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RODIGITS - A ROMANIAN CONNECTED-DIGITS SPEECH 

CORPUS FOR AUTOMATIC SPEECH AND SPEAKER 

RECOGNITION 

Alexandru Lucian GEORGESCU1, Alexandru CARANICA2, Horia CUCU3, 

Corneliu BURILEANU4 

This paper introduces a new Romanian speech corpus, called RoDigits. The 

corpus comprises spoken connected-digits speech data from 154 speakers. It has an 

approximate duration of 37.5 hours and it is available online, under a Creative 

Commons license, on SpeeD’s laboratory website: https://speed.pub.ro/downloads. 

We present all the steps that included the corpus recording, cleaning and its semi-

automatic validation. The corpus was used to perform speech recognition 

experiments using both the HMM-GMM framework and neural networks.  Speaker 

recognition field has also been approached; speaker verification and speaker 

identification experiments were performed using the GMM-UBM framework. 

Keywords: speech corpora, connected-digits, speech recognition, speaker 

recognition 

1. Introduction 

Recent years have brought major advances in audio signal processing, 

especially in the development of automatic speech recognition and speaker 

recognition systems. Although methods and algorithms are continually improved, 

the biggest problem with these systems is the lack of speech databases, especially 

for languages with limited resources, as is the case with Romanian language. As 

far as we know, there are only a few annotated speech corpora for Romanian. 

According to [1], the Romanian language is in the second weakest group of 5 

possible in terms of support for text and speech resources. However, some 

Romanian speech databases exist and part of them are publicly distributed. 
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A summary of the most important Romanian speech corpora is presented 

in Table 1. As the table shows, the largest corpora are the ones presented in [8 – 

11] and there are also a couple of small corpora for which details are given. 

The acquisition and annotation of one of the first Romanian continuous 

speech corpora is presented in [5], more than 10 hours being recorded by 100 

speakers. This database has a similar structure to that of the EUROM-1 English 

corpus. 

The SWARA corpus [8] contains 21 hours of high-quality speech from 17 

speakers and manually annotated at the utterance level and semi-automatic at 

phoneme level. The main purpose of the corpus is to give persons with speech 

deficiency or surgical aphonia the possibility to use a synthesized voice as close 

as possible to theirs. 

Some automatic speech recognition systems created using online 

broadcasted news in several Eastern European languages are presented in [9]. The 

Romanian acoustic model was trained using a manually annotated 31 hours 

speech corpus. 

A 40 hours corpus of recorded conversations from 30 speakers, based on 

25 scenarios related to banking call centers is presented in [10]. 

In [11] we presented the latest updates on expanding our speech databases 

used for training and evaluation of our automatic speech recognition systems. 

RSC is a read speech corpus recorded in a clean noise environment, summing up 

to about 100 hours, while SSC is a spontaneous speech corpus summing up to 

about 135 hours, taken from radio and TV shows broadcasts, some of them being 

affected by background noise. 
 

Table 1 

Romanian speech resources 

   Size  

Name & ref. 
Type of 

speech 
Domain #utt #hrs #spkrs Avail. 

RASC [2] Read Wikipedia articles 3k 4.8 N/A public 

RO-GRID [3] Read General 4.8k 6.6 12 public 

IIT [4] Read Literature N/A 0.8 3 non-public 

n/a [5] Read 
Eurom-1 adapted 

translations 
4k 10.0 100 non-public 

n/a [6] Spont. Internet, TV shows N/A 4.0 12 non-public 

RSS [7] Read News, Literature 4k 4.0 1 public 

SWARA [8] Read Newspapers 19k 21.0 17 public 

n/a [9] Spont. Broadcast news n/a 31.0 N/A non-public 

n/a [10] Spont. Banking N/A 40.0 30 non-public 

RSC [11] Read 
News, Interviews, 

Literature 
147k 105 157 non-public 

SSC [11] Spont. 
Radio and TV 

broadcasts 
227k 135 N/A non-public 



RoDigits – a Romanian connected-digits speech corpus for automatic speech and speaker (…) 47 

Therefore, as it can be seen from this summary (see Table 1), there is not a 

wide range of Romanian annotated speech resources and only some of them are 

freely available. Other languages, such as English, have a much larger amount of 

data. For example, Switchboard [21] is a conversational telephone corpus and it 

comprises around 300 hours of speech. Librispeech [22], a large-scale freely 

available read English speech corpus, has a duration of over 1000 hours. 

