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A NOTE ON THE RESTRICTED k-MULTIPARTITION FUNCTION

Mircea Cimpoeaş1, Alexandra Teodor2

Let a = (a1, . . . , ar) be a sequence of positive integers and k ≥ 2 an integer.

We study pk,a(n), the restricted k-multipartition function associated to a and k. We

prove new formulas for pk,a(n), its waves Wj(n, k,a)’s and its polynomial part Pk,a(n).
Also, we give a lower bound for the density of the set {n ≥ 0 : pk,a(n) ̸≡ 0(mod m)},
where m ≥ 2 is an integer.
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1. Introduction

Let n be a positive integer. We denote [n] = {1, 2, . . . , n}. A partition of n is a non-
increasing sequence λ = (λ1, . . . , λm) of positive integers such that |λ| = λ1 + · · ·+ λm = n.
We define p(n) as the number of partitions of n and for convenience, we define p(0) = 1.
This notion has the following generalization:

Let k ≥ 2 be an integer. A k-component multipartition of n is a k-tuple λ =
(λ1, . . . , λk) of partitions of n such that |λ| = |λ1| + · · · + |λk| = n; see [1]. We denote
pk(n), the number or k-component multipartitions of n and pk(0) = 1.

Let a := (a1, a2, . . . , ar) be a sequence of positive integers, r ≥ 1. The restricted
partition function associated to a is pa : N → N, pa(n) := the number of integer solutions
(x1, . . . , xr) of

∑r
i=1 aixi = n with xi ≥ 0. Note that the generating function of pa(n) is

∞∑
n=0

pa(n)z
n =

1

(1− za1) · · · (1− zar )
, |z| < 1. (1.1)

The restricted k-multipartion function associated to a is pk,a(n) : N → N, pk,a(n) :=
the number of vector solutions (x1, . . . , xk) of

k∑
j=1

r∑
i=1

aix
j
i = n, where xj = (xj

1, . . . , x
j
r) ∈ Nr for 1 ≤ j ≤ k.

The aim of the paper is to study the properties of the function pk,a(n), following the
methods used in our previous paper [8]. We consider the sequence

a[k] := (a
[k]
1 , a

[k]
2 , . . . , a[k]r ), (1.2)

where ℓ[k] denotes k copies of ℓ.
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It is easy to see that pk,a(n) = pa[k](n) and therefore, from (1.1) and (1.2) we have

∞∑
n=0

pk,a(n)z
n =

1

(1− za1)k · · · (1− zar )k
, |z| < 1. (1.3)

In Proposition 2.1 we show that

ζk,a(s, w1, . . . , wk) :=

k∏
i=1

ζa(s, wi) =

∞∑
n=0

∑
n1+···+nk=n

pk,a(n)

(n1 + w1)s · · · (nk + wk)s
,

where ζa(s, w) is the Barnes zeta function (see [2]). In Proposition 2.4 we express ζk,a(s, w1, . . . , wk)
in terms of Hurwitz zeta functions.

Let D be the least common multiple of a1, . . . , ar. In Proposition 2.5 we note that

pk,a(n) = dk,a,rk−1(n)n
rk−1 + · · ·+ dk,a,1(n)n+ dk,a,0(n),

is a quasi-polynomial of period D. From this result, we deduce a new expression for
ζk,a(s, w1, . . . , wk) in Corollary 2.6.

In Theorem 3.1 we prove formulas for the periodic functions dk,a,m(n).
Using the fact that pk,a(n) = pa[k](n), in Theorem 3.2 we prove a formula for pk,a(n).

In Proposition 3.3 we show that if a certain determinant is nonzero, then pk,a(n) can be
expressed in terms of values of Bernoulli polynomials and Bernoulli-Barnes numbers. Using
a result from [9], in Corollary 3.4 we show that

lim
N→∞

#{n ≤ N : pk,a(n) ̸≡ 0(mod m)}
N

≥ 1

k
r∑

i=1

ai

,

where m > 1 is an integer.
Similarly to pa(n) we consider the Sylvester decomposition (see [12], [13] and [14]) of

pk,a(n) as a sums of ”waves”, i.e.

pk,a(n) =
∑
j≥1

Wj(k,a, n),

where Wj(k,a, n) := Wj(a[k], n). In Theorem 4.1 we prove a formula for Wj(k,a, n).
The polynomial part of pk,a(n) is Pk,a(n) := W1(k,a, n). In Theorem 4.2 and Theo-

rem 4.3 we prove new formulas for Pk,a(n).

