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COMMON FIXED POINTS FOR MAPPINGS OF CYCLIC FORM

SATISFYING LINEAR CONTRACTIVE CONDITIONS WITH

OMEGA-DISTANCE

by Wasfi Shatanawi1, Georgeta Maniu2, Anwar Bataihah3 and Feras Bani Ahmad4

In this paper we utilize the concept of cyclic form and Ω-distance to derive and
prove some common fixed point theorems for self mappings of cyclic form by using the
concept of Ω-distance. Our results are extensions on some results on Ω-distance.
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1. Introduction

In 2006 Mustafa and Sims introduced a new generalization of the usual metric spaces
named G-metric spaces and studied some fixed point results: please, see [1]. After that,
many authors studied fixed and common fixed point results in complete G-metric spaces:
Mustafa and Sims [2]; Aydi et al. [3, 4]; Abbas et al. [5, 6, 7]; Karapinar and Agarwal
[8]; Bilgili et al. [9, 10]; Chandok et al. [11]; Pourhadi [12]; Popa and Patriciu [13]; Tu et
al. [14]; Thangthong and Charoensawan [15]; Shatanawi [16, 17], Shatanawi and Postolache
[18]. But Jleli and Samet [19] and Samet et al. [20] in their clever papers showed that
there are some fixed point theorems in the setting of G-metric spaces which can be obtained
from well-known fixed point theorems in metric spaces or quasi metric spaces. Thereafter,
Karapinar and Agarwal in their interesting paper [8] showed that the smart technique of
Samet et al. [19, 20] cannot be used to all contractive conditions. For this instance, they
introduced some contractive conditions where the technique of Samet et al. [19, 20] does
not work.

In 2010 Saadati et al. [21] introduced the concept of Ω-distance and proved some fixed
point results in a complete G-metric space. After that, many authors utilized the concept
of Ω-distance in a complete G-metric space to prove some fixed and coupled fixed point
results: Gholizadeh et al. [22]; Shatanawi et al. [23, 24, 25]; Gholizadeh [26]. These results
cannot be evolved by the technique used in [19, 20]. Recently, many authors proved fixed
and common fixed point theorems for mappings of cyclic form in different metric spaces,
for example see [27]-[42]. In this paper we utilize the concept of cyclic form and Ω-distance
to derive and prove some common fixed point theorems for self mappings of cyclic form by
using the concept of Ω-distance.
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2. Preliminaries

Now, we recall the concept of cyclic mappings.

Definition 2.1. Let A and B be two nonempty subsets of a spaceX. A mapping T : A∪B →
A ∪B is called cyclic if T (A) ⊆ B and T (B) ⊆ A.

The notion of G-metric spaces was given in 2006 by Z. Mustafa and B. Sims [1] as
follows:

Definition 2.2 ([1]). Let X be a nonempty set, and let G : X×X×X → R+ be a function
satisfying:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) G(x, x, y) > 0 for all x, y ∈ X with x ̸= y;
(G3) G(x, y, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ̸= z;
(G4) G(x, y, z) = G(p{x, y, z}), for each permutation of x, y, z (the symmetry);
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), ∀x, y, z, a ∈ X (the rectangle inequality).
Then the function G is called a generalized metric space, or more specifically G-metric

on X, and the pair (X,G) is called a G-metric space.

Definition 2.3 ([1]). Let (X,G) be a G-metric space, and let (xn) be a sequence of points
of X. We say that (xn) is G-convergent to x if for any ϵ > 0, there exists k ∈ N such that
G(x, xn, xm) < ϵ, for all n,m ≥ k.

Definition 2.4 ([1]). Let (X,G) be a G-metric space. A sequence (xn) ⊆ X is said to
be G-Cauchy if for every ϵ > 0, there exists k ∈ N such that G(xn, xm, xl) < ϵ for all
n,m, l ≥ k.

Definition 2.5 ([2]). A G-metric space (X,G) is said to be G-complete or complete G-
metric space if every G-Cauchy sequence in (X,G) is G-convergent in (X,G).