The purpose of this paper is to present a new Romanian speech corpus, 

called RoDigits (Romanian digits). This is composed of audio clips recorded by 

multiple speakers, each clip consisting of a sequence of spoken connected-digits. 

A first unpublished version of this database was used in [12] to create a speech 

recognition system for connected-digits.  

Spoken digits are very common in speech recognition systems. These are 

the basis for many applications in the telephony industry, such as phone dialing, 

interactive voice response systems or data entry. One of the most popular 

databases for such a task is TIDigits [13], an English corpus collected by Texas 

Instruments to design and evaluate algorithms for speaker-independent digits 

sequences recognition. The recordings were made by 326 speakers, belonging to 

both genres and in a wide age range, each speaking approximately 77 digit 

sequences. Also speaker recognition systems are based on spoken digits. 

RSR2015 (Part III) [14] is an English corpus specifically designed to train and test 

automatic text-dependent speaker verification systems. This corpus was collected 

by Institute for Infocomm Research (I2R) and it consists in 35 hours audio data 

from 300 speakers recorded using portable devices. 

Our corpus presented in this paper, RoDigits, has a similar magnitude to 

the other two corpora quoted above. The number of speakers is smaller, but 

comparable in size order: 154 speakers. The total duration is similar to that of the 

RSR corpus, approximately 38 hours. 

This paper is organized as follows. Section 2 provides details about the 

development stages for the RoDigits corpus and its final form. Sections 3 and 4 

present baseline speech and speaker recognition experiments performed solely on 

the newly created corpus. Section 5 is reserved for the conclusions and 

summarization of the work. 

2. RoDigits Corpus Development 

This section describes all the steps taken in creating the corpus. Details 

about the recording stage, cleaning and validating the corpus and characteristics 

about the final corpus are given. 

2.1. Recording the corpus 

The RoDigits corpus was collected by the SpeeD (Speech & Dialogue 

Research Laboratory) group from University Politehnica of Bucharest. The 
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recordings were made over a fairly long time interval, between March 2012 and 

April 2017. Initially, the database contained records from 173 speakers, 100 male 

speakers and 73 female speakers. Then, following the validation process described 

in Section 2.2, the recordings of some speakers were partially or completely 

removed. Also, speakers who did not record the complete set of 100 utterances 

were ignored for the moment and their files are not part of the final corpus. The 

speakers’ ages vary between 20 and 45 years old, with an average around the age 

of 23, most of them being students of Faculty of Electronics, Telecommunications 

and Information Technology of the above mentioned university. Their native 

language is Romanian, except for one person (an Albanian native). The recording 

environment varied: some speakers made the recordings in the lab using 

workstations and Sennheiser head-mounted microphones, while others recorded 

their speech at home using various acquisition hardware. All files have some 

common features. For example, all were resampled at 16 KHz, 1 channel, with a 

precision of 16 bits per sample. All of them are encoded as 16-bit Signed Integer 

PCM. The average length for a recording session is about an hour. It is worth to 

mention that some speakers have interrupted the session and continued it later, at 

another time of the day or even another day. Because of this there may be 

differences even in the recordings of a single speaker, these being induced by the 

different recording environment or by the speaker's mood at the various recording 

times. 

The recordings were made through a web application developed by SpeeD 

group, which is available online and can be accessed via a laptop or PC. After the 

application is opened, the user must allow it to capture the signal from the 

microphone. Then it follows a two-step microphone calibration step. The first step 

consists in recording the background noise. During this time the user must not 

speak and there should not be any other sources of audio in the background. Step 

two involves the recording of a test utterance. Based on these two recordings, the 

signal-to-noise ratio is computed. By comparing it with a predefined threshold, 

the speaker recordings are accepted or rejected. If they are rejected, the speaker 

receives recommendations regarding speech loudness or the speech pauses 

required at the beginning and end of the utterance. 

