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In this paper we utilize the concept of cyclic form and Q-distance to derive and
prove some common fized point theorems for self mappings of cyclic form by using the
concept of Q-distance. Our results are extensions on some results on Q-distance.
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1. Introduction

In 2006 Mustafa and Sims introduced a new generalization of the usual metric spaces
named G-metric spaces and studied some fixed point results: please, see [1]. After that,
many authors studied fixed and common fixed point results in complete G-metric spaces:
Mustafa and Sims [2]; Aydi et al. [3, 4]; Abbas et al. [5, 6, 7]; Karapinar and Agarwal
[8]; Bilgili et al. [9, 10]; Chandok et al. [11]; Pourhadi [12]; Popa and Patriciu [13]; Tu et
al. [14]; Thangthong and Charoensawan [15]; Shatanawi [16, 17], Shatanawi and Postolache
[18]. But Jleli and Samet [19] and Samet et al. [20] in their clever papers showed that
there are some fixed point theorems in the setting of G-metric spaces which can be obtained
from well-known fixed point theorems in metric spaces or quasi metric spaces. Thereafter,
Karapinar and Agarwal in their interesting paper [8] showed that the smart technique of
Samet et al. [19, 20] cannot be used to all contractive conditions. For this instance, they
introduced some contractive conditions where the technique of Samet et al. [19, 20] does
not work.

In 2010 Saadati et al. [21] introduced the concept of 2-distance and proved some fixed
point results in a complete G-metric space. After that, many authors utilized the concept
of Q-distance in a complete G-metric space to prove some fixed and coupled fixed point
results: Gholizadeh et al. [22]; Shatanawi et al. [23, 24, 25]; Gholizadeh [26]. These results
cannot be evolved by the technique used in [19, 20]. Recently, many authors proved fixed
and common fixed point theorems for mappings of cyclic form in different metric spaces,
for example see [27]-[42]. In this paper we utilize the concept of cyclic form and §2-distance
to derive and prove some common fixed point theorems for self mappings of cyclic form by
using the concept of Q-distance.

IDepartment of Mathematics, Faculty of Science, Hashemite University, Zarqa, Jordan, Email:
swasfi@hu.edu.jo, wshatanawi@yahoo.com; Department of Mathematics and General Courses, Prince Sul-

tan University, Riyadh, Saudi Arabia, E-mail: wshatanawi@psu.edu.sa
2Department of Mathematics and Informatics, University Politehnica of Bucharest, Bucharest, 060042,

Romania; Department of Computer Science, Information Technology, Mathematics and Physics, Petroleum-

Gas University of Ploiesti, Email: maniugeorgeta@gmail.com
3Department of Mathematics, Faculty of Science, Irbid National University, Irbid, Jordan, Email:

anwerbataihah@gmail.com
4Department of Mathematics, Faculty of Science, Hashemite University, Zarqa, Jordan, Email:

fbaniahmad@hu.edu. jo

11



12 Wasfi Shatanawi, Georgeta Maniu, Anwar Bataihah, Feras Bani Ahmad

2. Preliminaries
Now, we recall the concept of cyclic mappings.

Definition 2.1. Let A and B be two nonempty subsets of a space X. A mapping T: AUB —
AU B is called cyclic if T(A) C B and T(B) C A.

The notion of G-metric spaces was given in 2006 by Z. Mustafa and B. Sims [1] as
follows:

Definition 2.2 ([1]). Let X be a nonempty set, and let G: X x X x X — R™ be a function
satisfying:

(Gl) G(z,y,2) =0ifz =y = z;

(G2) G(z,x,y) > 0 for all z, y € X with x # y;

(G3) G(z,y,y) < G(z,y,2) for all x,y,z € X with y # z;

(G4) G(z,y,2) = G(p{z,y,2z}), for each permutation of z,y, z (the symmetry);

(G5) G(x,y,2) < G(z,a,a) + G(a,y,z), VYz,y,z,a € X (the rectangle inequality).
Then the function G is called a generalized metric space, or more specifically G-metric
on X, and the pair (X, G) is called a G-metric space.

