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CERTAIN GENERATING RELATIONS OF KONHAUSER MATRIX

POLYNOMIALS FROM THE VIEW POINT OF LIE ALGEBRA

METHOD

Ayman Shehata1

This paper is devoted to construct Lie operators associated with Konhauser ma-
trix polynomials of the first kind using Lie group theory. Furthermore, certain generating

matrix functions, integral representations and matrix differential recurrence relations,
new and known consequences for Konhauser matrix polynomials are derived and their
applications are presented.
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1. Introduction

Special matrix functions are the solutions of a wide class of mathematically and
physically relevant functional equations. Generating matrix functions play an important
role in the study of special matrix functions. In the investigation of generating matrix
functions, group theoretic method seems to be a potent one in comparison with analytic
methods because of the fact that the unknown generating matrix functions can only be
obtained by group theoretic method as well as the known generating matrix functions can
be verified and the corresponding extension can be made by analytic method (see [2, 3, 4, 5,
12, 13, 15, 19, 20, 21, 24, 25]). In [16, 17], Konhauser also introduced two sets of polynomials
Zα
n (x; k) and Y α

n (x; k), which are biorthogonal with respect to the weight function xαe−x

over the interval (0,∞), α > −1 for k is a positive integer.
Motivated and inspired by the work of Erkuş-Duman and Çekim [7], Shehata [26],

Varma et al. [27], and Varma and Taşdelen [28] and a recent work on representation of Lie
algebra [1, 11, 14, 22, 23], in this paper, we derive some integral representations, matrix dif-
ferential recurrence relations and certain generating matrix functions involving Konhauser
matrix polynomials of the first kind by using Weisner’s method [29]. In section 2, we discuss
some integral representations and matrix differential recurrence relations with Konhauser
matrix polynomials. In section 3, we derive certain generating matrix functions for Kon-
hauser matrix polynomials by using the representation of the Lie group theory. The main
interest in our results lies in the fact that a number of their special cases can be used to
derive many new and known consequences for the Konhauser matrix polynomials of two vari-
ables, which we will obtain in section 4. The main results of our investigation are derived
in sections 5.
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1.1. Preliminaries

In this subsection, we give the brief introduction related to Konhauser matrix poly-
nomials and recall the following definitions, theorems, lemmas and some previously known
concepts. During this work, the spectrum σ(A) of a matrix A in CN×N symbolize the set
of all eigenvalues of A. Furthermore, the identity matrix and the null matrix or zero matrix
in CN×N will be symbolized by I and 0, respectively.

Definition 1.1. If A0, A1, . . . , An are elements in CN×N and An ̸= 0, then the matrix
polynomials of degree n in x (x is a real variable or complex variable) is an expression in
the form

P (x) = Anx
n +An−1x

n−1 + . . .+A1x+A0.

Theorem 1.1. (Dunford and Schwartz [6], Theorem 5, p.558) If u(z) and v(z) are holo-
morphic functions in an open set Ω of the complex plane C, and P , Q are commutative
matrices in CN×N with σ(P ) ⊂ Ω and σ(Q) ⊂ Ω, then

u(P )v(Q) = v(Q)u(P ).

Definition 1.2. (Jódar and Cortés [9], p.89) If P is a positive stable matrix in CN×N , then
the Gamma matrix function Γ(P ) is defined as

Γ(P ) =

∫ ∞

0

e−ttP−Idt; tP−I = exp

(
(P − I) ln t

)
. (1.1)

Definition 1.3. For A ∈ CN×N such that σ(A) does not contain 0 or a negative integer
(σ(A) ∩ Z− = ∅ where ∅ is an empty set), the matrix analogues of Pochhammer symbol or
shifted factorial is defined as (see Jódar and Cortés [10], p.206)

(A)n = A(A+ I)(A+ 2I) . . . (A+ (n− 1)I)

= Γ(A+ nI)Γ−1(A); n ≥ 1; (A)0 = I,
(1.2)

where Γ(A) is an invertible matrix.