Each speaker had to record a group of 100 audio clips, each clip consisting 

of a randomly generated sequence of 12 Romanian digits. The application 

displays the digits sequence on the screen and by pressing a button in the 

graphical interface, the audio capture switches on and the speaker can start to 

utter. When the utterance is over, the stop button is pressed. If the recording is 

accepted, the following sequence of digits will be displayed. The user has the 

opportunity to listen to the recordings already made and to repeat the recording 

process for those considered erroneous. Errors can occur for multiple reasons: 

mispronunciations, hesitations, stuttering, etc. Moreover, there can be 
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environment-induced errors such as reverberations or the occurrence of an 

unexpected background noise. Users were advised to speak as natural and clear as 

possible in quiet conditions. 

2.2. Semi-automatic validation of the corpus 

Validation was a necessary step in making the final corpus because, as 

stated in Section 2.1, even if the speakers received instructions on how to record 

the audio clips, not all the recordings were correct. Manually validating all the 

recordings (almost 40 hours of speech) by comparing the utterances with the 

transcriptions would have been a tedious task. Consequently, we decided to 

approach it semi-automatically by excluding incorrect files, based on several 

criteria, as follows: completeness of audio file set, file size in bytes, audio 

duration, WER. The exclusion process was automated as much as possible. 

First, the speakers were automatically sorted by the number of recorded 

audio clips. The goal was to keep, as far as possible, in the final corpus only 

complete sets of 100 recordings per speaker. The audio files of the speakers who 

recorded less than 50 clips were excluded. 155 audio files from 15 speakers were 

excluded in this step. 

Next, the audio files were sorted in ascending order by file size in bytes. 

Zero-sized audio clips were directly removed. A human operator listened to the 

non-zero-sized audio clips to empirically determine a minimum size for valid 

clips. Using this procedure we discovered a speaker who had only zero-sized 

recordings. Other seven audio clips from four different speakers were identified as 

being incomplete (containing the pronunciation of only one, two or three digits). 

The audio clips were also sorted in ascending order by their time duration. 

A human operator listened to the shortest audio files to empirically determine a 

minimum duration for valid audio clips (clips comprising the complete digit 

sequence). Using this procedure, another four audio clips were identified as 

incomplete and excluded from the corpus. 

Finally, another method of validation involved decoding all recordings 

using an automatic speech recognition (ASR) system and comparing the resulted 

transcription with the presumed one. Specifically, the following steps were taken: 

• the recordings were automatically transcribed; 

• the resulted transcripts were aligned with the reference transcripts; 

• the number of correctly transcribed words (NCW) was computed for each 

recording; 

• the recordings were sorted by NCW in ascending order, 

• a human operator listened to all the recordings for which NCW < 7 (the 

ASR transcribed correctly less than 7 words out of 12 possible). 

The acoustic model was a general one, trained on a corpus containing both 

read and spontaneous speech on various topics. More details about it can be found 
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in [11]. The first used language model was a generic n-gram language model 

created on the basis of very large text corpus. However, the experiments showed 

that this induces quite a lot of errors and it is not indicated for an audio corpus 

validation operation. To reduce the probability of errors, a rule-based grammar 

model, described in Section 3.1, was chosen to restrict the output of the ASR 

system to a sequence of digits. 

By following the above procedure, several incomplete audio clips were 

discovered and excluded from the corpus. Moreover, using this procedure, 

complete, but noisy audio clips were discovered. The exclusion decision in these 

cases was based on the perception of the human operator who listened to the 

recordings: only recordings in which the words could be distinguished and 

identified were kept. 

2.3. Splitting the corpus 

After the exclusion of several recordings, during the validation procedure 

discussed above, the final corpus comprised 15,389 recordings (99 recordings 

from 11 speakers + 100 recordings from 143 speakers).  

The final corpus was divided into training set, development set and 

evaluation set. The training and development sets contain recordings from the 

same speakers, representing 90% of all speakers, and their choice was a random 

process. In order to optimize future work with these sets, it was taken into account 

that the speakers in these two sets must have complete records, 100 files each one. 

The training set contains 80 files from each speaker, those with IDs between 1-50 

and 71-100. The development set contain the remaining 20 files out of the total of 

100 files, those with IDs between 51 and 70. The evaluation set contains the entire 

recordings set from the remaining 10% of the speakers, each with 99 or 100 audio 

recordings, respectively. 

2.4. Characteristics of the final corpus 

The final corpus has a size of 3.15 GB and contains a total of 15,389 audio 

files from 154 speakers, 86 male and 68 females. The total duration of the corpus 

is about 37.5 hours. As presented in section 2.3, the corpus consists of 3 sets: 

training, development and evaluation. 

