

by Wasfi Shatanawi¹, Georgeta Maniu², Anwar Bataihah³ and Feras Bani Ahmad⁴

In this paper we utilize the concept of cyclic form and Ω -distance to derive and prove some common fixed point theorems for self mappings of cyclic form by using the concept of Ω -distance. Our results are extensions on some results on Ω -distance.

Keywords: Common fixed point, cyclic mapping, Omega-distance.

MSC2010: 47H10, 54H25

1. Introduction

In 2006 Mustafa and Sims introduced a new generalization of the usual metric spaces named G-metric spaces and studied some fixed point results: please, see [1]. After that, many authors studied fixed and common fixed point results in complete G-metric spaces: Mustafa and Sims [2]; Aydi et al. [3, 4]; Abbas et al. [5, 6, 7]; Karapinar and Agarwal [8]; Bilgili et al. [9, 10]; Chandok et al. [11]; Pourhadi [12]; Popa and Patriciu [13]; Tu et al. [14]; Thangthong and Charoensawan [15]; Shatanawi [16, 17], Shatanawi and Postolache [18]. But Jleli and Samet [19] and Samet et al. [20] in their clever papers showed that there are some fixed point theorems in the setting of G-metric spaces which can be obtained from well-known fixed point theorems in metric spaces or quasi metric spaces. Thereafter, Karapinar and Agarwal in their interesting paper [8] showed that the smart technique of Samet et al. [19, 20] cannot be used to all contractive conditions. For this instance, they introduced some contractive conditions where the technique of Samet et al. [19, 20] does not work.

In 2010 Saadati et al. [21] introduced the concept of Ω -distance and proved some fixed point results in a complete G-metric space. After that, many authors utilized the concept of Ω -distance in a complete G-metric space to prove some fixed and coupled fixed point results: Gholizadeh et al. [22]; Shatanawi et al. [23, 24, 25]; Gholizadeh [26]. These results cannot be evolved by the technique used in [19, 20]. Recently, many authors proved fixed and common fixed point theorems for mappings of cyclic form in different metric spaces, for example see [27]-[42]. In this paper we utilize the concept of cyclic form and Ω -distance to derive and prove some common fixed point theorems for self mappings of cyclic form by using the concept of Ω -distance.

¹Department of Mathematics, Faculty of Science, Hashemite University, Zarqa, Jordan, Email: swasfi@hu.edu.jo, wshatanawi@yahoo.com; Department of Mathematics and General Courses, Prince Sultan University, Riyadh, Saudi Arabia, E-mail: wshatanawi@psu.edu.sa

²Department of Mathematics and Informatics, University Politehnica of Bucharest, Bucharest, 060042, Romania; Department of Computer Science, Information Technology, Mathematics and Physics, Petroleum-Gas University of Ploieşti, Email: maniugeorgeta@gmail.com

³Department of Mathematics, Faculty of Science, Irbid National University, Irbid, Jordan, Email: anwerbataihah@gmail.com

⁴Department of Mathematics, Faculty of Science, Hashemite University, Zarqa, Jordan, Email: fbaniahmad@hu.edu.jo

2. Preliminaries

Now, we recall the concept of cyclic mappings.

Definition 2.1. Let A and B be two nonempty subsets of a space X. A mapping $T: A \cup B \to A \cup B$ is called cyclic if $T(A) \subseteq B$ and $T(B) \subseteq A$.

The notion of G-metric spaces was given in 2006 by Z. Mustafa and B. Sims [1] as follows:

Definition 2.2 ([1]). Let X be a nonempty set, and let $G: X \times X \times X \to \mathbb{R}^+$ be a function satisfying:

- (G1) G(x, y, z) = 0 if x = y = z;
- (G2) G(x, x, y) > 0 for all $x, y \in X$ with $x \neq y$;
- (G3) $G(x, y, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$;
- (G4) $G(x, y, z) = G(p\{x, y, z\})$, for each permutation of x, y, z (the symmetry);
- (G5) $G(x, y, z) \le G(x, a, a) + G(a, y, z), \quad \forall x, y, z, a \in X$ (the rectangle inequality).

Then the function G is called a *generalized metric space*, or more specifically G-metric on X, and the pair (X, G) is called a G-metric space.

Definition 2.3 ([1]). Let (X, G) be a G-metric space, and let (x_n) be a sequence of points of X. We say that (x_n) is G-convergent to x if for any $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that $G(x, x_n, x_m) < \epsilon$, for all $n, m \ge k$.

Definition 2.4 ([1]). Let (X,G) be a G-metric space. A sequence $(x_n) \subseteq X$ is said to be G-Cauchy if for every $\epsilon > 0$, there exists $k \in N$ such that $G(x_n, x_m, x_l) < \epsilon$ for all $n, m, l \ge k$.

Definition 2.5 ([2]). A G-metric space (X,G) is said to be G-complete or complete G-metric space if every G-Cauchy sequence in (X,G) is G-convergent in (X,G).