In 2010, R. Saadati et al. [21] introduced the concept of Ω-distance and prove some
fixed point results. The definition of the Ω-distance is given as follows:

Definition 2.6 ([21]). Let (X,G) be a G-metric space. Then a function Ω: X ×X ×X →
[0,∞) is called an Ω-distance on X if the following conditions are satisfied:

(a) Ω(x, y, z) ≤ Ω(x, a, a) + Ω(a, y, z), ∀x, y, z, a ∈ X,
(b) for any x, y ∈ X, the functions Ω(x, y, ·), Ω(x, ·, y) : X → X are lower semi

continuous,
(c) for each ϵ > 0, there exists δ > 0 such that Ω(x, a, a) ≤ δ and Ω(a, y, z) ≤ δ imply

G(x, y, z) ≤ ϵ.

Definition 2.7 ([21]). Let (X,G) be a G-metric space and Ω be an Ω-distance on X.
Then we say that X is Ω-bounded if there exists M ≥ 0 such that Ω(x, y, z) ≤ M for all
x, y, x ∈ X.

Lemma 2.1 ([21]). Let X be a metric space endowed with the metric G and Ω be an Ω-
distance on X. Let (xn), (yn) be sequences in X, (αn), (βn) be sequences in [0,∞) converging
to zero and let x, y, z, a ∈ X. Then we have the following:

(1) If Ω(y, xn, xn) ≤ αn and Ω(xn, y, z) ≤ βn for n ∈ N then G(y, y, z) < ϵ and hence
y = z;

(2) If Ω(yn, xn, xn) ≤ αn and Ω(xn, ym, z) ≤ βn for any m > n ∈ N, then G(yn, ym, z) →
0 and hence yn → z;

(3) If Ω(xn, xm, xl) ≤ αn for any m,n, l ∈ N with n ≤ m ≤ l, then (xn) is a
G-Cauchy sequence;

(4) If Ω(xn, a, a) ≤ αn for any n ∈ N, then (xn) is a G-Cauchy sequence.
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3. Main Results

We start with the following result.

Theorem 3.1. Let (X,G) be a complete G-metric space and Ω be an Ω-distance on X such
that X is Ω-bounded. Let A and B be two nonempty closed subsets of X with respect to the
topology induced by G with X = A ∪ B and A ∩ B ̸= ϕ. Suppose that f, g : A ∪ B → A ∪ B
are two mappings such that f(A) ⊆ B and g(B) ⊆ A, and suppose that there exists r ∈ [0, 1

2 )
such that the following conditions hold true

Ω(fx, gfx, gy) ≤ r [ Ω(x, fx, fx) + Ω(y, gy, gy) ] ∀x ∈ A and ∀y ∈ B, (3.1)

Ω(gx, fgx, fy) ≤ r [ Ω(x, gx, gx) + Ω(y, fy, fy) ] ∀y ∈ A and ∀x ∈ B, (3.2)

Ω(fx, gfx, fy) ≤ r [ Ω(x, fx, fx) + Ω(y, fy, fy) ] ∀x, y ∈ A, (3.3)

and

Ω(gx, fgx, gy) ≤ r [ Ω(x, gx, gx) + Ω(y, gy, gy) ] ∀x, y ∈ B. (3.4)

If f and g are continuous, then f and g have a unique common fixed point in A∩B.

Proof. Let x0 ∈ A. Since f(A) ⊆ B, then fx0 = x1 ∈ B. Also, since g(B) ⊆ A, then gx1 =
x2 ∈ A. Continuing this process we obtain a sequence (xn) in X such that fx2n = x2n+1,
x2n ∈ A, gx2n+1 = x2n+2 and x2n+1 ∈ B, n ∈ N ∪ {0}.

First, since X is Ω-bounded, then there exists M ≥ 0 such that

Ω(x, y, z) ≤ M ∀x, y, z ∈ X.

Now, our claim is to show that Ω(xn, xn+1, xn+s) ≤ qn−1 M ∀n, s ∈ N, where q =
r

1− r
.

Let n, s ∈ N. Then we have four cases:
Case 1: n is even and s is even. Therefore n = 2t for some t ∈ N. By (3.4), we have

Ω(xn, xn+1, xn+s) = Ω(x2t, x2t+1, x2t+s)

= Ω(gx2t−1, fgx2t−1, gx2t+s−1)

≤ r [ Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s) ]. (3.5)

Also, by (3.1), we get

Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s)
= Ω(fx2t−2, gfx2t−2, gx2t−1) + Ω(fx2t+s−2, gfx2t+s−2, gx2t+s−1)
≤ r [Ω(x2t−2, x2t−1, x2t−1) + Ω(x2t−1, x2t, x2t)]
+r [Ω(x2t+s−2, x2t+s−1, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t+s)].

