds the following equality

‖ςz + (1− ς)z†‖2 = ς‖z‖2 + (1− ς)‖z†‖2 − ς(1− ς)‖z − z†‖2, (6)

∀z, z† ∈ H and ∀ς ∈ [0, 1].
For fixed z ∈ H, there exists a unique z† ∈ C satisfying

‖z − z†‖ = inf{‖z − z̃‖ : z̃ ∈ C}.

Denote z† by projC [z].
The following inequality is an important property of projection projC([36]): for given

x ∈ H,

〈x− projC [x], y − projC [x]〉 ≤ 0, ∀y ∈ C. (7)

In what follows, we shall use the following expressions:
• un ⇀ z† denotes the weak convergence of un to z†.
• un → z† stands for the strong convergence of un to z†.
• Fix(S) means the set of fixed points of S.
• wω(un) = {u† : ∃{uni} ⊂ {un} such that uni ⇀ u†(i→∞)}.

Lemma 2.1 ([32]). Let C a nonempty closed convex subset of a real Hilbert space H. Let
S : C → C be an L-Lipschitz pseudocontractive operator. Let δ be a constant such that
0 < δ < 1√

1+L2+1
. Then,

‖S((1− δ)ũ+ δSũ)− u†‖2 ≤ ‖ũ− u†‖2 + (1− δ)‖S((1− δ)ũ+ δSũ)− ũ‖2,

for all ũ ∈ C and u† ∈ Fix(S).

Lemma 2.2 ([44]). Let H be a real Hilbert space, C a closed convex subset of H. Let
S : C → C be a continuous pseudocontractive operator. Then

(i) Fix(S) is a closed convex subset of C,
(ii) S is demi-closed, i.e., un ⇀ ũ and S(un)→ u† imply that S(ũ) = u†

Lemma 2.3 ([30]). Suppose {$n} ⊂ [0,∞), {µn} ⊂ (0, 1) and {%n} are three real number
sequences satisfying
(i) $n+1 ≤ (1− µn)$n + %n, ∀n ≥ 1;
(ii)

∑∞
n=1 µn =∞;

(iii) lim sup
n→∞

%n
µn
≤ 0 or

∑∞
n=1 |%n| <∞.

Then limn→∞$n = 0.

3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H
be a κ-Lipschitz continuous and monotone operator. Let S : C → C be an L-Lipschitz
pseudocontractive operator with L > 1. Let B : C → H be a strongly positive linear
bounded operator with coefficient ξ > 0. Let f : C → H be a ρ-contractive operator.

Next, we present our procedure for solving monotone variational inequality (1) and
fixed point problem of Lipschitz pseudocontractive operator S.

Algorithm 3.1. Let {αn}∞n=0, {βn}∞n=0 and {δn}∞n=0 be three sequences in (0, 1). Let µ > 0,
γ > 0, λ ∈ (0, 1) and τ ∈ (0, 1) be four constants.

Step 1. Set an initial guess x0 ∈ C arbitrarily and let n = 0.
Step 2. For given current sequence xn, compute the iterates yn and zn via the following

form

yn = projC [xn − µλσnAxn], (8)
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and

zn = projC [yn − µλσn(Ayn −Axn)], (9)

where σn ∈ {0, 1, 2, . . .} is the smallest nonnegative integer satisfying

µλσn‖Axn −Ayn‖ ≤ τ‖xn − yn‖. (10)

Step 3. Compute

un = projC [αnγf(xn) + (I − αnB)zn], (11)

and

xn+1 = (1− βn)un + βnS[(1− δn)un + δnSun]. (12)

Set n := n+ 1 and return to step 1.

Remark 3.1. There is an additional assumption with A being κ-Lipschitz continuous.
However, the information of κ is not necessary priority to be known. That is, we need not
to estimate the value of κ.

Lemma 3.1 ([1, 13]). The line rule (10) is well-defined. Especially, min{1, τλ
κµ
} ≤ λσn ≤ 1.

Now, we prove the iterative procedure generated by the above algorithm converges
strongly to a common element in V I(C,A) ∩ Fix(S).

Theorem 3.1. Assume that Ω = V I(C,A)∩Fix(S) 6= ∅. Assume that the involved param-
eters satisfy the following conditions:

(C1): limn→∞ αn = 0 and
∑∞
n=0 αn =∞;

(C2): 0 < ϑ < βn < δn <
1√

1+L2+1
(∀n ≥ 0);

(C3): 0 ≤ ρ < min{ξ/γ, 1}.
Then the sequence {xn} generated by Algorithm 3.1 converges strongly to x∗ = projΩ(I−

B + γf)x∗.