In 2010, R. Saadati *et al.* [21] introduced the concept of Ω -distance and prove some fixed point results. The definition of the Ω -distance is given as follows:

Definition 2.6 ([21]). Let (X,G) be a G-metric space. Then a function $\Omega \colon X \times X \times X \to [0,\infty)$ is called an Ω -distance on X if the following conditions are satisfied:

- (a) $\Omega(x, y, z) \leq \Omega(x, a, a) + \Omega(a, y, z), \quad \forall x, y, z, a \in X,$
- (b) for any $x,y\in X$, the functions $\Omega(x,y,\cdot),\ \Omega(x,\cdot,y)\colon X\to X$ are lower semi continuous,
- (c) for each $\epsilon > 0$, there exists $\delta > 0$ such that $\Omega(x, a, a) \leq \delta$ and $\Omega(a, y, z) \leq \delta$ imply $G(x, y, z) \leq \epsilon$.

Definition 2.7 ([21]). Let (X,G) be a G-metric space and Ω be an Ω -distance on X. Then we say that X is Ω -bounded if there exists $M \geq 0$ such that $\Omega(x,y,z) \leq M$ for all $x,y,x \in X$.

- **Lemma 2.1** ([21]). Let X be a metric space endowed with the metric G and Ω be an Ω -distance on X. Let (x_n) , (y_n) be sequences in X, (α_n) , (β_n) be sequences in $[0,\infty)$ converging to zero and let $x, y, z, a \in X$. Then we have the following:
- (1) If $\Omega(y, x_n, x_n) \leq \alpha_n$ and $\Omega(x_n, y, z) \leq \beta_n$ for $n \in \mathbb{N}$ then $G(y, y, z) < \epsilon$ and hence y = z;
- (2) If $\Omega(y_n, x_n, x_n) \leq \alpha_n$ and $\Omega(x_n, y_m, z) \leq \beta_n$ for any $m > n \in \mathbb{N}$, then $G(y_n, y_m, z) \rightarrow 0$ and hence $y_n \rightarrow z$;
- (3) If $\Omega(x_n, x_m, x_l) \leq \alpha_n$ for any $m, n, l \in \mathbb{N}$ with $n \leq m \leq l$, then (x_n) is a G-Cauchy sequence;
 - (4) If $\Omega(x_n, a, a) \leq \alpha_n$ for any $n \in \mathbb{N}$, then (x_n) is a G-Cauchy sequence.

3. Main Results

We start with the following result.

Theorem 3.1. Let (X,G) be a complete G-metric space and Ω be an Ω -distance on X such that X is Ω -bounded. Let A and B be two nonempty closed subsets of X with respect to the topology induced by G with $X = A \cup B$ and $A \cap B \neq \phi$. Suppose that $f,g: A \cup B \to A \cup B$ are two mappings such that $f(A) \subseteq B$ and $g(B) \subseteq A$, and suppose that there exists $r \in [0, \frac{1}{2})$ such that the following conditions hold true

$$\Omega(fx,gfx,gy) \le r \left[\Omega(x,fx,fx) + \Omega(y,gy,gy) \right] \ \forall x \in A \ and \ \forall y \in B, \tag{3.1}$$

$$\Omega(gx, fgx, fy) \le r \left[\Omega(x, gx, gx) + \Omega(y, fy, fy) \right] \, \forall y \in A \, and \, \forall x \in B, \tag{3.2}$$

$$\Omega(fx, gfx, fy) \le r \left[\Omega(x, fx, fx) + \Omega(y, fy, fy) \right] \, \forall x, y \in A, \tag{3.3}$$

and

$$\Omega(gx, fgx, gy) \le r \left[\Omega(x, gx, gx) + \Omega(y, gy, gy) \right] \, \forall x, y \in B.$$
 (3.4)

If f and g are continuous, then f and g have a unique common fixed point in $A \cap B$.

Proof. Let $x_0 \in A$. Since $f(A) \subseteq B$, then $fx_0 = x_1 \in B$. Also, since $g(B) \subseteq A$, then $gx_1 = x_2 \in A$. Continuing this process we obtain a sequence (x_n) in X such that $fx_{2n} = x_{2n+1}$, $x_{2n} \in A$, $gx_{2n+1} = x_{2n+2}$ and $x_{2n+1} \in B$, $n \in \mathbb{N} \cup \{0\}$.

First, since X is Ω -bounded, then there exists $M \geq 0$ such that

$$\Omega(x, y, z) \le M \ \forall x, y, z \in X.$$

Now, our claim is to show that $\Omega(x_n, x_{n+1}, x_{n+s}) \leq q^{n-1} M \ \forall n, s \in \mathbb{N}$, where $q = \frac{r}{1-r}$.