The train set consists of 11,120 audio files from 139 speakers, 76 male and 

63 females. The total duration of this set is about 27 hours. The development set 

consists of 2,780 files from the same group of speakers as in the case of the 

training set. More than 6 hours of speech make up this set. The evaluation set 

includes 1,489 files from 15 speakers, 10 male and 5 female. The total duration of 

the set is over 3 hours. Table 2 summarizes the characteristics of the entire corpus, 

as well as of each set. 
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Table 2 

Corpus characteristics 

 Set 

Characteristic Train Dev Eval Total 

# of speakers 

   Male speakers 

   Female speakers 

139 

76 

63 

139 

76 

63 

15 

10 

5 

154 

86 

68 

# of files 11120 2780 1489 15389 

Total duration 27 h 2 m 18 s 6 h 47 m 24 s 3 h 43 m 24 s 37 h 33 m 07 s 

Mean duration / file 8.75 s 8.79 s 9.00 s 8.78 s 

2.5. Availability of the corpus 

The corpus is available online and can be downloaded under the Creative 

Commons BY-NC-ND 3.0 license from SpeeD's laboratory website [15]. The 

archive contains both audio files (grouped into folders named after the speaker 

ID) and their transcriptions. Moreover, it includes several metadata files: list of 

training files, list of development files, list of evaluation files, list of all speakers 

IDs and a phonetic dictionary containing phonetic transcripts for Romanian digits. 

3. RoDigits Speech Recognition System 

As stated before, RoDigits speech corpus can be used to evaluate 

automatic speech recognition (ASR) and speaker recognition systems. This 

section presents a basic ASR system for connected-digits, trained and evaluated 

solely on RoDigits. General information about the phonetic, language and 

acoustic models are provided in section 3.1, while section 3.2 presents the various 

experiments performed for finding the optimal ASR main parameters and results 

related to system performance evaluation. 

3.1. Phonetic dictionary and grammar 

The phonetic dictionary is a component of an ASR system. It contains all 

the words that can be transcribed by the system, accompanied by their phonetic 

transcription. It links the other two ASR components: the acoustic model, which 

estimates the probabilities of phonemes occurrence, and the language model, 

which models how likely word sequences are. 

In this case, the phonetic dictionary consists of 10 lines, corresponding to 

the words in Romanian language that designate the digits from 0 to 9. 

As mentioned above, the language model has the role of estimating how 

likely a group of words is, to establish the sequence of words in a sentence. 

Generally, two types of language models are used: probabilistic models and rule-

based models. 

In our case, we use a rule-based (grammar) language model, because the 

vocabulary is small, and we can define the exact constraints regarding the allowed 
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sequences of words. The grammar was defined as a word-loop model: any word 

may follow any other and the allowed sequences of words may have any length. 

3.2. Kaldi HMM-GMM and TDNN acoustic models 

Kaldi [16] is currently one of the most popular open-source toolkits. It 

provides support for automatic speech recognition and also speaker recognition. 

Kaldi contains state-of-the-art algorithms focused on voice signal 

parameterization, HMM-GMM based acoustic models, neural network acoustic 

models, offline or real-time voice signal decoding. 

The first stage in such a system consists in features extraction from the 

vocal signal. Kaldi uses MFCC (Mel Frequency Cepstral Coefficients) or PLP 

(Perceptual Linear Prediction) coefficients, on which several types of transforms 

are applied, such as CMVN (Cepstral Mean and Variance Normalization), LDA 

(Linear Discriminant Analysis), MLLT (Maximum Likelihood Linear Transform) 

and more. 

Acoustic modeling using the HMM-GMM framework implies training 

iteratively several models, each one based on phone forced alignments obtained 

from the previous model. First, a context-independent model for phones 

(monophones) is created. Next, based on the forced alignments for phones 

obtained using this model, a more complex, context-dependent, model for phones 

is trained. Going further, each training iteration aims at training a more complex 

model, by applying various speaker-independent or speaker-adaptive transforms 

to the features or using more sophisticated training algorithms. 