Definition 1.4. (Jódar and Cortés [9], p.92) If P and Q are positive stable matrices in
CN×N , then the Beta matrix function B(P,Q) is defined as

B(P,Q) =

∫ 1

0

tP−I(1− t)Q−Idt. (1.3)

Lemma 1.1. (Jódar and Cortés [10], Lemma 2, p.209) Let P , Q and Q + P be positive
stable matrices in CN×N satisfying PQ = QP and P + nI, Q + nI and P + Q + nI are
invertible matrices for all nonnegative integers n. Then

B(P,Q) = Γ(P )Γ(Q)Γ−1(P +Q). (1.4)

Definition 1.5. (Jódar et al. [8], p.58) Let A be a matrix in CN×N such that

−k /∈ σ(A) for every integers k > 0, (1.5)

and λ is a complex number with Re(λ) > 0. Then the Laguerre matrix polynomials is defined
as

L(A,λ)
n (x) =

n∑
k=0

(−1)k(A+ I)n[(A+ I)k]
−1(λx)k

k!(n− k)!
. (1.6)
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For the purpose of the present study, we recall the following explicit expression for

the Konhauser matrix polynomials Z
(A,λ)
n (x; k) of the first kind in (Varma et al. [27], p.

197):

Z(A,λ)
n (x; k) = Γ(A+ (kn+ 1)I)

n∑
r=0

(−1)r(λ x)rk

r!(n− r)!
Γ−1(A+ (kr + 1)I), (1.7)

where A is a matrix in CN×N satisfying the condition

Re(µ) > −1, for all eigenvalues µ ∈ σ(A) (1.8)

and λ is a complex number with Re(λ) > 0, k ∈ N = Z+ = {1, 2, 3, . . .}.

2. Some properties of Konhauser matrix polynomials

The integral representations for the Konhauser matrix polynomials Z
(A,λ)
n (x; k) of the

first kind are derived as in the following theorems.

Theorem 2.1. Let A be a matrix in CN×N satisfying the condition in (1.8) and for

∣∣∣∣ t
λx

∣∣∣∣ < 1.

Then the Konhauser matrix polynomials has the following integral representation:

Z(A,λ)
n (x; k) =

Γ(A+ (kn+ 1)I)

n!2πi

∫
C

(tk − (xλ)k)nett−A−(kn+1)Idt. (2.1)

Proof. The contour integral representation for the reciprocal Gamma function is given as:
(see [18], p. 115, No. (5.10.5) )

1

Γ(z)
=

1

2π i

∫
C

ett−zdt (2.2)

where C is the path around the origin in the positive direction, beginning at and returning
to positive infinity with respect for the branch cut along the positive real axis.

Thus, from (2.2), we have the following integral matrix functional

Γ−1(A+ (kr + 1)I) =
1

2πi

∫
C

ett−A−(kr+1)Idt. (2.3)

From (1.7) and (2.3), we get

Γ(A+ (kn+ 1)I)

n!2πi

∫
C

(tk − (λ x)k)nett−A−(kn+1)Idt

=
Γ(A+ (kn+ 1)I)

n!2πi

n∑
r=0

(−1)rn!(λ x)kr

r!(n− r)!

∫
C

ett−A−(kr+1)Idt

= Γ(A+ (kn+ 1)I)
n∑

r=0

(−1)r(λ x)kr

r!(n− r)!
Γ−1(A+ (kr + 1)I) = Z(A,λ)

n (x; k).