Let $n, s \in \mathbb{N}$. Then we have four cases:

Case 1: n is even and s is even. Therefore n = 2t for some $t \in \mathbb{N}$. By (3.4), we have

$$\Omega(x_n, x_{n+1}, x_{n+s}) = \Omega(x_{2t}, x_{2t+1}, x_{2t+s})
= \Omega(gx_{2t-1}, fgx_{2t-1}, gx_{2t+s-1})
\leq r \left[\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s})\right].$$
(3.5)

Also, by (3.1), we get

$$\begin{split} &\Omega(x_{2t-1},x_{2t},x_{2t}) + \Omega(x_{2t+s-1},x_{2t+s},x_{2t+s}) \\ &= \Omega(fx_{2t-2},gfx_{2t-2},gx_{2t-1}) + \Omega(fx_{2t+s-2},gfx_{2t+s-2},gx_{2t+s-1}) \\ &\leq r \left[\Omega(x_{2t-2},x_{2t-1},x_{2t-1}) + \Omega(x_{2t-1},x_{2t},x_{2t})\right] \\ &+ r \left[\Omega(x_{2t+s-2},x_{2t+s-1},x_{2t+s-1}) + \Omega(x_{2t+s-1},x_{2t+s},x_{2t+s})\right]. \end{split}$$

Therefore

$$\begin{split} &\Omega(x_{2t-1},x_{2t},x_{2t}) + \Omega(x_{2t+s-1},x_{2t+s},x_{2t+s}) \\ &\leq \frac{r}{1-r} \left[\Omega(x_{2t-2},x_{2t-1},x_{2t-1}) + \Omega(x_{2t+s-2},x_{2t+s-1},x_{2t+s-1}) \right] \\ &\leq q \left[\Omega(x_{2t-2},x_{2t-1},x_{2t-1}) + \Omega(x_{2t+s-2},x_{2t+s-1},x_{2t+s-1}) \right]. \end{split}$$

By applying the previous steps repeatedly we get

$$\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s}) \le q^{n-1} \left[\Omega(x_0, x_1, x_1) + \Omega(x_s, x_{s+1}, x_{s+1}) \right].$$

Since X is Ω -bounded, then $\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s}) \leq 2q^{n-1}M$. Having in mind that $r < \frac{1}{2}$, then the inequality (3.5) becomes

$$\Omega(x_n, x_{n+1}, x_{n+s}) \le q^{n-1}M.$$
 (3.6)

Case 2: n is odd, s is even. Therefore n=2t+1 for some $t\in\mathbb{N}\cup\{0\}$. By (3.3), we get

$$\Omega(x_n, x_{n+1}, x_{n+s}) = \Omega(x_{2t+1}, x_{2t+2}, x_{2t+s+1})
= \Omega(fx_{2t}, gfx_{2t}, fx_{2t+s})
\leq r \left[\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1})\right]. \quad (3.7)$$

By (3.2), we obtain

$$\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1})
= \Omega(gx_{2t-1}, fgx_{2t-1}, fx_{2t}) + \Omega(gx_{2t+s-1}, fgx_{2t+s-1}, fx_{2t+s})
\leq r \left[\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t}, x_{2t+1}, x_{2t+1})\right]
+ r \left[\Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1})\right].$$

Therefore

$$\begin{split} &\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1}) \\ &\leq \frac{r}{1-r} \left[\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s}) \right] \\ &\leq q \left[\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s}) \right]. \end{split}$$

Hence, by applying the previous steps repeatedly we get

$$\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1}) \le q^{n-1} \left[\Omega(x_0, x_1, x_1) + \Omega(x_s, x_{s+1}, x_{s+1})\right].$$

Since X is Ω -bounded then $\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1}) \leq 2q^{n-1}M$. But $r < \frac{1}{2}$, then the inequality (3.7) becomes

$$\Omega(x_n, x_{n+1}, x_{n+s}) \le q^{n-1}M.$$

Case 3: n is even, and s is odd. Therefore n=2t for some $t\in\mathbb{N}$. By (3.2), we have

$$\Omega(x_n, x_{n+1}, x_{n+s}) = \Omega(x_{2t}, x_{2t+1}, x_{2t+s})
= \Omega(gx_{2t-1}, fgx_{2t-1}, fx_{2t+s-1})
< r[\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s})].$$
(3.8)

By (3.1) and (3.2), we obtain

$$\begin{split} &\Omega(x_{2t-1},x_{2t},x_{2t}) + \Omega(x_{2t+s-1},x_{2t+s},x_{2t+s}) \\ &= \Omega(fx_{2t-2},gfx_{2t-2},gx_{2t-1}) + \Omega(gx_{2t+s-2},fgx_{2t+s-2},fx_{2t+s-1}) \\ &\leq r \left[\Omega(x_{2t-2},x_{2t-1},x_{2t-1}) + \Omega(x_{2t-1},x_{2t},x_{2t})\right] \\ &+ r \left[\Omega(x_{2t+s-2},x_{2t+s-1},x_{2t+s-1}) + \Omega(x_{2t+s-1},x_{2t+s},x_{2t+s})\right]. \end{split}$$

Therefore

$$\begin{split} &\Omega(x_{2t-1},x_{2t},x_{2t}) + \Omega(x_{2t+s-1},x_{2t+s},x_{2t+s}) \\ &\leq \frac{r}{1-r} \left[\Omega(x_{2t-2},x_{2t-1},x_{2t-1}) + \Omega(x_{2t+s-2},x_{2t+s-1},x_{2t+s-1}) \right] \\ &\leq q \left[\Omega(x_{2t-2},x_{2t-1},x_{2t-1}) + \Omega(x_{2t+s-2},x_{2t+s-1},x_{2t+s-1}) \right]. \end{split}$$