Therefore

Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s)

≤ r

1− r
[Ω(x2t−2, x2t−1, x2t−1) + Ω(x2t+s−2, x2t+s−1, x2t+s−1) ]

≤ q [ Ω(x2t−2, x2t−1, x2t−1) + Ω(x2t+s−2, x2t+s−1, x2t+s−1) ].

By applying the previous steps repeatedly we get

Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s) ≤ qn−1 [Ω(x0, x1, x1) + Ω(xs, xs+1, xs+1)].

Since X is Ω-bounded, then Ω(x2t−1, x2t, x2t)+Ω(x2t+s−1, x2t+s, x2t+s) ≤ 2qn−1M . Having
in mind that r < 1

2 , then the inequality (3.5) becomes

Ω(xn, xn+1, xn+s) ≤ qn−1M. (3.6)



14 Wasfi Shatanawi, Georgeta Maniu, Anwar Bataihah, Feras Bani Ahmad

Case 2: n is odd, s is even. Therefore n = 2t+ 1 for some t ∈ N ∪ {0}. By (3.3), we
get

Ω(xn, xn+1, xn+s) = Ω(x2t+1, x2t+2, x2t+s+1)

= Ω(fx2t, gfx2t, fx2t+s)

≤ r [ Ω(x2t, x2t+1, x2t+1) + Ω(x2t+s, x2t+s+1, x2t+s+1) ]. (3.7)

By (3.2), we obtain

Ω(x2t, x2t+1, x2t+1) + Ω(x2t+s, x2t+s+1, x2t+s+1)
= Ω(gx2t−1, fgx2t−1, fx2t) + Ω(gx2t+s−1, fgx2t+s−1, fx2t+s)
≤ r [Ω(x2t−1, x2t, x2t) + Ω(x2t, x2t+1, x2t+1)]
+r [Ω(x2t+s−1, x2t+s, x2t+s) + Ω(x2t+s, x2t+s+1, x2t+s+1)].

Therefore
Ω(x2t, x2t+1, x2t+1) + Ω(x2t+s, x2t+s+1, x2t+s+1)

≤ r

1− r
[Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s) ]

≤ q [ Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s) ].

Hence, by applying the previous steps repeatedly we get

Ω(x2t, x2t+1, x2t+1) + Ω(x2t+s, x2t+s+1, x2t+s+1) ≤ qn−1 [Ω(x0, x1, x1) + Ω(xs, xs+1, xs+1)].

SinceX is Ω-bounded then Ω(x2t, x2t+1, x2t+1)+Ω(x2t+s, x2t+s+1, x2t+s+1) ≤ 2qn−1M .
But r < 1

2 , then the inequality (3.7) becomes

Ω(xn, xn+1, xn+s) ≤ qn−1M.

Case 3: n is even, and s is odd. Therefore n = 2t for some t ∈ N. By (3.2), we have

Ω(xn, xn+1, xn+s) = Ω(x2t, x2t+1, x2t+s)

= Ω(gx2t−1, fgx2t−1, fx2t+s−1)

≤ r [ Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s) ]. (3.8)

By (3.1) and (3.2), we obtain

Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s)
= Ω(fx2t−2, gfx2t−2, gx2t−1) + Ω(gx2t+s−2, fgx2t+s−2, fx2t+s−1)
≤ r [Ω(x2t−2, x2t−1, x2t−1) + Ω(x2t−1, x2t, x2t)]
+r [Ω(x2t+s−2, x2t+s−1, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t+s)].

Therefore

Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s)

≤ r

1− r
[Ω(x2t−2, x2t−1, x2t−1) + Ω(x2t+s−2, x2t+s−1, x2t+s−1) ]

≤ q [ Ω(x2t−2, x2t−1, x2t−1) + Ω(x2t+s−2, x2t+s−1, x2t+s−1) ].