This immediately leads to the proof of the theorem. �

Theorem 2.2. Suppose that A is a matrix in CN×N satisfying the condition in (1.8). Then
the Konhauser matrix polynomials has the following integral representation:

Z(A,λ)
n (x; k) =

Γ(A+ (kn+ 1)I)

n!2πi
(λx)−A

∫
C

(uk − 1)neλ xuu−A−(kn+1)Idu. (2.4)

Proof. If we make the substitution t = λxu in (2.1), we get an integral representation for

Z
(A,λ)
n (x; k). �

In the same way, one can derive the following integrals formulas:
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Theorem 2.3. Let A and B be commutative matrices in CN×N satisfying the condition
(1.8), the integral representation for the Konhauser matrix polynomials satisfy the following:∫ ∞

0

xBe−x Z(A,λ)
n (x; k)dx =

1

n!
(A+ I)knΓ(B + I)

× k+1Fk

(
− nI,

B + I

k
, . . . ,

B + kI

k
;
A+ I

k
, . . . ,

A+ kI

k
;λk

)
.

(2.5)

Proof. Using the formula in [26], we have

(A+ I)kr = Γ(A+ (kr + 1)I)Γ−1(A+ I)

= kkr
(
A+ I

k

)
r

(
A+ 2I

k

)
r

. . .

(
A+ kI

k

)
r

,

(B + I)kr = Γ(B + (kr + 1)I)Γ−1(B + I)

= kkr
(
B + I

k

)
r

(
B + 2I

k

)
r

. . .

(
B + kI

k

)
r

.

(2.6)

Using (1.1), we can write∫ ∞

0

xBe−x Z(A,λ)
n (x; k)dx = Γ(A+ (kn+ 1)I)

×
n∑

r=0

(−1)r(λ)rk

(n− r)!r!
Γ−1(A+ (kr + 1)I)

∫ ∞

0

e−xxB+krIdx.

More simplification of the above expression, we have∫ ∞

0

xBe−x Z(A,λ)
n (x; k)dx = Γ(A+ (kn+ 1)I)

×
n∑

r=0

(−1)r(λ)rk

(n− r)!r!
Γ−1(A+ (kr + 1)I)Γ(B + (kr + 1)I).

This formula can be written as:∫ ∞

0

xBe−x Z(A,λ)
n (x; k)dx = Γ(A+ (kn+ 1)I)

×
n∑

r=0

(−1)r(λ)rk

(n− r)!r!
Γ−1(A+ (kr + 1)I)Γ(B + (kr + 1)I).

Using (2.6), we obtain∫ ∞

0

xBe−x Z(A,λ)
n (x; k)dx =

1

n!
(A+ I)knΓ(B + I)

× k+1Fk

(
− nI,

B + I

k
, . . . ,

B + kI

k
;
A+ I

k
, . . . ,

A+ kI

k
;λk

)
.

This immediately leads to the proof of the theorem. �

Theorem 2.4. If A and B are matrices in CN×N satisfying the condition in (1.8) and
AB = BA. Then the integral representation for the Konhauser matrix polynomials satisfies
the following: ∫ x

0

(x− t)B−A−ItA Z(A,λ)
n (t; k)dt = Γ(A+ (kn+ 1)I)

× Γ(B −A)Γ−1(B + (kn+ 1)I)xBZ(B,λ)
n (x; k),

(2.7)

where Re(µ) > 0 for all µ ∈ σ(B −A) and Γ(B + (kn+ 1)I) is an invertible matrix.
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Proof. Using (1.7) in the left hand side of (2.7), we have the integral matrix functional

∫ x

0

(x− t)B−A−ItA Z(A,λ)
n (t; k)dt = Γ(A+ (kn+ 1)I)

n∑
r=0

(−1)r

r!(n− r)!
Γ−1(A+ (kr + 1)I)λkr

∫ x

0

(x− t)B−A−ItA+krIdt.

To evaluate the integral matrix functional

∫ x

0

(x− t)B−A−ItA+krIdt,

Putting t = xu, we have

xA+B+krI

∫ 1

0

uA+krI(1− u)B−A−Idt

= xB+krIΓ(A+ (kr + 1)I)Γ(B −A)Γ−1(B + (kr + 1)I).

(2.8)

Using (2.8), we have

Γ(A+ (kn+ 1)I)Γ(B −A)

n∑
r=0

(−1)r

r!(n− r)!
Γ−1(B + (kr + 1)I)λkrxB+krI

= Γ(A+ (kn+ 1)I)Γ(B −A)Γ−1(B + (kn+ 1)I)xB Z(B,λ)
n (x; k).