2. Preliminary results

Let r ≥ 1 and k ≥ 2 be two integers. Let a = (a1, . . . , ar) be a sequence of positive
integers. Let D be the least common multiple of a1, . . . , ar.

For 0 ≤ j1 ≤ D
a1

− 1, 0 ≤ j2 ≤ D
a2

− 1, . . . , 0 ≤ jr ≤ D
ar

− 1 let, by Euclidean division,

q(j1, . . . , jr) and r(j1, . . . , jr) be the unique integers such that

a1j1 + · · ·+ arjr = q(j1, . . . , jr)D + r(j1, . . . , jr), 0 ≤ r(j1, . . . , jr) ≤ D − 1. (2.1)

We denote the rising factorial by x(r) := (x+1)(x+2) · · · (x+ r− 1), x(0) = 1. It holds that(
n+ r − 1

r − 1

)
=

1

(r − 1)!
n(r) =

1

(r − 1)!

([
r

r

]
nr−1 + · · ·+

[
r

2

]
n+

[
r

1

])
, (2.2)

where
[
r
k

]
’s are the unsigned Stirling numbers of the first kind.

Let w > 0 be a real number. The Barnes zeta function associated to a and w is

ζa(s, w) :=
∑

u1,...,ur≥0

1

(a1u1 + · · ·+ arur + w)s
, Re(s) > r. (2.3)

For basic properties of the Barnes zeta function see [2], [10] and [11].
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Let w1, . . . , wk > 0 be some real numbers. We consider the function

ζk,a(s, w1, . . . , wk) := ζa(s, w1) · · · ζa(s, wk). (2.4)

Proposition 2.1. We have that

ζk,a(s, w1, . . . , wk) =

∞∑
n=0

∑
n1+···+nk=n

pk,a(n)

(n1 + w1)s · · · (nk + wk)s
.

Proof. For 1 ≤ j ≤ k, we have that

ζa(s, wj) =

∞∑
nj=0

pa(nj)

(nj + wj)s
.

So, the conclusion follows from the definitions of pk,a(n) and ζk,a(s, w1, . . . , wk). □

Remark 2.2. Note that, if r = 1 and 1 ≤ j ≤ k then

ζa(s, wj) =

∞∑
uj=0

1

(a1uj + wj)s
=

1

as1

∞∑
uj=0

1

(uj +
wj

a1
)s

=
1

as1
ζ

(
s,

a1
wj

)
,

where

ζ(s, w) :=

∞∑
n=0

1

(n+ w)s
, Re(s) > 1

is the Hurwitz zeta function. It follows that

ζk,a(s, w1, . . . , wk) =
1

aks1
ζ

(
s,

a1
w1

)
· · · ζ

(
s,

ak
wj

)
.

We consider the set

B := {(j1, . . . , jr) : 1 ≤ j1 ≤ D

a1
− 1, . . . , 1 ≤ jr ≤ D

ar
− 1}.

We recall the following result from [4]. Also, we mention that the definition of Stirling
numbers is slightly different there; see [5] for more details.

Lemma 2.3. ([4, Lemma 2.2]) We have

ζa(s, w) =
1

Ds(r − 1)!

∑
(j1,...,jr)∈B

r−1∑
k=0

[
r

k + 1

] k∑
j=0

(−1)j
(
k

j

)
×

×
(
a1j1 + · · ·+ arjr + w

D

)j

ζ(s− k + j,
r(j1, . . . , jr) + w

D
).

From (2.4) and Lemma 2.3 it follows that:

Proposition 2.4. We have

ζk,a(s, w1, . . . , wk) =
1

Ds(r − 1)!

r−1∑
m=0

[
r

m+ 1

] m∑
ℓ=0

(−1)ℓ
(
m

ℓ

)
×

×
k∏

i=1

∑
(ji1,...,j

i
r)∈B

(
a1j

i
1 + · · ·+ arj

i
r + wi

D

)ℓ

ζ(s−m+ ℓ,
r(ji1, . . . , j

i
r) + wi

D
).