Using the training set of our corpus, we trained HMM-GMM acoustic 

models, varying some of the most important parameters (the number of HMM 

states referred as leaves and the total number of Gaussian densities), in order to 

determine the best combination of these values. The decoding step was done using 

both the development set and the evaluation set. Table 3 and Table 4 show the 

results obtained using the TRI3 MMI acoustic model, which models triphones and 

applies the Maximum Mutual Information (MMI) training technique. 

The HMM-GMM models were used as a starting point for training HMM-

DNN acoustic models based on time delay neural networks (TDNN) [17]. This 

type of neural networks model temporal dependencies between acoustic events. A 

sub-sampling technique is applied, which assumes that activations for neighbor 

frames are correlated, then they are not considered for consecutive frames, but for 

spliced frames. This fact brings the advantage that the execution time is 

comparable to feed-forward networks. 
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Table 3 

Kaldi GMM-based ASR results on RoDigits 

Dev Set  

WER[%] # GMs 

# leaves 20k 50k 100k 

50 0.39 0.42 0.49 

75 0.31 0.33 0.31 

100 0.31 0.30 0.31 

125 0.28 0.30 0.36 

150 0.31 0.28 0.34 
 

Table 4 

Kaldi GMM-based ASR results on RoDigits 

Eval Set 

WER[%] # GMs 

# leaves 20k 50k 100k 

50 1.56 1.90 2.15 

75 1.23 1.32 1.97 

100 1.11 1.27 1.42 

125 0.85 0.91 1.36 

150 1.26 1.00 1.37 
 

 

The results tables show that the WERs reported for the models with 20k or 

50k Gaussian densities and between 75 and 150 leaves, are very close. The best 

results are obtained for 20k Gaussian densities and 125 leaves. The models which 

have 100k Gaussian densities exhibit a significantly higher WER. Nevertheless, 

on the evaluation set (which contains unknown speakers), the error rate is 

significantly higher than on the development set (which contains known 

speakers). Because the best results were obtained for 125 leaves and 20k Gaussian 

densities, we performed further experiments keeping these values as constants. 

Table 5 presents average WER and standard deviation for both 

development set and evaluation set, as a comparison between HMM-GMM and 

TDNN acoustic models. 
 

Table 5 

Comparison between Kaldi GMM-based and DNN-based ASRs on RoDigits Dev Set and 

Eval Set 

 WER[%] on Dev Set WER[%] on Eval Set 

Acoustic Model Type average std average std 

Tri 1 0.70 1.10 3.30 4.30 

Tri 2 0.60 1.00 3.00 3.60 

Tri 3 [LDA + MLLT + SAT] 0.50 0.80 1.70 2.20 

Tri 3 [MMI] 0.30 0.40 0.90 0.90 

TDNN 0.30 0.50 1.20 1.10 

 

The acoustic models based on neural networks were saved after each 

epoch. Following the experiments, the results are somewhat similar using models 

obtained after the first 3 training epochs. The best model is the one obtained after 

4 epochs. The number of hidden layers of the network has also been varied. At the 

beginning, the tests were performed using 3 hidden layers, but the presented 

results are obtained with a 6 hidden layer network. 

The standard deviation has very low values on development set, this 

information providing the certainty that the error is below 1% for almost all 

speakers. Not the same thing can be said for the evaluation set. The higher 

standard deviation values correspond to the fact that there are speakers for which 
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the system transcribes worse. Table 6 presents the number of speakers for each 

WER interval using the best system, TRI3 MMI. 

 
Table 6 

Number of speakers vs. WER values for TRI3 MMI 

 # of speakers 

WER values Dev Set Eval Set 

WER = 0% 87 3 

0% < WER < 1% 41 6 

1% < WER < 2% 10 4 

2% < WER 1 2 
 

The average sentence error rate (SER) for the best system is 2.90% on the 

development set and 8.30 on the evaluation set. 

In conclusion, for a simple task with a small 27-hour training database, the 

use of neural networks is not justified because the results are not improved 

compared to those obtained using the HMM-GMM framework. 

3.3. CMU Sphinx HMM-GMM acoustic models 

The CMU Sphinx Toolkit [19] is used to implement a HMM-GMM based 

ASR architecture, for the initial validation of the corpus. CMU Sphinx, also called 

Sphinx in short, is the general term to describe a group of speech recognition 

systems developed at Carnegie Mellon University. These include a series of 

speech recognizers (Sphinx 2 - 4) and an acoustic model trainer (SphinxTrain). 