Definition 2.3 ([1]). Let (X, G) be a G-metric space, and let (z,) be a sequence of points
of X. We say that (z,) is G-convergent to x if for any € > 0, there exists k& € N such that
G(x,Tpn,Tm) < ¢ for all n,m > k.

Definition 2.4 ([1]). Let (X,G) be a G-metric space. A sequence (z,) C X is said to
be G-Cauchy if for every € > 0, there exists k € N such that G(z,,zm,z;) < € for all
n,m,l > k.

Definition 2.5 ([2]). A G-metric space (X,G) is said to be G-complete or complete G-
metric space if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

In 2010, R. Saadati et al. [21] introduced the concept of 2-distance and prove some
fixed point results. The definition of the 2-distance is given as follows:

Definition 2.6 ([21]). Let (X, G) be a G-metric space. Then a function Q: X x X x X —
[0,00) is called an Q-distance on X if the following conditions are satisfied:

(a) Qz,y,2) < Qz,a,a) + Qa,y,2), YVr,y,z,a € X,

(b) for any z,y € X, the functions Q(z,y,-), Qx,-,y): X — X are lower semi
continuous,

(c) for each € > 0, there exists 6 > 0 such that Q(z,a,a) < § and Q(a,y, z) < 6 imply
G(z,y,2) <e.

Definition 2.7 ([21]). Let (X,G) be a G-metric space and € be an Q-distance on X.
Then we say that X is Q-bounded if there exists M > 0 such that Q(z,y,z) < M for all
x,y,x € X.

Lemma 2.1 ([21]). Let X be a metric space endowed with the metric G and Q be an Q-
distance on X . Let (), (yn) be sequences in X, (a,), (Bn) be sequences in [0, 00) converging
to zero and let x,y,z,a € X. Then we have the following:

(1) If Uy, T, xn) < o and Q(zy,y,2) < B, forn €N then G(y,y, z) < € and hence
y=z;

(2) If Uyny T, Tn) < @p and U Tpy Ym, 2) < B for anym > n € N, then G(Yn, Ym, 2) —
0 and hence y, — z;

(3) If Uzp,zm,z1) < an for any myn,l € N withn < m < I, then (z,) is a
G-Cauchy sequence;

(4) If Uzn,a,a) < ay, for any n € N, then (x,,) is a G-Cauchy sequence.
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3. Main Results
We start with the following result.

Theorem 3.1. Let (X, G) be a complete G-metric space and 2 be an Q-distance on X such
that X is Q-bounded. Let A and B be two nonempty closed subsets of X with respect to the
topology induced by G with X = AU B and AN B # ¢. Suppose that f,g: AUB — AUB
are two mappings such that f(A) C Bandg(B) C A, and suppose that there exists r € |0, %)
such that the following conditions hold true

Q(fr,gfx,gy) <[z, fz, fr) + Uy, 9y,9y)] Vo € A and Vy € B, (3.1)
Qgz, fgz, fy) < r [z, gz, 97) + Qy, fy, fy)] Vy € A and Vx € B, (3.2)
Qfzr,gfz, fy) <[z, fz, fx) + Uy, fy, fy)] Yo,y € A, (3.3)

and
Qgz, fgz,gy) <[z, gz, 92) + Uy, 9y, 9y) | Y,y € B. (3.4)

If f and g are continuous, then f and g have a unique common fixed point in AN B.

Proof. Let zy € A. Since f(A) C B, then fxg =z € B. Also, since g(B) C A, then gz, =
x9 € A. Continuing this process we obtain a sequence () in X such that fza, = zop41,
Ton € A, gToni1 = Topto and zan41 € B, n € NU{0}.