Proof. First, note that the operator projΩ(I−B+γf) is contractive with unique fixed point
denoted by x∗. From (11), we obtain

‖un − x∗‖ = ‖projC [αnγf(xn) + (I − αnB)zn]− x∗‖
≤ ‖αnγ(f(xn)− f(x∗)) + (I − αnB)(zn − x∗)

+ αn(γf(x∗)−Bx∗)‖
≤ αnγ‖f(xn)− f(x∗)‖+ ‖I − αnB‖‖zn − x∗‖

+ αn‖γf(x∗)−Bx∗‖
≤ αnγρ‖xn − x∗‖+ (1− αnξ)‖zn − x∗‖+ αn‖γf(x∗)−Bx∗‖.

(13)

According to (9), we have

‖zn − x∗‖2 = ‖projC [yn − µλσn(Ayn −Axn)]− x∗‖2

≤ ‖yn − x∗ − µλσn(Ayn −Axn)‖2

= ‖yn − x∗‖2 + µ2λ2σn‖Ayn −Axn‖2

− 2µλσn〈Ayn −Axn, yn − x∗〉
= ‖yn − xn‖2 + 2〈yn − xn, xn − x∗〉+ ‖xn − x∗‖2

+ µ2λ2σn‖Ayn −Axn‖2 − 2µλσn〈Ayn −Axn, yn − x∗〉
= ‖xn − x∗‖2 − ‖yn − xn‖2 + µ2λ2σn‖Ayn −Axn‖2

+ 2〈yn − x∗, yn − xn〉 − 2µλσn〈Ayn −Axn, yn − x∗〉.

(14)



Strong convergence of an extragradient algorithm for variational inequality and fixed point problems 7

By (7) and (8), we get

〈xn − µλσnAxn − yn, yn − x∗〉 ≥ 0.

It follows that

〈yn − xn, yn − x∗〉 ≤ −µλσn〈Axn, yn − x∗〉. (15)

In the light of (14), (15) and together with (10), we obtain

‖zn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖yn − xn‖2 − 2µλσn〈yn − x∗, Axn〉
+ µ2λ2σn‖Ayn −Axn‖2 − 2µλσn〈Ayn −Axn, yn − x∗〉
≤ ‖xn − x∗‖2 − (1− τ2)‖yn − xn‖2 − 2µλσn〈yn − x∗, Ax∗〉
− 2µλσn〈yn − x∗, Ayn −Ax∗〉

(16)

By the monotonicity of A, we have 〈yn − x∗, Ayn − Ax∗〉 ≥ 0. Owing to yn ∈ C and
x∗ ∈ V I(C,A), we deduce that 〈yn − x∗, Ax∗〉 ≥ 0. Thus, in view of (16), we obtain

‖zn − x∗‖2 ≤ ‖xn − x∗‖2 − (1− τ2)‖yn − xn‖2

≤ ‖xn − x∗‖2.
(17)

On the basis of (13) and (17), we have

‖un − x∗‖ ≤ [1− (ξ − γρ)αn]‖xn − x∗‖+ αn‖γf(x∗)−Bx∗‖. (18)

Set vn = (1− δn)un + δnSun for all n ≥ 0. Using (6), (12) and Lemma 2.1, we deduce that

‖xn+1 − x∗‖2 = ‖(1− βn)(un − x∗) + βn(Svn − x∗)‖2

= (1− βn)‖un − x∗‖2 − βn(1− βn)‖Svn − un‖2

+ βn‖Svn − x∗‖2

≤ (1− βn)‖un − x∗‖2 − βn(1− βn)‖Svn − un‖2

+ βn(‖un − x∗‖2 + (1− δn)‖un − Svn‖2)

= ‖un − x∗‖2 − βn(δn − βn)‖un − Svn‖2.

(19)

By virtue of (18) and (19), we derive

‖xn+1 − x∗‖ ≤ [1− (ξ − γρ)αn]‖xn − x∗‖+ αn‖γf(x∗)−Bx∗‖
≤ max{‖xn − x∗‖, ‖γf(x∗)−Bx∗‖/(ξ − γρ)}.

(20)

This implies that the sequence {xn} is bounded. Subsequently, the sequences {Axn}, {yn},
{Ayn}, {zn} and {un} are all bounded.