Proposition 2.5. pk,a(n) is a quasi-polynomial of degree rk − 1, with the period D, i.e.

pk,a(n) = dk,a,rk−1(n)n
rk−1 + · · ·+ dk,a,1(n)n+ dk,a,0(n),

where dk,a,m(n + D) = dk,a,m(n) for 0 ≤ m ≤ rk − 1 and n ≥ 0, and dk,a,rk−1(n) is not
identically zero.
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Proof. Since pk,a(n) = pa[k](n), where a[k] = (a
[k]
1 , . . . , a

[k]
r ) (see (1.2)), the conclusion

follows from the classical result of Bell [3]. □

Corollary 2.6. We have that ζk,a(s, w1, . . . , wk) =

=

∞∑
n=0

rk−1∑
m=0

dk,a,m(n)
∑

n1+···+nk=n
ℓ1+···+ℓk=m

(
m

ℓ1, . . . , ℓk

) k∏
j=1

1

(nj + wj)s−ℓj (1 +
wj

nj
)ℓj

.

Proof. From Proposition 2.1 we have that

ζk,a(s, w1, . . . , wk) =

∞∑
n=0

∑
n1+···+nk=n

pk,a(n)

(n1 + w1)s · · · (nk + wk)s
.

Therefore, from Proposition 2.5 it follows that

ζk,a(s, w1, . . . , wk) =

∞∑
n=0

rk−1∑
m=0

∑
n1+···+nk=n

dk,a,m(n)(n1 + · · ·+ nk)
m

(n1 + w1)s · · · (nk + wk)s
=

=

∞∑
n=0

rk−1∑
m=0

dk,a,m(n)
∑

n1+···+nk=n
ℓ1+···+ℓk=m

(
m

ℓ1, . . . , ℓk

)
nℓ1
1 · · ·nℓk

k

(n1 + w1)s · · · (nk + wk)s
.

The conclusion follows immediately. □

We fix two integers N ≥ 1 and we consider the numbers

fN,ℓ = #{(i1, . . . , ik) : i1 + · · ·+ ik = ℓ, 0 ≤ it ≤ N − 1} where 0 ≤ ℓ ≤ k(N − 1). (2.5)

It is clear that fN,ℓ is the coefficient of tℓ of the polynomial

fN (t) = (1 + t+ · · ·+ tN−1)k. (2.6)

Using the binomial expansion, we have

fN (t) = (1− tN )k(1− t)−k =

k∑
i=0

(−1)i
(
k

i

)
tiN

∞∑
j=0

(
j + k − 1

j

)
tj . (2.7)

Proposition 2.7. With the above notations, we have that

fN,ℓ =
∑

i,j≥0, iN+j=ℓ

(−1)i
(
k

i

)(
j + k − 1

j

)
.

Proof. The conclusion follows from (2.5), (2.6) and (2.7). □

3. Main results

We use the notations from the previous section.

Theorem 3.1. For n ≥ 0 we have that

dk,a,m(n) =
1

(rk − 1)!

∑
(ℓ1,...,ℓr)∈C

a1ℓ1+···+arℓr≡n( mod D)

r∏
s=1

∑
is,js≥0, is

D
as

+js=ℓs

(−1)is
(
k

is

)
×

×
(
js + k − 1

js

) rk−1∑
t=m

[
rk

t+ 1

]
(−1)t−m

(
k

m

)
D−t(a1ℓ1 + · · ·+ arℓr)

t−m,

where C = {(ℓ1, . . . , ℓr) : 0 ≤ ℓ1 ≤ k(D
a1

− 1), . . . , 0 ≤ ℓr ≤ k( D
ar

− 1)}.
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Proof. We consider the set

B[k] := {(j1, . . . , jrk) : 0 ≤ j1 ≤ D

a1
− 1, . . . , 0 ≤ jk ≤ D

a1
− 1, . . .

. . . , 0 ≤ jrk−k+1 ≤ D

ar
− 1, . . . 0 ≤ jrk ≤ D

ar
− 1}.

According to [4, Theorem 2.8] and Proposition 2.5 we have that

dk,a,m =
1

(rk − 1)!

∑
(j1,...,jrk)∈B[k]

a1(j1+···+jk)+···+ar(jrk−k+1+···+jrk)≡n( mod D)

rk−1∑
t=m

[
rk

t+ 1

]
×

×(−1)t−m

(
k

m

)
D−t(a1(j1 + · · ·+ jk) + · · ·+ ar(jrk−k+1 + · · ·+ jrk))

t−m. (3.1)

We let ℓ1 := j1 + · · ·+ jk, ℓ2 := jk+1 + · · ·+ j2k, . . . , ℓr = jrk−k+1 + · · ·+ jrk. It is clear that
(j1, . . . , jrk) ∈ B[k] implies (ℓ1, . . . , ℓr) ∈ C.