First, since X is (2-bounded, then there exists M > 0 such that

Qz,y,2) < M Vx,y,z € X.
r

Now, our claim is to show that Q(z,, Tni1, Tnis) < @1 M Vn,s € N, where ¢ = . .
—r

Let n,s € N. Then we have four cases:

Case 1: n is even and s is even. Therefore n = 2t for some ¢t € N. By (3.4), we have

Q(Inaxn+laxn+s) = Q($2t,$2t+17$2t+s)
= Q(ngt—lafngt—langt-i-s—l)
< v [ Qo1 Tor, o) + UTopps—1, Tarys, Tarts) |- (3.5)

A

Also, by (3.1), we get

V(wor—1, T2t Tar) + QUT20 451, T2t45, T2t4s)

= Q(fro—2,9fra—2,9%2-1) + Q(fror+s—2, 9fTot4s—2, 9Tt +5-1)
<71 [Qza—2, Tar—1, Tor—1) + Q(z2—1, Tar, Tat)]

+7 [ QU@ 2452, Totps—1, Tattrs—1) + QTatqs—1, Tatts, Totys)]-

Therefore

Q(w2t—1,T2t, ¥2t) + UTat4s—1, Tatts, Tatts)
T
<1, (212, T2t—1,T2t—1) + QUP2t45-2, Tarrs—1, T2t4+5-1) ]
< q [Uxor—2, Tor—1,T2—1) + QT4 s—2, Totts—1, Totts—1) ]
By applying the previous steps repeatedly we get
Qzae—1, T2r, Tar) + UTotgs—1, Tatgs, Tarts) < ¢ [Qwo, 21, 21) + s, Togr, Toy1)]-

Since X is Q-bounded, then Q(was_1, s, T2t) + U T2t 151, Tarrs, Tarrs) < 2¢" M. Having
in mind that r < %, then the inequality (3.5) becomes

Q(Inaxn+17xn+s) < qnilM' (36)



14 Wasfi Shatanawi, Georgeta Maniu, Anwar Bataihah, Feras Bani Ahmad

Case 2: n is odd, s is even. Therefore n = 2t + 1 for some ¢t € NU {0}. By (3.3), we
get

UZn, Tng1, Tngs) = UTori1, Torg2, Torpsi1)
= Q(fzar, gfvar, frorts)
< r[Qzar, vae1s Tar1) + Q2t4ss Tatgstts Tags1) ] (3.7)
By (3.2), we obtain
Qw2e, T2141, T2e41) + QT2045, V245415 T2t4541)
= Q(gwa—1, fgrar—1, frar) + Qg2otis—1, f9Tot4s—1, [T2t4s)
< r [ QU@o—1, Tor, Tor) + UXor, Torr1, Tart1))
+1 [QU @204 5—15 Tot4ss Tat+s) + QU T2ppss Tatpst1, Totts+1)]-

Therefore
Qx2t, Tot41, Tat41) + QUTot4s: Tatts41, T2t4s41)

A
< 7 Q21,220 22) + QT2045-1, T204s, T2045) ]
< q[Qzar-1, w20, T2) + U@2045-1, V2145, T2045) |-
Hence, by applying the previous steps repeatedly we get
Qxae, 2241, T2141) + UT214s, Vot gst1, T2rtst1) < ¢ [QUzo, 21, 21) + Qs o1, Tsp1)]-
Since X is Q-bounded then Q (2, ot i1, Tori1)+ U Tot4s, Torrsi1, Torrsi1) < 2¢7 1 M.
But 7 < 1, then the inequality (3.7) becomes
QUTp, Tpy1, Togs) < qnilM-
Case 3: n is even, and s is odd. Therefore n = 2¢ for some ¢ € N. By (3.2), we have