The code is available open source for download and use [20]. The libraries and 

sample code can be used for both research and commercial purposes.  

Acoustic models used in this paper are 5-state HMMs, with output 

probabilities modeled with GMMs. The traditional MFCC features were used as 

baseline audio features, plus temporal derivatives (13 MFCC + Δ + ΔΔ). The 

number of Gaussian mixtures (GMs) per senone state were varied, to adapt the 

acoustic model setup to the size and variability of the training speech database. No 

audio enhancements or noise reduction algorithms were used. Phonemes were 

modelled in a context-dependent manner. To study the effects of increasing or 

decreasing the number of senones and Gaussian mixtures per senone, they were 

varied, according to Tables Table 7, Table 8, Table 9 and Table 10. These values 

where chosen in correspondence with Tables Table 3 and Table 4, so we can 

directly make a comparison between the performance of both CMU Sphinx and 

Kaldi acoustic models, but also to adapt to the size of the corpus. 

Final results were compared in terms of WER (Tables Table 7 and Table 

9) and SER (Tables Table 8 and Table 10). The effects of increasing and 

decreasing the number of tied-states (senones) and number of Gaussians per 

senone, for each setup, can also be observed in the corresponding tables. 
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For the RoDigits corpus, with the current setup, it seems that 512 GMMs 

with 125 senone states offer the best results for the development dataset, which 

includes speakers used for training also. With unseen speakers, in the evaluation 

dataset, 100 senones with 256 GMMs offer the best results, for both SER and 

WER metrics.  

These results can be explained by the fact that the more senones a model 

has, the more precisely it discriminates among sounds. On the other hand, if a 

high number of senones is set (more than necessary), the model might not be 

universal enough to recognize unseen speech. WER will be higher on new data, so 

it is important also not over-train the models, given the current size of the digits 

corpus, and the limited numbers of trained phonemes (only 19 independent 

phonemes where trained, contained in the digits dictionary for CMU Sphinx). In 

general, the little the mismatch (be it speaker, environment, encoding, etc.) 

between the training and the evaluation data, the better the results. 
 

Table 7 

CMU Sphinx Dev Set results (WER) 

WER [%] # GMs / senone 

senones 32 64 128 256 512 

50 4.5 3.8 3.3 2.9 2.7 

75 2.8 2.5 2.3 2.0 1.9 

100 2.4 2.0 1.8 1.6 1.5 

125 2.6 2.3 1.9 1.7 1.5 

150 2.5 2.2 2.1 2.0 2.2 
 

Table 8 

CMU Sphinx Dev Set results (SER) 

SER [%] # GMs / senone 

senones 32 64 128 256 512 

50 37.5 32.9 30.1 27.1 25.9 

75 25.8 24.5 22.5 20.0 18.6 

100 22.5 20.4 18.7 16.8 16.2 

125 23.5 21.9 19.0 17.1 15.7 

150 23.2 21.5 20.2 20.0 21.1 
 

Table 9 

CMU Sphinx Eval Set results (WER) 

WER [%] # GMs / senone 

senones 32 64 128 256 512 

50 6.8 6.2 6.1 6.0 6.2 

75 5.1 4.9 4.9 5.2 5.5 

100 4.2 3.9 3.7 3.7 3.9 

125 4.1 4.4 4.0 3.9 3.9 

150 4.9 4.8 4.8 5.2 5.5 
 

Table 10 

CMU Sphinx Eval Set results (SER) 

SER [%] # GMs / senone 

senones 32 64 128 256 512 

50 47.2 43.0 40.9 40.5 40.6 

75 36.7 32.0 34.1 35.5 36.2 

100 31.1 29.2 28.3 27.6 27.4 

125 31.6 31.4 29.8 29.1 28.9 

150 32.7 31.5 30.8 33.2 33.6 
 

4. RoDigits Text-Independent Speaker Recognition System 

Speaker recognition is another field of interest in speech processing. This 

section presents the first text-independent speaker recognition experiments and 
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results using the RoDigits corpus. Experiments in various scenarios involving 

speaker verification and speaker identification were performed. As with speech 

recognition, the main parameters were varied to determine the best configuration.  