By applying the previous steps repeatedly we get

Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s) ≤ qn−1 [Ω(x0, x1, x1) + Ω(xs, xs+1, xs+1)].

Since X is Ω-bounded, then Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s) ≤ 2qn−1M .
But r < 1

2 , so the inequality (3.8) becomes

Ω(xn, xn+1, xn+s) ≤ qn−1M.

Case 4: n is odd, s is odd. Therefore n = 2t + 1 for some t ∈ N ∪ {0}. By (3.1), we
get

Ω(xn, xn+1, xn+s) = Ω(x2t+1, x2t+2, x2t+s+1)

= Ω(fx2t, gfx2t, gx2t+s)

≤ r [ Ω(x2t, x2t+1, x2t+1) + Ω(x2t+s, x2t+s+1, x2t+s+1) ]. (3.9)
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By (3.1) and (3.2), we have

Ω(x2t, x2t+1, x2t+1) + Ω(x2t+s, x2t+s+1, x2t+s+1)
= Ω(gx2t−1, fgx2t−1, fx2t) + Ω(fx2t+s−1, gfx2t+s−1, gx2t+s)
≤ r [Ω(x2t−1, x2t, x2t) + Ω(x2t, x2t+1, x2t+1)]
+r [Ω(x2t+s−1, x2t+s, x2t+s) + Ω(x2t+s, x2t+s+1, x2t+s+1)].

So
Ω(x2t, x2t+1, x2t+1) + Ω(x2t+s, x2t+s+1, x2t+s+1)

≤ r

1− r
[Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s) ]

≤ q [ Ω(x2t−1, x2t, x2t) + Ω(x2t+s−1, x2t+s, x2t+s) ].

By applying the previous steps repeatedly we get

Ω(x2t, x2t+1, x2t+1) + Ω(x2t+s, x2t+s+1, x2t+s+1) ≤ qn−1 [Ω(x0, x1, x1) + Ω(xs, xs+1, xs+1)].

ButX is Ω-bounded. Then Ω(x2t, x2t+1, x2t+1)+Ω(x2t+s, x2t+s+1, x2t+s+1) ≤ 2qn−1M .
Since r < 1

2 , then inequality (3.9) becomes

Ω(xn, xn+1, xn+s) ≤ qn−1M.

Thus in all cases we have

Ω(xn, xn+1, xn+s) ≤ qn−1M, ∀n, s ∈ N. (3.10)

Now, for all l ≥ m ≥ n, we have

Ω(xn, xm, xl) ≤ Ω(xn, xn+1, xn+1) + Ω(xn+1, xn+2, xn+2) + · · ·+Ω(xm−1, xm, xl)

≤ qn−1M + qnM + · · ·+ qm−2M

≤ qn−1

1− q
M.

Thus by Lemma 2.1 (xn) is a G-Cauchy sequence. Therefore, there exists u ∈ X such
that (xn) is G-convergent to u. Since (xn) G-converges to u, then each subsequence of (xn)
also G-converges to u. So the subsequences (x2n+1) = (fx2n) and (x2n+2) = (gx2n+1) are
G-convergent to u.

First, suppose that f is continuous. Then lim
n→∞

fx2n = fu and lim
n→∞

x2n+1 = u, by

uniqueness of the limit we have fu = u.
Second, suppose that g is continuous. Then lim

n→∞
gx2n+1 = gu and lim

n→∞
x2n+2 = u,

by uniqueness of the limit we have gu = u.
Since (x2n) ⊆ A and A is closed, then u ∈ A. Also, since (x2n+1) ⊆ B and B is

closed, then u ∈ B. Hence u is a common fixed point for f and g in A ∩B.
Now, we prove the uniqueness.
First, we show that if w = fw = gw, then Ω(w,w,w) = 0. By (3.1), we have

Ω(w,w,w) = Ω(fw, gfw, gw) ≤ r [Ω(w,w,w) + Ω(w,w,w)]

≤ 2rΩ(w,w,w).

Since r < 1
2 , then Ω(w,w,w) = 0.

Now, let v ∈ X be another common fixed point for f and g. Then by (3.1), we get

Ω(v, v, u) = Ω(fv, gfv, gu) ≤ r [ Ω(v, v, v) + Ω(u, u, u) ].