Q(xnyxn—&-hxn—&-s) = Q($2t7$2t+1,$2t+s)
= Qgw2—1, fgT2i—1, fT2115-1)
< [z, o, Tor) + QT2tqs—15 Toigs, Taeys) |- (3.8)
By (3.1) and (3.2), we obtain
Vwor—1,Tar, T2r) + UT2p4s—1, T2t45, T2t4s)
= Q(fro—2,9 22, 9%2—1) + QUgT2e4s—2, f9T20 452, fT2045-1)
<[ Q(r2r—2, 21, Tar—1) + QT2p—1, T2, Tot)]
+7r [Q($2t+572, T2t4s—1, x2t+sfl) + Q($2t+571,$2t+s, 5U2t+s)]~
Therefore
Qwop—1,Tot, T2t) + QU Tarts—1, Tatps, Tatts)
< 1—r (w2, x2r—1,T2t—1) + UTor4s—2, Tapgs—1, T2t45-1) ]
< q[Uwor—2, T2t—1,T2t-1) + UT2r4s—2, Tarps—1, T2t4s-1) ]
By applying the previous steps repeatedly we get
Qwoi-1, Tor, T2t) + UTot4s—1, Tatgs, Tarrs) < "1 [Q@o, 21, 21) + s, Tog1, Toi1)]-
Since X is Q-bounded, then Q(2o;_1,Tot, Tor) + QTorrs—1, Torrs, Tarrs) < 2¢" 1 M.
But 7 < 1, so the inequality (3.8) becomes
Uy, Tpy1, Togs) < " M.
Case 4: n is odd, s is odd. Therefore n = 2t + 1 for some ¢t € NU{0}. By (3.1), we
get
U, Tpg1, Tngs) = UT2i41, T2r42, Tors41)
Q(ffzm gfx2t»gx2t+s)
r [ Qw2 Torg1, Tarp1) + UT2eps, Targst1, Torpss1) ] (3.9)

IN
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By (3.1) and (3.2), we have

Qzar, Tor41, Tor41) + QUT2tts, Tottst1, T2tts41)

= Q(gxor—1, fgxror—1, fre) + Q(frarts—1, 9 Tottrs—1, 9Tt +s)
< r [ QU@o—1, Tor, Tor) + UXot, Torr1, Tart1))

7 [ Q@204 515 Torts, Tarys) + QU Torts, Lot s i1y Taepst1)]-

So
Q(tha T2t41, =T2t+1) + Q($2t+s, T2t4541, I2t+s+1)
T
< 11— [Qx21—1, Tor, T2r) + QT2045—1, T2145, T2t4s)
< q[Uwa—1, Tar, T2r) + UT2t4s—1, Tot4s, T2t45) |-
By applying the previous steps repeatedly we get
Q(x2t, Tor41, T2041) + QUT2t4ss T2t 45415 T2u4s41) < "' Qzo, 21, 21) + Qxs, Ts1, Tog1))-

But X is Q-bounded. Then Q($2t, Tot+1, I2t+1)+9($2t+s, Tot+s5+1) x2t+s+1) < 2qn71M.
Since r < %, then inequality (3.9) becomes

Q(xna Tn+1, xn—i—s) S qn_lM-
Thus in all cases we have
Up, Tys1, Tnis) < ¢"'M, Vn,s €N, (3.10)

Now, for all [ > m > n, we have

Qn, T, 1) < Uy Tpg1, Tongr) + UTpt1, Tgo, Tnga) + -+ QUTr—1, T, 1)
S qn71M+q’nM++qm72M
qn—l
< M
1—g¢q

Thus by Lemma 2.1 (x,,) is a G-Cauchy sequence. Therefore, there exists u € X such
that (z,) is G-convergent to u. Since (z,) G-converges to u, then each subsequence of ()
also G-converges to u. So the subsequences (z2n4+1) = (fz2,) and (zon42) = (gT2n4+1) are
G-convergent to u.

First, suppose that f is continuous. Then lim fxs, = fu and lim x9,11 = u, by

n—oo n—oo
uniqueness of the limit we have fu = u.
Second, suppose that g is continuous. Then lim gzs,+1 = gu and lim z9, 4o = wu,
n—oo n—oo
by uniqueness of the limit we have gu = u.

Since (z2,) C A and A is closed, then u € A. Also, since (z2,4+1) € B and B is
closed, then u € B. Hence u is a common fixed point for f and g in AN B.