Since the cardinality of the set

{(jks−k+1, . . . , jks) : jks−k+1 + · · ·+ jks = ℓs, 0 ≤ jt ≤
D

as
for ks− k + 1 ≤ t ≤ ks}

is f D
as

,ℓs
, the conclusion follows from (3.1) and Proposition 2.7. □

Theorem 3.2. For n ≥ 0 we have that

pk,a(n) =
1

(rk − 1)!

∑
(ℓ1,...,ℓr)∈C

a1ℓ1+···+arℓr≡n( mod D)

r∏
s=1

∑
is,js≥0, is

D
as

+js=ℓs

(−1)is
(
k

is

)
×

×
(
js + k − 1

js

) rk−1∏
t=1

(
n− a1ℓ1 − · · · − arℓr

D
+ t

)
,

where C = {(ℓ1, . . . , ℓr) : 0 ≤ ℓ1 ≤ k(D
a1

− 1), . . . , 0 ≤ ℓr ≤ k( D
ar

− 1)}.

Proof. The proof is similar to the proof of Theorem 3.1, using [4, Corollary 2.10] and Propo-
sition 2.7. □

The Bernoulli polynomials are defined by

Bn(x) =

n∑
k=0

(
n

k

)
Bn−kx

k.

For a = (a1, . . . , ar), the Bernoulli-Barnes numbers (see [2]) are

Bj(a) =
∑

i1+···+ir=j

(
j

i1, . . . , ir

)
Bi1 · · ·Bira

i1
1 · · · airr . (3.2)

From (1.2) and (3.2) it follows that

Bj(a[k]) =
∑

i1+···+irk=j

(
j

i1, . . . , irk

)
Bi1 · · ·Birka

i1+···+ik
1 · · · airk−k+1+···+irk

r =

=
∑

ℓ1+···+ℓr=j

(
j

ℓ1, . . . , ℓr

)
aℓ11 · · · aℓrr

∑
i1+···+ik=ℓ1,...,irk−k+1+···+irk=ℓr

(
ℓ1

i1, . . . , ik

)
×

× · · ·
(

ℓr
irk−k+1, . . . , irk

)
Bi1 · · ·Birk . (3.3)
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We consider the rkD × rkD determinant:

∆(r, k,D) :=

∣∣∣∣∣∣∣∣∣∣∣

B1(
1
D )

1 · · · B1(1)
1 · · · Brk(

1
D )

rk · · · Brk(1)
rk

B2(
1
D )

2 · · · B1(1)
1 · · · Brk+1(

1
D )

rk+1 · · · Brk+1(1)
rk+1

...
...

...
...

...
...

...
BrkD( 1

D )

rkD · · · BrkD(1)
rkD · · · BrkD+rk−1(

1
D )

rkD+rk−1 · · · BrkD+rk−1(1)
rkD+rk−1

∣∣∣∣∣∣∣∣∣∣∣
. (3.4)

Proposition 3.3. If ∆(r, k,D) ̸= 0 then pk,a(n) can be expressed in terms of Bj

(
v
D

)
where

1 ≤ v ≤ D and 1 ≤ j ≤ rkD + rk − 1, and Bj(a[k]) with rk ≤ j ≤ rkD + rk − 1.

Proof. According to [6, (1.8)], we have that

rk−1∑
m=0

D∑
v=1

dk,a,m(n)Dn+mBn+m+1

(
v
D

)
n+m+ 1

=
(−1)rkn!

(n+ rk)!
Brk+n(a[k])− δ0n, (3.5)

where δ0n =

{
1, n = 0

0, n > 0
.

Taking n = 0, 1, . . . , rkD− 1 in (3.5) and seing dk,a,m(n)’s as unknowns, we obtain a
linear system of type rkD×rkD, whose determinant is ∆(r, k,D). Therefore, if ∆(r, k,D) ̸=
0, then dk,a,m(n)’s are the solutions of the above system. Since, by Proposition 2.5, we have

pk,a(n) = dk,a,rk−1(n)n
rk−1 + · · ·+ dk,a,1(n)n+ dk,a,0(n),

we get the required result. □

We end this section with the following nice corollary of a result from [9].