Based on (11) and the firmly-nonexpansivity of projC , we have

‖un − x∗‖2 = ‖projC [αnγf(xn) + (I − αnB)zn]− x∗‖2

≤ 〈αn(γf(xn)−Bx∗) + (I − αnB)(zn − x∗), un − x∗〉
≤ (1− αnξ)‖zn − x∗‖‖un − x∗‖+ αnγρ‖xn − x∗‖‖un − x∗‖

+ αn〈γf(x∗)−Bx∗, un − x∗〉

≤ 1

2
[(1− αnξ)‖zn − x∗‖+ αnγρ‖xn − x∗‖]2 +

1

2
‖un − x∗‖2

+ αn〈γf(x∗)−Bx∗, un − x∗〉.
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It follows that

‖un − x∗‖2 ≤ [(1− αnξ)‖zn − x∗‖+ αnγρ‖xn − x∗‖]2

+ 2αn〈γf(x∗)−Bx∗, un − x∗〉
= (1− αnξ)2‖zn − x∗‖2 + (αnγρ)2‖xn − x∗‖2

+ 2(1− αnξ)αnγρ‖zn − x∗‖‖xn − x∗‖
+ 2αn〈γf(x∗)−Bx∗, un − x∗〉.

This together with (17) implies that

‖un − x∗‖2 ≤ [1− (ξ − γρ)αn]‖xn − x∗‖2 − (1− αnξ)2(1− τ2)‖yn − xn‖2

+ 2αn〈γf(x∗)−Bx∗, un − x∗〉.
(21)

Combining (19) and (21), we get

‖xn+1 − x∗‖2 ≤ [1− (ξ − γρ)αn]‖xn − x∗‖2 + 2αn〈γf(x∗)−Bx∗, un − x∗〉
− βn(δn − βn)‖un − Svn‖2 − (1− αnξ)2(1− τ2)‖yn − xn‖2

= [1− (ξ − γρ)αn]‖xn − x∗‖2 + (ξ − γρ)αn[−βn(δn − βn)

(ξ − γρ)αn

× ‖un − Svn‖2 +
2

ξ − γρ
〈γf(x∗)−Bx∗, un − x∗〉

− (1− αnξ)2(1− τ2)

(ξ − γρ)αn
‖yn − xn‖2].

(22)

Set ηn = ‖xn − z‖2 and

σn = −βn(δn − βn)

(ξ − γρ)αn
‖un − Svn‖2 −

(1− αnξ)2(1− τ2)

(ξ − γρ)αn
‖yn − xn‖2

+
2

ξ − γρ
〈γf(x∗)−Bx∗, un − x∗〉.

(23)

for all n ≥ 0.
By (22) and (23), we obtain

δn+1 ≤ [1− (ξ − γρ)αn]δn + (ξ − γρ)αnσn, n ≥ 0. (24)

Next, we show that lim supn→∞ σn is finite. From (23), we get

σn ≤
2

ξ − γρ
‖f(x∗)−Bx∗‖‖un − x∗‖.

It follows that

lim sup
n→∞

σn < +∞.

Next we prove lim supn→∞ σn ≥ −1 by contradiction. If we assume on the contrary
lim supn→∞ σn < −1, then there exists m0 such that σn ≤ −1 for all n ≥ m0. It then
follows from (24) that

δn+1 ≤ [1− (ξ − γρ)αn]δn − (ξ − γρ)αn

≤ δn − (ξ − γρ)αn

for all n ≥ m0.
By induction, we have

δn+1 ≤ δm0
− (ξ − γρ)

n∑
i=m0

αi. (25)
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By taking lim sup as n→∞ in (25), we have

lim sup
n→∞

δn ≤ δm0
− (ξ − γρ) lim

n→∞

n∑
i=m0

αi = −∞,

which induces a contradiction. So, −1 ≤ lim supn→∞ σn < +∞. Hence, lim supn→∞ σn
exists. Thus, we can take a subsequence {nk} such that

lim sup
n→∞

σn = lim
k→∞

σnk

= lim
k→∞

[
− βnk

(δnk
− βnk

)

(ξ − γρ)αnk

‖unk
− Svnk

‖2

− (1− αnk
ξ)2(1− τ2)

(ξ − γρ)αnk

‖ynk
− xnk

‖2

+
2

ξ − γρ
〈γf(x∗)−Bx∗, unk

− x∗〉
]
.