Now, we prove the uniqueness.

First, we show that if w = fw = gw, then Q(w,w,w) = 0. By (3.1), we have

Qw, w,w) = Qfw, gfw,gw) < 7[Q(w,w,w)+ Uw,w,w)]
< 2rQ(w, w,w).

Since r < %, then Q(w,w,w) = 0.
Now, let v € X be another common fixed point for f and g. Then by (3.1), we get

Qv,v,u) = Q(fv, gfv, gu) < r[Qv,v,v) + Qu,u,u)].

Since v = fv = gv and u = fu = gu, then Q(v,v,v) = Q(u,u,u) = 0. Therefore Q(v,v,u) =
0. Thus by the definition of {2-distance we have G(v,v,u) = 0. Hence u = v. O

If we choose X = A = B in Theorem 3.1, then we have the following result
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Corollary 3.1. Let (X, G) be a complete G-metric space and Q) be an Q-distance on X such
that X is Q-bounded. Suppose that f,g: X — X be two mappings. Suppose that there exists
r €10,1) such that the following conditions hold true

Q(fx,gfx,gy) <r[Qex, fz, fz) + Uy, gy, 9y) | Y,y € X,

gz, fgx, fy) < v [z, gz, gx) + Qy, [y, fy)] Yo,y € X,
Qfz,gfx, fy) <[z, fz, fr) + Qy, fy, fy)] Yo,y € X,
and
gz, fgz,gy) < r[Q, gz, gx) + Ay, gy, 9y) ] Yo,y € X.
If f or g is continuous, then f and g have a unique common fized point in X.

If we replace g by f in Theorem 3.1, we get the following result.

Corollary 3.2. Let (X, G) be a complete G-metric space and Q be an Q-distance on X such
that X is Q-bounded. Let A and B be two nonempty closed subsets of X with respect to the
topology induced by G with X = AU B and AN B # ¢. Suppose that f : AUB — AUB is
a cyclic mapping. Also, assume that there exists r € [0, %) such that the following condition
hold true

Qfa, Pz, fy) < r[QUa, fz, fz) + Dy, fy, fy)] Yo,y € AUB.
If f is continuous, then [ has a unique fixed point in AN B.

By modifying the contractive condition in Theorem 3.1, we get the following result

Theorem 3.2. Let (X, G) be a complete G-metric space and 2 be an Q-distance on X such
that X is Q-bounded. Let A and B be two nonempty closed subsets of X with X = AU B.
Suppose that f,g: AUB — AU B be two mappings such that f(A) C Bandg(B) C A, and
suppose that the following conditions hold true

Q(fx,gfz, gy) <r[Qz, fr,y) + Uy, gy,7)], Vo € A, andVy € B, (3.11)
Q(fz,gfx, fy) < r[Qa, fo,y) + Uy, fy.2)], Yo,y € A, (3.12)
Qgz, fgz, fy) < r[Q(z, gz,y) + Uy, fy,x)], Yy € A, andVzx € B, (3.13)
and
Qgz, fgx,gy) <[z, gz,y) + Uy, gy, )], Y,y € B. (3.14)

If f and g are continuous, then f and g have a unique common fixed point in AN B.

Proof. Let zyp € A. Since f(A) C B, then fxy = 21 € B. Also, since g(B) C A, then
gr1 = x9 € A. Continuing this way we obtain a sequence (z,) in X such that fza, = Tont1,
Ton € A, gToni1 = Topte and xe,y1 € B, n € NU{0}.

Since X is Q-bounded, then there exists M > 0 such that Q(z,y,z) < M, for all
z,y,z € X.

Now, our aim is to show that Q(x,, Znq1, Tnts) < (2r)" M.