By applying the previous steps repeatedly we get

$$\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s}) \le q^{n-1} \left[\Omega(x_0, x_1, x_1) + \Omega(x_s, x_{s+1}, x_{s+1}) \right].$$

Since X is Ω -bounded, then $\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s}) \leq 2q^{n-1}M$. But $r < \frac{1}{2}$, so the inequality (3.8) becomes

$$\Omega(x_n, x_{n+1}, x_{n+s}) \le q^{n-1}M.$$

Case 4: n is odd, s is odd. Therefore n=2t+1 for some $t\in\mathbb{N}\cup\{0\}$. By (3.1), we get

$$\Omega(x_n, x_{n+1}, x_{n+s}) = \Omega(x_{2t+1}, x_{2t+2}, x_{2t+s+1})
= \Omega(fx_{2t}, gfx_{2t}, gx_{2t+s})
\leq r \left[\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1})\right]. \quad (3.9)$$

By (3.1) and (3.2), we have

$$\begin{split} &\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1}) \\ &= \Omega(gx_{2t-1}, fgx_{2t-1}, fx_{2t}) + \Omega(fx_{2t+s-1}, gfx_{2t+s-1}, gx_{2t+s}) \\ &\leq r \left[\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t}, x_{2t+1}, x_{2t+1})\right] \\ &+ r \left[\Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1})\right]. \end{split}$$

So

$$\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1})
\leq \frac{r}{1-r} \left[\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s}) \right]
\leq q \left[\Omega(x_{2t-1}, x_{2t}, x_{2t}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t+s}) \right].$$

By applying the previous steps repeatedly we get

$$\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1}) \le q^{n-1} \left[\Omega(x_0, x_1, x_1) + \Omega(x_s, x_{s+1}, x_{s+1}) \right].$$

But X is Ω -bounded. Then $\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1}) \leq 2q^{n-1}M$. Since $r < \frac{1}{2}$, then inequality (3.9) becomes

$$\Omega(x_n, x_{n+1}, x_{n+s}) \le q^{n-1}M.$$

Thus in all cases we have

$$\Omega(x_n, x_{n+1}, x_{n+s}) \le q^{n-1}M, \quad \forall n, s \in \mathbb{N}. \tag{3.10}$$

Now, for all l > m > n, we have

$$\Omega(x_n, x_m, x_l) \leq \Omega(x_n, x_{n+1}, x_{n+1}) + \Omega(x_{n+1}, x_{n+2}, x_{n+2}) + \dots + \Omega(x_{m-1}, x_m, x_l)
\leq q^{n-1}M + q^nM + \dots + q^{m-2}M
\leq \frac{q^{n-1}}{1-q}M.$$

Thus by Lemma 2.1 (x_n) is a G-Cauchy sequence. Therefore, there exists $u \in X$ such that (x_n) is G-convergent to u. Since (x_n) G-converges to u, then each subsequence of (x_n) also G-converges to u. So the subsequences $(x_{2n+1}) = (fx_{2n})$ and $(x_{2n+2}) = (gx_{2n+1})$ are G-convergent to u.

First, suppose that f is continuous. Then $\lim_{n\to\infty} fx_{2n} = fu$ and $\lim_{n\to\infty} x_{2n+1} = u$, by uniqueness of the limit we have fu = u.

Second, suppose that g is continuous. Then $\lim_{n\to\infty} gx_{2n+1} = gu$ and $\lim_{n\to\infty} x_{2n+2} = u$, by uniqueness of the limit we have gu = u.

Since $(x_{2n}) \subseteq A$ and A is closed, then $u \in A$. Also, since $(x_{2n+1}) \subseteq B$ and B is closed, then $u \in B$. Hence u is a common fixed point for f and g in $A \cap B$.

Now, we prove the uniqueness.

First, we show that if w = fw = gw, then $\Omega(w, w, w) = 0$. By (3.1), we have

$$\begin{split} \Omega(w,w,w) &= \Omega(fw,gfw,gw) & \leq & r \left[\Omega(w,w,w) + \Omega(w,w,w) \right] \\ & \leq & 2r\Omega(w,w,w). \end{split}$$

Since $r < \frac{1}{2}$, then $\Omega(w, w, w) = 0$.

Now, let $v \in X$ be another common fixed point for f and g. Then by (3.1), we get

$$\Omega(v, v, u) = \Omega(fv, gfv, gu) \le r \left[\Omega(v, v, v) + \Omega(u, u, u) \right].$$

Since v = fv = gv and u = fu = gu, then $\Omega(v, v, v) = \Omega(u, u, u) = 0$. Therefore $\Omega(v, v, u) = 0$. Thus by the definition of Ω -distance we have G(v, v, u) = 0. Hence u = v.