Corollary 3.4. If m > 1 is a positive integer, then

lim
N→∞

#{n ≤ N : pk,a(n) ̸≡ 0(mod m)}
N

≥ 1

k
r∑

i=1

ai

.

Proof. It follows from the fact that pk,a(n) = pa[k](n) (see (1.2)) and [9, Theorem 5.2]. □

4. The polynomial part and the waves of pk,a(n)

Let a = (a1, . . . , ar). Sylvester [12, 13, 14] decomposed the restricted partition func-
tion pa(n) in a sum of ”waves”,

pa(n) =
∑
j≥1

Wj(n,a), (4.1)

where the sum is taken over all distinct divisors j of the components of a and showed that
for each such j, Wj(n,a) is the coefficient of t−1 in

∑
0≤ν<j, gcd(ν,j)=1

(
2πνa1i

j

)−νn

· ent

(1− e−a1t+
2πνa1i

j ) · · · (1− e−art+
2πνari

j )
,

where gcd(0, 0) = 1 by convention. Note that Wj(n,a)’s are quasi-polynomials of period j.
Also, W1(n,a) is called the polynomial part of pa(n) and it is denoted by Pa(n). We define:

Wj(n, k,a) := Wj(n,a[k]) for j ≥ 1 and Pk,a(n) := W1(n, k,a), (4.2)

the waves, respectively the polynomial part, of pk,a(n).
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Theorem 4.1. For any positive integer j with j|ai for some 1 ≤ i ≤ r, we have that:

Wj(n, k,a) =
1

D(rk − 1)!

rk−1∑
m=1

j∑
ℓ=1

e
2πℓi

j

rk−1∑
t=m−1

[
rk

t+ 1

](
t

m− 1

)
×

×
∑

(ℓ1,...,ℓr)∈C
a1ℓ1+···+arℓr≡n( mod D)

r∏
s=1

∑
is,js≥0, is

D
as

+js=ℓs

(−1)is
(
k

is

)(
js + k − 1

js

)
×

×D−k(a1ℓ1 + · · ·+ arℓr)
t−m+1nm−1,

where C = {(ℓ1, . . . , ℓr) : 0 ≤ ℓ1 ≤ k(D
a1

− 1), . . . , 0 ≤ ℓr ≤ k( D
ar

− 1)}.

Proof. The proof is similar to the proof of Theorem 3.1, using [7, Proposition 4.2] and
Proposition 2.7. □

Theorem 4.2. For n ≥ 0 we have that

Pk,a(n) =
1

(rk − 1)!

∑
(ℓ1,...,ℓr)∈C

r∏
s=1

∑
is,js≥0, is

D
as

+js=ℓs

(−1)is
(
k

is

)(
js + k − 1

js

)
×

×
rk−1∏
t=1

(
n− a1ℓ1 − · · · − arℓr

D
+ t

)
,

where C = {(ℓ1, . . . , ℓr) : 0 ≤ ℓ1 ≤ k(D
a1

− 1), . . . , 0 ≤ ℓr ≤ k( D
ar

− 1)}.

Proof. The proof is similar to the proof of Theorem 3.1, using [4, Corollary 3.6] and Propo-
sition 2.7. □

Theorem 4.3. We have

Pk,a(n) =
1

(a1 · · · ar)k
rk−1∑
u=0

(−1)u

(rk − 1− u)!
nrk−1−u

∑
ℓ1+···+ℓr=u

aℓ11 · · · aℓrr ×

×
∑

i1+···+ik=ℓ1
...

irk+k−1+···+irk=ℓr

Bi1 · · ·Birk

i1! · · · irk!
.

Proof. From [4, Corollary 3.11] it follows that

Pk,a(n) =
1

(a1 · · · ar)k
rk−1∑
u=0

(−1)u

(rk − 1− u)!

∑
i1+···+irk=u

Bi1 · · ·Birk

i1! · · · irk!
×

× ai1+···+ik
1 · · · airk−k+1···irk

r nrk−1−u

The conclusion follows immediately. □

5. Conclusions

We proved new formulas for pk,a(n), the restricted k-multipartition function associ-
ated to a sequence of positive integers a = (a1, . . . , ar) and to an integer k ≥ 2, its Sylvester’s
waves and, in particular, its polynomial part. Also, we give a lower bound for the density
of the set {n ≥ 0 : pk,a(n) ̸≡ 0(mod m)}, where m ≥ 2.

Our methods are suitable for study other (restricted) integer partition functions.
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