Let n,s € N. Then we have four cases:

Case 1: n is even and s is even, therefore n = 2¢ for some ¢t € N. By (3.14), we have

Q(xn;anrlaanrs) = Q(£2t,£2t+17$2t+s)
= Qg9z2t—1, fgT20—1,9T245—1)
< r[Qwoe—1, Tor, Topgs—1) + QT2p45-1, Tarqs, T2e—1) ] (3.15)
Also, by (3.12), we get
Q(zot—1, Tat, Totts—1) + UTotts—1, Totys, T2t—1)
= Q(fra—2, 9frai—2, frorrs—2) + QU fTorts—2, 9f Tarts—2, fTo—2)
<7 [Qzot—2, Tar—1, Tor4s—2) + UTot4s—2, Tarts—1, T2p—2)]
+1 [Q(T2p4s—2, Torqs—1, Tar—2) + Q(T20—2, Tar—1, T2r45—2)]
< 2r [QUxot—2, Tat—1, Tarts—2) + QTatqs—2, Tatps—1, Tar—2) ).
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Hence by applying the previous steps repeatedly, we get
Qw20-1, Tot, Torgs—1) + UTat4s—1, Targs, Tar—1) < (2r)" 1 [Qzo, 1, T6) + Q5, Ts11, T0) |-

Since X is Q-bounded, then Q(wo; 1, Tor, Torrs—1)+ (T2t 451, Torrs, Tor_1) < 2M (2r)" L.
Thus inequality (3.15) becomes Q(xy, Tni1, Tnts) < (2r)" M.

Case 2: n is odd, s is even, therefore n = 2t + 1 for some ¢t € NU {0}. From (3.12),
we get

QTns Trg1, Tngs) = UTori1, Tar42, Totgst1)
= Q(f$2tvgfx2tafx2t+s)
< 7 [QUwor, Targ1, Torrs) T UTorps, Tarrsy1, T20) ] (3.16)

Also, by (3.14), we get

Qx2t, Tot41, Torgs) + QU240 T204541, T2t)

= Q(gxoi—1, f92oi—1,9T2t4s-1) + QgTorts—1, f9T214s—1,9T2¢1)
<7 [Qz2—1, Tat, Tor4s—1) + UT2t4s-1, T2t4s, Tar—1)]

+1 [Q(T2trs—1, T2tts, Tar—1) + QT2e—1, Tor, Tarys—1)]

< 2r[Q@ae—1, Tot, Tats—1) + Q(Tat4s—1, Tatts, Tae—1) |-

Hence by applying the previous steps repeatedly, we get

Uwos, Tar41, Torts) + UTorgs, Targsit, Ta) < (2r)" 71 [Q(z0, 21, T5) +Q25, T511, o))
Since X in Q—bounded, then Q(Jfgt, Tot+1, $2t+1) + Q(JZQH_S, Tot+s+1, 372t+s+1) S 2M(27’)n71.
Thus inequality (3.16) becomes

Q(xna Tn+1, anrs) < <2r)nM
Case 3: n is even, s is odd, therefore n = 2t for some ¢ € N. By (3.13), we get

Q(»Tm Tn+1, $n+s) = Q($C2t, T2t41, 332t+s)
= Qgrat-1, f9roi—1, fror1s—1)
< r[QUxor—1, Tty Torps—1) + U@orys—1, Torrs, Tae—1)]. (3.17)

Also, by (3.11) and (3.13), we get

Qx2t—1, Tot, Totps—1) + UTotqs—1, Totts, Tat—1)

= Q(frar—2,9f 22, 9T2t4s—2) + QgTarts—2, f9Tor1s—2, fT2r-2)
<r [Q(th—27$2t—17$2t+s—2) + Q(£2t+s—2,$2t+s—1,$2t—2)}

+7 [ QU @2p4s—2, Tarqs—1, Tar—2) + QT2r—2, Tor—1, Tar4s—2))

<27 [QUzar—2, Tat—1, Totts—2) + UTotrs—2, Tarrs—1, Tap—2) |.

Hence by applying the previous steps repeatedly, we obtain
Qz2i-1, T2t Torgs—1) + UT2u45-1, Tarts, Tar—1) < (2r)" " [Q(wo, 21, 25) + Q25 Tot1, o).