If we choose X = A = B in Theorem 3.1, then we have the following result

Corollary 3.1. Let (X,G) be a complete G-metric space and Ω be an Ω -distance on X such that X is Ω -bounded. Suppose that $f,g\colon X\to X$ be two mappings. Suppose that there exists $r\in[0,\frac{1}{2})$ such that the following conditions hold true

$$\begin{split} &\Omega(fx,gfx,gy) \leq r \left[\Omega(x,fx,fx) + \Omega(y,gy,gy) \right] \, \forall x,y \in X, \\ &\Omega(gx,fgx,fy) \leq r \left[\Omega(x,gx,gx) + \Omega(y,fy,fy) \right] \, \forall x,y \in X, \\ &\Omega(fx,gfx,fy) \leq r \left[\Omega(x,fx,fx) + \Omega(y,fy,fy) \right] \, \forall x,y \in X, \end{split}$$

and

$$\Omega(gx, fgx, gy) \le r \left[\Omega(x, gx, gx) + \Omega(y, gy, gy)\right] \, \forall x, y \in X.$$

If f or g is continuous, then f and g have a unique common fixed point in X.

If we replace g by f in Theorem 3.1, we get the following result.

Corollary 3.2. Let (X,G) be a complete G-metric space and Ω be an Ω -distance on X such that X is Ω -bounded. Let A and B be two nonempty closed subsets of X with respect to the topology induced by G with $X = A \cup B$ and $A \cap B \neq \phi$. Suppose that $f: A \cup B \to A \cup B$ is a cyclic mapping. Also, assume that there exists $r \in [0, \frac{1}{2})$ such that the following condition hold true

$$\Omega(fx, f^2x, fy) \le r \left[\Omega(x, fx, fx) + \Omega(y, fy, fy) \right] \, \forall x, y \in A \cup B.$$

If f is continuous, then f has a unique fixed point in $A \cap B$.

By modifying the contractive condition in Theorem 3.1, we get the following result

Theorem 3.2. Let (X,G) be a complete G-metric space and Ω be an Ω -distance on X such that X is Ω -bounded. Let A and B be two nonempty closed subsets of X with $X = A \cup B$. Suppose that $f,g:A \cup B \to A \cup B$ be two mappings such that $f(A) \subseteq B$ and $g(B) \subseteq A$, and suppose that the following conditions hold true

$$\Omega(fx, gfx, gy) \le r \left[\Omega(x, fx, y) + \Omega(y, gy, x) \right], \forall x \in A, \ and \ \forall y \in B,$$
 (3.11)

$$\Omega(fx, gfx, fy) \le r \left[\Omega(x, fx, y) + \Omega(y, fy, x) \right], \forall x, y \in A, \tag{3.12}$$

$$\Omega(gx, fgx, fy) \le r \left[\Omega(x, gx, y) + \Omega(y, fy, x) \right], \forall y \in A, \ and \ \forall x \in B,$$
 (3.13)

and

$$\Omega(gx, fgx, gy) \le r \left[\Omega(x, gx, y) + \Omega(y, gy, x) \right], \, \forall x, y \in B.$$
 (3.14)

If f and g are continuous, then f and g have a unique common fixed point in $A \cap B$.

Proof. Let $x_0 \in A$. Since $f(A) \subseteq B$, then $fx_0 = x_1 \in B$. Also, since $g(B) \subseteq A$, then $gx_1 = x_2 \in A$. Continuing this way we obtain a sequence (x_n) in X such that $fx_{2n} = x_{2n+1}$, $x_{2n} \in A$, $gx_{2n+1} = x_{2n+2}$ and $x_{2n+1} \in B$, $n \in \mathbb{N} \cup \{0\}$.

Since X is Ω -bounded, then there exists $M \geq 0$ such that $\Omega(x,y,z) \leq M$, for all $x,y,z \in X$.

Now, our aim is to show that $\Omega(x_n, x_{n+1}, x_{n+s}) \leq (2r)^n M$.

Let $n, s \in \mathbb{N}$. Then we have four cases:

Case 1: n is even and s is even, therefore n=2t for some $t\in\mathbb{N}$. By (3.14), we have

$$\Omega(x_n, x_{n+1}, x_{n+s}) = \Omega(x_{2t}, x_{2t+1}, x_{2t+s})
= \Omega(gx_{2t-1}, fgx_{2t-1}, gx_{2t+s-1})
\leq r \left[\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1})\right]. (3.15)$$

Also, by (3.12), we get

$$\begin{split} &\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1}) \\ &= \Omega(fx_{2t-2}, gfx_{2t-2}, fx_{2t+s-2}) + \Omega(fx_{2t+s-2}, gfx_{2t+s-2}, fx_{2t-2}) \\ &\leq r \left[\Omega(x_{2t-2}, x_{2t-1}, x_{2t+s-2}) + \Omega(x_{2t+s-2}, x_{2t+s-1}, x_{2t-2})\right] \\ &+ r \left[\Omega(x_{2t+s-2}, x_{2t+s-1}, x_{2t-2}) + \Omega(x_{2t-2}, x_{2t-1}, x_{2t+s-2})\right] \\ &\leq 2r \left[\Omega(x_{2t-2}, x_{2t-1}, x_{2t+s-2}) + \Omega(x_{2t+s-2}, x_{2t+s-1}, x_{2t-2})\right]. \end{split}$$

Hence by applying the previous steps repeatedly, we get

$$\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1}) \le (2r)^{n-1} \left[\Omega(x_0, x_1, x_s) + \Omega(x_s, x_{s+1}, x_0)\right].$$

Since X is Ω -bounded, then $\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1}) \leq 2M(2r)^{n-1}$. Thus inequality (3.15) becomes $\Omega(x_n, x_{n+1}, x_{n+s}) \leq (2r)^n M$.