Since v = fv = gv and u = fu = gu, then Ω(v, v, v) = Ω(u, u, u) = 0. Therefore Ω(v, v, u) =
0. Thus by the definition of Ω-distance we have G(v, v, u) = 0. Hence u = v. �

If we choose X = A = B in Theorem 3.1, then we have the following result
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Corollary 3.1. Let (X,G) be a complete G-metric space and Ω be an Ω-distance on X such
that X is Ω-bounded. Suppose that f, g : X → X be two mappings. Suppose that there exists
r ∈ [0, 1

2 ) such that the following conditions hold true

Ω(fx, gfx, gy) ≤ r [ Ω(x, fx, fx) + Ω(y, gy, gy) ] ∀x, y ∈ X,

Ω(gx, fgx, fy) ≤ r [ Ω(x, gx, gx) + Ω(y, fy, fy) ] ∀x, y ∈ X,

Ω(fx, gfx, fy) ≤ r [ Ω(x, fx, fx) + Ω(y, fy, fy) ] ∀x, y ∈ X,

and
Ω(gx, fgx, gy) ≤ r [ Ω(x, gx, gx) + Ω(y, gy, gy) ] ∀x, y ∈ X.

If f or g is continuous, then f and g have a unique common fixed point in X.

If we replace g by f in Theorem 3.1, we get the following result.

Corollary 3.2. Let (X,G) be a complete G-metric space and Ω be an Ω-distance on X such
that X is Ω-bounded. Let A and B be two nonempty closed subsets of X with respect to the
topology induced by G with X = A ∪B and A ∩B ̸= ϕ. Suppose that f : A ∪B → A ∪B is
a cyclic mapping. Also, assume that there exists r ∈ [0, 1

2 ) such that the following condition
hold true

Ω(fx, f2x, fy) ≤ r [ Ω(x, fx, fx) + Ω(y, fy, fy) ] ∀x, y ∈ A ∪B.

If f is continuous, then f has a unique fixed point in A ∩B.

By modifying the contractive condition in Theorem 3.1, we get the following result

Theorem 3.2. Let (X,G) be a complete G-metric space and Ω be an Ω-distance on X such
that X is Ω-bounded. Let A and B be two nonempty closed subsets of X with X = A ∪ B.
Suppose that f, g : A ∪B → A ∪B be two mappings such that f(A) ⊆ B and g(B) ⊆ A, and
suppose that the following conditions hold true

Ω(fx, gfx, gy) ≤ r [ Ω(x, fx, y) + Ω(y, gy, x) ], ∀x ∈ A, and∀y ∈ B, (3.11)

Ω(fx, gfx, fy) ≤ r [ Ω(x, fx, y) + Ω(y, fy, x) ], ∀x, y ∈ A, (3.12)

Ω(gx, fgx, fy) ≤ r [ Ω(x, gx, y) + Ω(y, fy, x) ], ∀y ∈ A, and∀x ∈ B, (3.13)

and
Ω(gx, fgx, gy) ≤ r [ Ω(x, gx, y) + Ω(y, gy, x) ], ∀x, y ∈ B. (3.14)

If f and g are continuous, then f and g have a unique common fixed point in A∩B.

Proof. Let x0 ∈ A. Since f(A) ⊆ B, then fx0 = x1 ∈ B. Also, since g(B) ⊆ A, then
gx1 = x2 ∈ A. Continuing this way we obtain a sequence (xn) in X such that fx2n = x2n+1,
x2n ∈ A, gx2n+1 = x2n+2 and x2n+1 ∈ B, n ∈ N ∪ {0}.

Since X is Ω-bounded, then there exists M ≥ 0 such that Ω(x, y, z) ≤ M , for all
x, y, z ∈ X.