Since X is Q-bounded, then Q(wo;_1, Tor, Tarrs—1)+ (T2t 451, Torrs, Tor—1) < 2M (2r)" L.
Thus inequality (3.17) becomes Q(xy,, Tni1, Tnts) < (2r)" M.

Case 4: n is odd, s is odd, therefore n = 2t 4 1 for some t € NU{0}. From (3.11), we
get

QTns Trg1, Tngs) = UTorr1, Tar42, Totyst1)
= Q(fl.Ztv gfx2tag$2t+s)
r [Q(IQt, T2t+1, I2t+s) + Q($2t+s, Lot +s+1, x2t) ] (3-18)

IN
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Also, by (3.11) and (3.13), we have

Qz2t, Tot1, Totys) + U2t 4s, Totgst1, Tat)
= Qgr2—1, fgror—1, [Tarrs—1) + QfT24s—1,9f T2t 45—1,9%21—1)
< r [ Q(r2r—1, T2t Tarps—1) + QUX2t45—1, Tt 4ss T2t—1)]
+r [ x2t4s—1, Torts, Tar—1) + Q(T2—1, Tar, Tor45—1)]
<27 [Qzar—1, Tat, Tor4s—1) + UTot4s—1, Totts, Tar—1) |.
Hence by applying the previous steps repeatedly, we get
Qw2t, T2t41, Totys) F (T2t sy Tarrst1, T2t) < (2r)" 7 [Q(zo, 21, 25) +Q(5, T511, 0))-
Since X is Q-bounded, then Q(was, Top41, Tae41)+ QU Xarts, Tortst1, Tarrsi1) < 2M (2r)" L
Thus inequality (3.18) becomes Q(zy, Tni1, Tnts) < (2r)" M.
Hence in all cases we have

QUTny g1, Tnts) < (2r)"M,V n,s € N.
Now VI > m > n, we get

Q(.’En, Ty ZL’[) S Q(xny Tn+41, xn+l) + Q(xn—&-la Tn42, xn+2) +-- Q(ajm—la Ty ZL’[)
< (@2r)"M 4 (2r)" M 4+ (2 M
(2r)"
1—(2r)

IN

Hence by Lemma 2.1, (z,,) is a G-Cauchy sequence. Therefore there exists u € X such
that (z,,) is G-convergent to u. Since (z,) G-converges to u, then each subsequence of ()
also G-converges to u. Therefore the subsequences (z2,+1) = (fz2,) and (2p42) = (9T2n+1)
are G-converge to u.

First, suppose that f is continuous. Then lim 9,41 = v and lim fzq, = fu, by

n—oo n—oo
uniqueness of the limit we have fu = u.
Second, suppose that g is continuous. Then lim z9,42 = w and lim gze,+1 = fu,
n—oo n—oo
by uniqueness of the limit we have gu = .

Since (z2,) C A and (z2,+1) € B, and both A and B closed, then ©w € AN B. Hence
u is a common fixed point for f and g in AN B.

To prove the uniqueness, let v € X be an other common fixed point of f and g; that
is v = fv = gv. Then by (3.11), we get

Qv,v,0) =Q(fv,gfv,gv) < 7[Qv,v,0) + v, 0,0)]
T

S 1 _ TQ(U7U7U)'
Since r < 1, then Q(v,v,v) = 0.
Again, by (3.11), we get
Qv,v,u) = Q(fv, gfv,gu) < 7[Qv,0,u) + Qu, u,v)]
< L —0(u,u,v)
< 70w ).

Also, by (3.11) we get
Q(u, u,v)

IN

r[Q(u, u,v) + Qv,0,u) ]

r
T TQ(v,v,u).

IN

Since r < %, then Q(u,wu,v) = Q(v,v,u) = 0. Hence by the definition of 2-distance we have
G(v,v,u) = 0. Thus u = v. O
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