Case 2: n is odd, s is even, therefore n=2t+1 for some $t\in\mathbb{N}\cup\{0\}$. From (3.12), we get

$$\Omega(x_n, x_{n+1}, x_{n+s}) = \Omega(x_{2t+1}, x_{2t+2}, x_{2t+s+1})
= \Omega(fx_{2t}, gfx_{2t}, fx_{2t+s})
\leq r \left[\Omega(x_{2t}, x_{2t+1}, x_{2t+s}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t})\right].$$
(3.16)

Also, by (3.14), we get

$$\begin{split} &\Omega(x_{2t}, x_{2t+1}, x_{2t+s}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t}) \\ &= \Omega(gx_{2t-1}, fgx_{2t-1}, gx_{2t+s-1}) + \Omega(gx_{2t+s-1}, fgx_{2t+s-1}, gx_{2t-1}) \\ &\leq r \left[\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1}) \right] \\ &+ r \left[\Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1}) + \Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) \right] \\ &\leq 2r \left[\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1}) \right]. \end{split}$$

Hence by applying the previous steps repeatedly, we get

 $\Omega(x_{2t}, x_{2t+1}, x_{2t+s}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t}) \leq (2r)^{n-1} [\Omega(x_0, x_1, x_s) + \Omega(x_s, x_{s+1}, x_0)].$ Since X in Ω -bounded, then $\Omega(x_{2t}, x_{2t+1}, x_{2t+1}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t+s+1}) \leq 2M(2r)^{n-1}.$ Thus inequality (3.16) becomes

$$\Omega(x_n, x_{n+1}, x_{n+s}) \le (2r)^n M.$$

Case 3: n is even, s is odd, therefore n = 2t for some $t \in \mathbb{N}$. By (3.13), we get

$$\Omega(x_n, x_{n+1}, x_{n+s}) = \Omega(x_{2t}, x_{2t+1}, x_{2t+s})
= \Omega(gx_{2t-1}, fgx_{2t-1}, fx_{2t+s-1})
\leq r \left[\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1})\right]. (3.17)$$

Also, by (3.11) and (3.13), we get

$$\begin{split} &\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1}) \\ &= \Omega(fx_{2t-2}, gfx_{2t-2}, gx_{2t+s-2}) + \Omega(gx_{2t+s-2}, fgx_{2t+s-2}, fx_{2t-2}) \\ &\leq r \left[\Omega(x_{2t-2}, x_{2t-1}, x_{2t+s-2}) + \Omega(x_{2t+s-2}, x_{2t+s-1}, x_{2t-2})\right] \\ &+ r \left[\Omega(x_{2t+s-2}, x_{2t+s-1}, x_{2t-2}) + \Omega(x_{2t-2}, x_{2t-1}, x_{2t+s-2})\right] \\ &\leq 2r \left[\Omega(x_{2t-2}, x_{2t-1}, x_{2t+s-2}) + \Omega(x_{2t+s-2}, x_{2t+s-1}, x_{2t-2})\right]. \end{split}$$

Hence by applying the previous steps repeatedly, we obtain

$$\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1}) \le (2r)^{n-1} \left[\Omega(x_0, x_1, x_s) + \Omega(x_s, x_{s+1}, x_0)\right].$$

Since X is Ω -bounded, then $\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1}) \leq 2M(2r)^{n-1}$. Thus inequality (3.17) becomes $\Omega(x_n, x_{n+1}, x_{n+s}) \leq (2r)^n M$.

Case 4: n is odd, s is odd, therefore n=2t+1 for some $t\in\mathbb{N}\cup\{0\}$. From (3.11), we get

$$\Omega(x_{n}, x_{n+1}, x_{n+s}) = \Omega(x_{2t+1}, x_{2t+2}, x_{2t+s+1})
= \Omega(fx_{2t}, gfx_{2t}, gx_{2t+s})
\leq r \left[\Omega(x_{2t}, x_{2t+1}, x_{2t+s}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t})\right].$$
(3.18)

Also, by (3.11) and (3.13), we have

$$\begin{split} &\Omega(x_{2t}, x_{2t+1}, x_{2t+s}) + \Omega(x_{2t+s}, x_{2t+s+1}, x_{2t}) \\ &= \Omega(gx_{2t-1}, fgx_{2t-1}, fx_{2t+s-1}) + \Omega(fx_{2t+s-1}, gfx_{2t+s-1}, gx_{2t-1}) \\ &\leq r \left[\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1})\right] \\ &+ r \left[\Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1}) + \Omega(x_{2t-1}, x_{2t}, x_{2t+s-1})\right] \\ &\leq 2r \left[\Omega(x_{2t-1}, x_{2t}, x_{2t+s-1}) + \Omega(x_{2t+s-1}, x_{2t+s}, x_{2t-1})\right]. \end{split}$$