(26)

Since 〈γf(x∗) − Bx∗, unk
− x∗〉 is a bounded real sequence, without loss of generality, we

may assume limk→∞〈γf(x∗)−Bx∗, unk
− x∗〉 exists. Consequently, from (26), we have

lim
k→∞

−βnk
(δnk

− βnk
)

(ξ − γρ)αnk

‖unk
− Svnk

‖2 exists, (27)

and

lim
k→∞

− (1− αnk
ξ)2(1− τ2)

(ξ − γρ)αnk

‖ynk
− xnk

‖2 exists. (28)

Note that limn→∞ αn = 0, lim infn→∞ βn(δn−βn) > 0 and limn→∞(1−αnξ)2(1−τ2) > 0.
From (27) and (28), we get

lim
k→∞

‖unk
− Svnk

‖ = 0 (29)

and
lim
k→∞

‖ynk
− xnk

‖ = 0. (30)

From (9) and (10), we deduce that

‖zn − yn‖ ≤ µλσn‖Ayn −Axn‖ ≤ τ‖yn − xn‖.

This together with (30) implies that

‖znk
− ynk

‖ → 0. (31)

In accordance with (11), we get

‖un − zn‖ ≤ αn(γ‖f(xn)‖+ ‖Bzn‖)→ 0. (32)

Observe that

‖un − Sun‖ ≤ ‖un − Svn‖+ ‖Svn − Sun‖
≤ ‖un − Svn‖+ L‖vn − un‖
≤ ‖un − Svn‖+ δnL‖un − Sun‖.

It follows that

‖un − Sun‖ ≤
1

1− δnL
‖un − Svn‖. (33)

Combine (29) and (33) to get

lim
k→∞

‖unk
− Sunk

‖ = 0. (34)

It follows that any weak cluster point of {unk
} belongs to Fix(S) by Lemma 2.2.
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At the same time, note that

‖xnk+1 − unk
‖ = βnk

‖unk
− Svnk

‖ → 0.

Hence,

‖unk+1 − unk
‖ → 0. (35)

This implies that any weak cluster point of {unk+1} (and hence {xnk+1}) also belongs to
Fix(S). Without loss of generality, we assume that {unk+1} (and hence {xnk+1}) converges
weakly to x̄ ∈ Ω. Therefore,

lim sup
n→∞

σn ≤ lim
k→∞

2

ξ − γρ
〈γf(x∗)−Bx∗, unk

− x∗〉

=
2

ξ − γρ
〈γf(x∗)−Bx∗, x̄− x∗〉 ≤ 0

due to the fact that x∗ = projΩ(I −B + γf)x∗ and (7).
From (22), we have

‖xn+1 − x∗‖2 ≤ [1− (ξ − γρ)αn]‖xn − x∗‖2

+ (ξ − γρ)αn[
2

ξ − γρ
〈γf(x∗)−Bx∗, un − x∗〉].

(36)

Finally, applying Lemma 2.3 to (36), we get xn → x∗. This completes the proof. �

Algorithm 3.2. Let {αn}∞n=0, {βn}∞n=0 and {δn}∞n=0 be three sequences in (0, 1). Let µ > 0,
γ > 0, λ ∈ (0, 1) and τ ∈ (0, 1) be four constants.

Step 1. Set an initial guess x0 ∈ C arbitrarily and let n = 0.
Step 2. For given current sequence xn, compute the iterates yn and zn via the following

form

yn = projC [xn − µλσnAxn],

and

zn = projC [yn − µλσn(Ayn −Axn)],

where σn ∈ {0, 1, 2, . . .} is the smallest nonnegative integer satisfying

µλσn‖Axn −Ayn‖ ≤ τ‖xn − yn‖.
Step 3. Compute

xn+1 = projC [αnγf(xn) + (I − αnB)zn].

Set n := n+ 1 and return to step 1.

Corollary 3.1. Assume that V I(C,A) 6= ∅. Assume that the involved parameters satisfy
the following conditions:

(C1): limn→∞ αn = 0 and
∑∞
n=0 αn =∞;

(C2): 0 < ϑ < βn < δn <
1√

1+L2+1
(∀n ≥ 0);

(C3): 0 ≤ ρ < min{ξ/γ, 1}.
Then the sequence {xn} generated by Algorithm 3.2 converges strongly to x̃ = projV I(C,A)(I−
B + γf)x̃.

4. Conclusion

We considered fixed point and variational inequality problems in Hilbert spaces. An
extragradient algorithm for finding a common element of the set of fixed points of a pseu-
docontractive operator and the set of solutions of the variational inequality problem is
presented. Strong convergence of the proposed algorithm is proved.
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