4.1. Alize GMM-UBM speaker models 

Alize [18] is an open-source toolkit which provides algorithms specialized 

in features extraction, speaker model training and methods to determine their 

identity. The experiments presented in this article use 19-dimensional vectors of 

cepstral coefficients (MFCC). Speaker modeling is achieved based on GMM-

UBM framework.  

Any speaker recognition system consists of two major stages. The first 

stage is the training stage, sometimes called the enrollment stage. This phase 

involves the creation of a general speech model, comprising voice samples from 

many speakers. The model obtained will be a model that characterizes speech in 

general terms, without being specific to a particular speaker. This model is called 

Universal Background Model (UBM). Also in this stage, the creation of 

individual models takes place. Starting from the UBM, a model that characterizes 

the speech of a particular speaker will be derived. The vocal features of each 

speaker are modeled using a mixture of Gaussian densities (GMM). The speaker 

adaptation stage is repeated for all speakers that need to be enrolled in the system. 

The second stage is the test stage, which supposes matching a speech sample 

against speaker models and against the UBM, gaining a similarity score on which 

decisions are made. The standard performance figures for speaker recognition 

systems are the false rejection rate (FRR) and false acceptance rate (FAR). 

4.2. Speaker verification scenario 

Speaker verification is the task of verifying if the claimed speaker identity 

matches his real identity. Speech samples received from a speaker who claims to 

have a certain identity are compared against the UBM and against the personal 

model (GMM) of the claimed speaker. If the distance to the individual model is 

smaller than the distance from the universal model, the system decides that the 

verified speaker is the claimed speaker, otherwise he is an impostor. In this 

scenario, a false rejection error occurs if the system erroneously decides that the 

claimed identity is not the real speaker identity. A false acceptance error occurs if 

the system erroneously decides that a falsely claimed identity is the real speaker 

identity. 

The UBM was trained using the training and development corpus sets, as 

defined in Section 2.4. A number of 139 speakers, 100 files from each one, were 

used to train the universal model. The number of Gaussian densities was varied 

between 16 and 512, more and more complex UBMs being obtained. Individual 

GMMs were trained for the same 139 speakers by deriving UBM. Thus, between 

10 and 80 files were used as enrollment files for each speaker in the training set. 
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These enrollment files had the role of adapting the UBM to each known speaker, 

resulting in individual GMMs.  

The development set files were used to compute the false rejection rates. 

Thus, as many as 20 files from 139 speakers were tested against a pair made up of 

its own GMM and the UBM, totaling 2.780 tests. 

Both the development set and the evaluation set were used to compute the 

false acceptance rates. Twenty files from each of the 139 speakers in development 

set were tested against each existing GMM and UBM pair, except for their own 

GMM. A total of 383.640 tests were performed. Also, the evaluation corpus was 

used. The evaluation set contains 100, respectively 99 files from 15 speakers, 

which are not part of the training and development set. These files are tested 

against each GMM and UBM pair, resulting a total of 206.971 false acceptance 

tests. 

Based on the obtained results, a number of observations can be made and 

some conclusions can be drawn. As a general observation, simple models are 

characterized by the fact that more speakers are modeled by the same Gaussian 

density within the UBM. For a number of 16 Gaussian densities and 139 speakers, 

there are about 9 speakers modeled by a single Gaussian. Instead, for the most 

complex model, trained with 512 Gaussian densities, about 4 densities from UBM 

are assigned to each speaker. 
 

 

Fig. 1. False rejection rates in speaker verification scenario 

 

As can be seen in Fig. 1, using simple models, trained with few Gaussian 

densities, the false rejection rate decreases as the number of enrollment data 

increases. This happens because the speaker-specific GMM, derived from a 

simple UBM, must have sufficient adaptation data so as to obtain a better score 

than the UBM. This is because the Gaussian densities in UBM are not specific to 

the speaker: a single Gaussian density models about 9 speakers. Instead, using 
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complex models, the false rejection rates do not vary depending on the amount of 

enrollment data. This is possible because the speaker-specific GMM, derived from 

a complex UBM, does not need very much enrollment data: the UBM already 

contains Gaussian densities specific to that speaker. Generally, a more complex 

model is better. For 139 speakers there is a need for a sufficiently complex model 

that has enough parameters to model all the variability of the database. In the case 

of 512 Gaussian densities per model, 4 Gaussian densities model a speaker, 

getting the best result: 0.03% FRR, regardless of the number of adaptation files. 