Hence by applying the previous steps repeatedly, we get

$$\begin{split} &\Omega(x_{2t},x_{2t+1},x_{2t+s}) + \Omega(x_{2t+s},x_{2t+s+1},x_{2t}) \leq (2r)^{n-1} \left[\Omega(x_0,x_1,x_s) + \Omega(x_s,x_{s+1},x_0)\right]. \\ &\text{Since X is Ω-bounded, then } &\Omega(x_{2t},x_{2t+1},x_{2t+1}) + \Omega(x_{2t+s},x_{2t+s+1},x_{2t+s+1}) \leq 2M(2r)^{n-1}. \end{split}$$

Thus inequality (3.18) becomes $\Omega(x_n, x_{n+1}, x_{n+s}) \leq (2r)^n M$.

Hence in all cases we have

$$\Omega(x_n, x_{n+1}, x_{n+s}) \le (2r)^n M, \forall n, s \in \mathbb{N}.$$

Now $\forall l \geq m \geq n$, we get

$$\Omega(x_n, x_m, x_l) \leq \Omega(x_n, x_{n+1}, x_{n+1}) + \Omega(x_{n+1}, x_{n+2}, x_{n+2}) + \dots + \Omega(x_{m-1}, x_m, x_l)
\leq (2r)^n M + (2r)^{n+1} M + \dots + (2r)^{m-1} M
\leq \frac{(2r)^n}{1 - (2r)} M.$$

Hence by Lemma 2.1, (x_n) is a G-Cauchy sequence. Therefore there exists $u \in X$ such that (x_n) is G-convergent to u. Since (x_n) G-converges to u, then each subsequence of (x_n) also G-converges to u. Therefore the subsequences $(x_{2n+1}) = (fx_{2n})$ and $(x_{2n+2}) = (gx_{2n+1})$ are G-converge to u.

First, suppose that f is continuous. Then $\lim_{n\to\infty} x_{2n+1} = u$ and $\lim_{n\to\infty} fx_{2n} = fu$, by uniqueness of the limit we have fu = u.

Second, suppose that g is continuous. Then $\lim_{n\to\infty} x_{2n+2} = u$ and $\lim_{n\to\infty} gx_{2n+1} = fu$, by uniqueness of the limit we have gu = u.

Since $(x_{2n}) \subseteq A$ and $(x_{2n+1}) \subseteq B$, and both A and B closed, then $u \in A \cap B$. Hence u is a common fixed point for f and g in $A \cap B$.

To prove the uniqueness, let $v \in X$ be an other common fixed point of f and g; that is v = fv = gv. Then by (3.11), we get

$$\begin{split} \Omega(v,v,v) &= \Omega(fv,gfv,gv) & \leq & r \left[\left. \Omega(v,v,v) + \Omega(v,v,v) \right. \right] \\ & \leq & \frac{r}{1-r} \Omega(v,v,v). \end{split}$$

Since $r < \frac{1}{2}$, then $\Omega(v, v, v) = 0$.

Again, by (3.11), we get

$$\begin{split} \Omega(v,v,u) &= \Omega(fv,gfv,gu) & \leq & r \left[\left. \Omega(v,v,u) + \Omega(u,u,v) \right. \right] \\ & \leq & \frac{r}{1-r} \Omega(u,u,v). \end{split}$$

Also, by (3.11) we get

$$\begin{array}{lcl} \Omega(u,u,v) & \leq & r \left[\, \Omega(u,u,v) + \Omega(v,v,u) \, \right] \\ & \leq & \frac{r}{1-r} \Omega(v,v,u). \end{array}$$

Since $r < \frac{1}{2}$, then $\Omega(u, u, v) = \Omega(v, v, u) = 0$. Hence by the definition of Ω -distance we have G(v, v, u) = 0. Thus u = v.