Now, our aim is to show that Ω(xn, xn+1, xn+s) ≤ (2r)nM .
Let n, s ∈ N. Then we have four cases:
Case 1: n is even and s is even, therefore n = 2t for some t ∈ N. By (3.14), we have

Ω(xn, xn+1, xn+s) = Ω(x2t, x2t+1, x2t+s)

= Ω(gx2t−1, fgx2t−1, gx2t+s−1)

≤ r [ Ω(x2t−1, x2t, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t−1) ]. (3.15)

Also, by (3.12), we get

Ω(x2t−1, x2t, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t−1)
= Ω(fx2t−2, gfx2t−2, fx2t+s−2) + Ω(fx2t+s−2, gfx2t+s−2, fx2t−2)
≤ r [Ω(x2t−2, x2t−1, x2t+s−2) + Ω(x2t+s−2, x2t+s−1, x2t−2)]
+r [Ω(x2t+s−2, x2t+s−1, x2t−2) + Ω(x2t−2, x2t−1, x2t+s−2)]
≤ 2r [ Ω(x2t−2, x2t−1, x2t+s−2) + Ω(x2t+s−2, x2t+s−1, x2t−2) ].
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Hence by applying the previous steps repeatedly, we get

Ω(x2t−1, x2t, x2t+s−1)+Ω(x2t+s−1, x2t+s, x2t−1) ≤ (2r)n−1 [ Ω(x0, x1, xs)+Ω(xs, xs+1, x0) ].

SinceX is Ω-bounded, then Ω(x2t−1, x2t, x2t+s−1)+Ω(x2t+s−1, x2t+s, x2t−1) ≤ 2M(2r)n−1.
Thus inequality (3.15) becomes Ω(xn, xn+1, xn+s) ≤ (2r)nM .

Case 2: n is odd, s is even, therefore n = 2t + 1 for some t ∈ N ∪ {0}. From (3.12),
we get

Ω(xn, xn+1, xn+s) = Ω(x2t+1, x2t+2, x2t+s+1)

= Ω(fx2t, gfx2t, fx2t+s)

≤ r [ Ω(x2t, x2t+1, x2t+s) + Ω(x2t+s, x2t+s+1, x2t) ]. (3.16)

Also, by (3.14), we get

Ω(x2t, x2t+1, x2t+s) + Ω(x2t+s, x2t+s+1, x2t)
= Ω(gx2t−1, fgx2t−1, gx2t+s−1) + Ω(gx2t+s−1, fgx2t+s−1, gx2t−1)
≤ r [Ω(x2t−1, x2t, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t−1)]
+r [Ω(x2t+s−1, x2t+s, x2t−1) + Ω(x2t−1, x2t, x2t+s−1)]
≤ 2r[Ω(x2t−1, x2t, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t−1) ].

Hence by applying the previous steps repeatedly, we get
Ω(x2t, x2t+1, x2t+s)+Ω(x2t+s, x2t+s+1, x2t) ≤ (2r)n−1 [Ω(x0, x1, xs)+Ω(xs, xs+1, x0)].

Since X in Ω-bounded, then Ω(x2t, x2t+1, x2t+1) +Ω(x2t+s, x2t+s+1, x2t+s+1) ≤ 2M(2r)n−1.
Thus inequality (3.16) becomes

Ω(xn, xn+1, xn+s) ≤ (2r)nM.

Case 3: n is even, s is odd, therefore n = 2t for some t ∈ N. By (3.13), we get

Ω(xn, xn+1, xn+s) = Ω(x2t, x2t+1, x2t+s)

= Ω(gx2t−1, fgx2t−1, fx2t+s−1)

≤ r [ Ω(x2t−1, x2t, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t−1) ]. (3.17)

Also, by (3.11) and (3.13), we get

Ω(x2t−1, x2t, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t−1)
= Ω(fx2t−2, gfx2t−2, gx2t+s−2) + Ω(gx2t+s−2, fgx2t+s−2, fx2t−2)
≤ r [Ω(x2t−2, x2t−1, x2t+s−2) + Ω(x2t+s−2, x2t+s−1, x2t−2)]
+r [Ω(x2t+s−2, x2t+s−1, x2t−2) + Ω(x2t−2, x2t−1, x2t+s−2)]
≤ 2r [Ω(x2t−2, x2t−1, x2t+s−2) + Ω(x2t+s−2, x2t+s−1, x2t−2) ].

Hence by applying the previous steps repeatedly, we obtain

Ω(x2t−1, x2t, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t−1) ≤ (2r)n−1 [Ω(x0, x1, xs) + Ω(xs, xs+1, x0)].