As can be seen in Fig. 2, few data for adaptation of a simple UBM, trained 

with few Gaussian densities, lead to lower false acceptance errors than few 

adaptation data of a more complex UBM. Complex UBMs model relatively well 

all speakers with different Gaussian densities, having more Gaussian densities for 

the same speaker. Consequently, GMMs derived from it and adapted with few 

data will be not speaker-specific enough. Thus, a speaker who claims to be 

someone else could get a better score on that other person GMM than on the 

UBM. Performance is constant for 64 Gaussian densities, regardless of the 

number of adaptation files. The best results were obtained for 512 Gaussian 

densities and 80 adaptation files, with a value of about 4% FAR. 

 

 

Fig. 2. False acceptance rates in speaker verification scenario 

4.3. Close-set speaker identification scenario 

Speaker identification consists in determining the identity of the speaker, 

without providing any priori information about his possible identity. Speech 

samples provided at the input of the system are compared in turn against each 

individual model and against the universal model. If the speech sample from the 

tested speaker does not belong to any speaker whose individual model exists in 

the system, the best score should be obtained on the universal model. Instead, if 

there is an individual model for the tested speaker, the best score should be 

obtained on his own model. In this scenario, an identification error occurs if the 
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system erroneously decides that the voice of a known speaker, enrolled in the 

system, but without knowing his claimed identity, belongs to another enrolled 

speaker. Also, an identification error is considered the situation when the system 

erroneously decides that the voice of a non-enrolled speaker, belongs to an 

enrolled speaker. 

The training of UBMs and individual models took place in the same way 

as in the speaker verification scenario as described in Section 4.2. Experiments 

were performed in closed set scenarios, where the tested speaker is always one of 

those enrolled in the system, and in open set scenarios, where the tested speaker 

may be one outside the system, which has not been enrolled, so does not have an 

own GMM. 

Fig. 3 presents the identification error rate in closed-set scenario. The 

results were obtained on the development set (known speakers) files. Twenty files 

from 139 speakers were tested against each existing GMM and against the UBM, 

with a total of 386.420 tests. The speakers from the development set have their 

own GMM models in the system.  

The error rate decreases with the number of adaptation files. This fact is 

very pronounced for simple models, but it is also true for complex models. 

 

 

Fig. 3. Identification error in closed-set in speaker identification scenario 

 

Open set scenario experiments (using the evaluation set) were also 

performed. A total of 99, respectively 100 files from 15 non-enrolled speakers 

were tested against each existing GMM and against the UBM, summing up a total 

of 206.971 tests. Speakers being unknown, the best matching should be done 

against the UBM and not against any of the GMMs for the enrolled speakers. 

Unfortunately, the results are not good in this scenario, the error rate being greater 

than 90%, regardless of the number of Gaussian densities and the number of 

enrollment files. 
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5. Conclusions 

This paper introduced a Romanian corpus of spoken digits, called 

RoDigits. This corpus, along with the reference transcripts, is available online 

under the Creative Commons BY-NC-ND 3.0 license. 

The first part of the paper presented data about speakers, details about 

corpus acquisition, modalities to clean and validate it. The corpus was divided 

into 3 sets: training, development and testing. They are suitable for speech and 

speech recognition tasks. 

The corpus was used to create a connected-digits speech recognition 

system. The acoustic models were trained using both the HMM-GMM framework 

and neural networks. Parameters such as the number of Gaussian densities, the 

number of leaves, respectively the number of hidden layers and the number of 

epochs have been varied. The lowest WER achieved was 0.28%. The neural 

network models did not provide better results because the small size of the 

training set. HMM-GMM models are sufficient for such a low-vocabulary 

recognition task and few training data. 

Finally, the corpus was used in speaker recognition experiments using the 

GMM-UBM framework. Using it, speech data from more speakers was modeled, 

obtaining universal models, as well as individual models, specific to particular 

speakers. The number of Gaussian densities and the number of files used to enroll 

speakers in the system were varied. Speaker verification experiments were 

performed, resulting in almost 0% false rejection rates, or around 5% false 

acceptance rates. Close-set speaker identification experiments have indicated 

errors below 1%, while open-set errors are quite high and will be further 

investigated. 
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