REFERENCES

- Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2006), No. 2, 289-297
- [2] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Hindawi Publishing Co. 2009, ID 917175, 10 pages
- [3] H. Aydi, W. Shatanawi, G. Vetro, On generalized weakly G-contraction mapping in G-metric spaces, Comput. Math. Appl. 62(2011), 4222-4229
- [4] H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for (psi,phi)-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl. 63(2012), No. 1, 298-309.
- [5] M. Abbas, B.E. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. 215(2009), 262-269
- [6] M. Abbas, T. Nazir, S. Radenovic, Some periodic point results in generalized metric spaces, Appl. Math. Comput. 217(2010), No. 8, 4094-4099
- [7] M. Abbas, A.R. Khan, T. Nazir, Coupled common fixed point results in two generalized metric spaces, Appl. Math. Comput. 217(2011), No. 13, 6328-6336
- [8] E. Karapinar, R.P. Agarwal, Further fixed point results on G-metric spaces, Fixed Point Theory Appl. Vol. 2013, Art. No. 154
- [9] N. Bilgili, I.M. Erhan, E. Karapinar, D. Turkoglu, Cyclic contractions and related fixed point theorems on G-metric spaces, Appl. Math. Inf. Sci. Vol. 2014, 1541-1551
- [10] N. Bilgili, E. Karapinar, Cyclic contractions via auxiliary functions on G-metric spaces, Fixed Point Theory Appl. Vol. 2013, Art. No. 49
- [11] S. Chandok, Z. Mustafa, M. Postolache, Coupled common fixed point theorems for mixed g-monotone mappings in partially ordered G-metric spaces, U. Politeh. Buch. Ser. A, 75(2013), No. 4, 13-26.
- [12] E. Pourhadi, A criterion for the completeness of G-metric spaces, J. Adv. Math. Stud. 9(2016), No. 3, 401-404
- [13] V. Popa, A.M. Patriciu, A general fixed point theorem for mappings satisfying a new type of implicit relation in complete G-metric spaces, J. Adv. Math. Stud. 8(2015), No. 2, 291-297
- [14] Q. Tu, C. Zhu, Z. Wu, Menger-Hausdroff metric and common fixed point theorem in Menger probabilistic G-metric spaces, Fixed Point Theory Appl. Vol. 2015, Art. No. 130
- [15] C. Thangthong, P. Charoensawan, Coupled coincidence point theorem for a Φ-contractive mapping without mixed g-montone property, Fixed Point Theory Appl. Vol. 2014, Art. No. 28
- [16] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point Theory Appl. Vol. 2010, Art. No. 181650
- [17] W. Shatanawi, Some fixed point theorems in orderd G-metric spaces and applications, Fixed Point Theory Appl. Vol. 2011, Art. No. 126205
- [18] W. Shatanawi, M. Postolache, Some fixed point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal. Vol. 2012, ID: 815870
- [19] M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl. Vol. 2012, Art. No. 210
- [20] B. Samet, C. Vetro, F. Vetro, Remarks on G-metric spaces, Int. J. Anal. Vol. 2013, Art. No. 917158 (2013)
- [21] R. Saadati, S.M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Mathematical Comput. Modeling 52(2010), 797-801
- [22] L. Gholizadeh, R. Saadati, W. Shatanawi, S.M. Vaezpour, Contractive mapping in generalized, ordered metric spaces with application in integral equations, Math. Probl. Eng., 2011 (2011), 14 pages.
- [23] W. Shatanawi, A. Pitea, Omega-distance and coupled fixed point theorems in G-metric spaces, Fixed Point Theory Appl. Vol. 2013, Art. No. 208
- [24] W. Shatanawi, A. Bataihah, A. Pitea, Fixed and common fixed point results for cyclic mappings of Omega-distance, J. Nonlinear Sci. Appl. 9(2016), 727-735
- [25] W. Shatanawi, A. Pitea, Fixed and coupled fixed point theorems of omega distance for nonlinear contraction, Fixed Point Theory Appl. Vol. 2013, Art. No. 275
- [26] L. Gholizadeh, A fixed point theorem in generalized ordered metric spaces with application, J. Nonlinear Sci. Appl. 6(2013), 244-251
- [27] M.A. Al-Thafai, N. Shahzad, Convergence and existence for best proximity points, Nonlinear Anal. 70(2009) 3665-3671.
- [28] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory Appl. Vol. 2012, Art. No. 40
- [29] S. Chandok, M. Postolache, Fixed point theorem for weakly Chatterjea-type cyclic contractions, Fixed Point Theory Appl. Vol. 2013, Art. No. 28
- [30] A.A. Eldered, P. Veeramani, Proximal pointwise contraction, Topology Appl. 156(2009) 2942-2948

- [31] A.A. Eldered, P. Veeramani, Convergence and existence for best proximity points, J. Math. Anal. Appl. 323(2006) 1001-1006.
- [32] E. Karapinar, I.M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci. 5(2011) 342-353
- [33] E. Karapinar, I.M. Erhan, A.Y. Ulus, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf. Sci. 6(2012), 239-244
- [34] S. Karpagam, S. Agarwal, Best proximity points for cyclic Meir-Keeler contraction maps, Nonlinear Anal. 74(2011), 1040-1046
- [35] W.A. Kirk, S. Reich, P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24(2003), 851-862
- [36] G. Petruşel, Cyclic representations and periodic points, Studia Univ. Babes-Bolyai Math. 50(2005), 107-112
- [37] M. Păcurar, I.A. Rus, Fixed point theory for cyclic ϕ -contractions, Nonlinear Anal. 72(2010), 1181-1187
- [38] M.A. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. 70(2009), 3665-3671
- [39] V. Sankar Raj, P. Veeramani, Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol. 10(2009), 21-28
- [40] W. Shatanawi, S. Manro, Fixed point results for cyclic (ϕ, ψ, A, B) -contraction in partial metric spaces, Fixed Point Theory Appl. Vol. 2012, Art. No. 165
- [41] W. Shatanawi, M. Postolache, Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory Appl. Vol. 2013, Art. No. 60
- [42] C. Vetro, Best proximity points, convergence and existence theorems for p-cyclic mappings, Nonlinear Anl. 73(2010), 2283-2291