SinceX is Ω-bounded, then Ω(x2t−1, x2t, x2t+s−1)+Ω(x2t+s−1, x2t+s, x2t−1) ≤ 2M(2r)n−1.
Thus inequality (3.17) becomes Ω(xn, xn+1, xn+s) ≤ (2r)nM .

Case 4: n is odd, s is odd, therefore n = 2t+1 for some t ∈ N∪{0}. From (3.11), we
get

Ω(xn, xn+1, xn+s) = Ω(x2t+1, x2t+2, x2t+s+1)

= Ω(fx2t, gfx2t, gx2t+s)

≤ r [ Ω(x2t, x2t+1, x2t+s) + Ω(x2t+s, x2t+s+1, x2t) ]. (3.18)
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Also, by (3.11) and (3.13), we have

Ω(x2t, x2t+1, x2t+s) + Ω(x2t+s, x2t+s+1, x2t)
= Ω(gx2t−1, fgx2t−1, fx2t+s−1) + Ω(fx2t+s−1, gfx2t+s−1, gx2t−1)
≤ r [Ω(x2t−1, x2t, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t−1)]
+r [Ω(x2t+s−1, x2t+s, x2t−1) + Ω(x2t−1, x2t, x2t+s−1)]
≤ 2r [Ω(x2t−1, x2t, x2t+s−1) + Ω(x2t+s−1, x2t+s, x2t−1) ].

Hence by applying the previous steps repeatedly, we get
Ω(x2t, x2t+1, x2t+s)+Ω(x2t+s, x2t+s+1, x2t) ≤ (2r)n−1 [Ω(x0, x1, xs)+Ω(xs, xs+1, x0)].
SinceX is Ω-bounded, then Ω(x2t, x2t+1, x2t+1)+Ω(x2t+s, x2t+s+1, x2t+s+1) ≤ 2M(2r)n−1.

Thus inequality (3.18) becomes Ω(xn, xn+1, xn+s) ≤ (2r)nM .
Hence in all cases we have

Ω(xn, xn+1, xn+s) ≤ (2r)nM, ∀ n, s ∈ N.

Now ∀ l ≥ m ≥ n, we get

Ω(xn, xm, xl) ≤ Ω(xn, xn+1, xn+1) + Ω(xn+1, xn+2, xn+2) + · · ·+Ω(xm−1, xm, xl)

≤ (2r)nM + (2r)n+1M + · · ·+ (2r)m−1M

≤ (2r)n

1− (2r)
M.

Hence by Lemma 2.1, (xn) is a G-Cauchy sequence. Therefore there exists u ∈ X such
that (xn) is G-convergent to u. Since (xn) G-converges to u, then each subsequence of (xn)
also G-converges to u. Therefore the subsequences (x2n+1) = (fx2n) and (x2n+2) = (gx2n+1)
are G-converge to u.

First, suppose that f is continuous. Then lim
n→∞

x2n+1 = u and lim
n→∞

fx2n = fu, by

uniqueness of the limit we have fu = u.
Second, suppose that g is continuous. Then lim

n→∞
x2n+2 = u and lim

n→∞
gx2n+1 = fu,

by uniqueness of the limit we have gu = u.
Since (x2n) ⊆ A and (x2n+1) ⊆ B, and both A and B closed, then u ∈ A ∩B. Hence

u is a common fixed point for f and g in A ∩B.
To prove the uniqueness, let v ∈ X be an other common fixed point of f and g; that

is v = fv = gv. Then by (3.11), we get

Ω(v, v, v) = Ω(fv, gfv, gv) ≤ r [ Ω(v, v, v) + Ω(v, v, v) ]

≤ r

1− r
Ω(v, v, v).

Since r < 1
2 , then Ω(v, v, v) = 0.

Again, by (3.11), we get

Ω(v, v, u) = Ω(fv, gfv, gu) ≤ r [ Ω(v, v, u) + Ω(u, u, v) ]

≤ r

1− r
Ω(u, u, v).

Also, by (3.11) we get

Ω(u, u, v) ≤ r [ Ω(u, u, v) + Ω(v, v, u) ]

≤ r

1− r
Ω(v, v, u).

Since r < 1
2 , then Ω(u, u, v) = Ω(v, v, u) = 0. Hence by the definition of Ω-distance we have

G(v, v, u) = 0. Thus u = v. �
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