Thus we obtain (2.7). �

Here we desire the matrix differential recurrence relations for Konhauser matrix poly-
nomials have been obtained using a new technique discussed is novelty, urgently and origi-
nality in the following theorems.

Theorem 2.5. Let A and A −mI be matrices in CN×N satisfying the condition in (1.8).
The following matrix differential recurrence formula for Konhauser matrix polynomials holds

dm

dxm

[
xA Z(A,λ)

n (x; k)

]
= Γ(A+ (kn+ 1)I)

× Γ−1(A+ (kn−m+ 1)I)xA−mIZ(A−mI,λ)
n (x; k),

(2.9)

where Γ(A+ (kn−m+ 1)I) is an invertible matrix.

Proof. Now we make use of the differential operator Dm defined by

DmxA−I = Γ(A)Γ−1(A−mI)xA−(m+1)I , (2.10)

where Γ(A−mI) is an invertible matrix.
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Multiply both sides of (1.7) by xA, and apply the differential operatorDm for equation
in (2.10), we get

dm

dxm

[
xAZ(A,λ)

n (x; k)

]
= Γ(A+ (kn+ 1)I)

×
n∑

r=0

(−1)rλrk

(n− r)!r!
Γ−1(A+ (kr + 1)I)

dm

dxm
xA+krI

= Γ(A+ (kn+ 1)I)Γ−1(A+ (kn−m+ 1)I)Γ(A+ (kn−m+ 1)I)

×
n∑

r=0

(−1)rλrk

r!(n− r)!
Γ−1(A+ (kr −m+ 1)I)xA+(kr−m)I

= xA−mIΓ(A+ (kn+ 1)I)Γ−1(A+ (kn−m+ 1)I)Γ(A+ (kn−m+ 1)I)

×
n∑

r=0

(−1)r(λ x)rk

r!(n− r)!
Γ−1(A+ (kr −m+ 1)I)

= xA−mIΓ(A+ (kn+ 1)I)Γ−1(A+ (kn−m+ 1)I)Z(A−mI,λ)
n (x; k),

which immediately leads to (2.9). This completes the proof of the theorem. �

Corollary 2.1. Konhauser matrix polynomials satisfy the following matrix differential re-
currence relation:

dk

dxk

[
xA+kI Z(A+kI,λ)

n (x; k)

]
= (A+ (kn+ 1)I)kx

AZ(A,λ)
n (x; k). (2.11)

Proof. Replacing in m by k and A by A+ kI in (2.9), we obtain (2.11). �

Theorem 2.6. For the matrices A and A+ kI in CN×N satisfying the condition in (1.8).
The Konhauser matrix polynomials satisfy the following matrix differential recurrence rela-
tion: (

dk

dxk
− λk

)[
xA+kI Z(A+kI,λ)

n (x; k)

]
= (n+ 1)xAZ

(A,λ)
n+1 (x; k). (2.12)

Proof. Rewrite the equation in (2.4) in the following form

n!(λ x)AΓ−1(A+ (kn+ 1)I)Z(A,λ)
n (x; k)

=
1

2πi

∫
C

exp
(
λ ux

)
(uk − 1)nu−A−(kn+1)Idu.

By using (uk − 1)n = uk(uk − 1)n − (uk − 1)n+1, we have

λk

2πi

∫
C

exp

(
λ ux

)
(uk − 1)nu−A−(kn+1)Idu

=
λk

2πi

∫
C

exp
(
λ ux

)
(uk − 1)nuku−A−(kn+1)Idu

− λk

2πi

∫
C

exp

(
λ ux

)
(uk − 1)n+1u−(A−kI)−(k(n+1)+1)Idu.

Differentiating both sides with respect to x at k-times, and after some simplification, we get(
dk

dxk
− λk

)[
xA Z(A,λ)

n (x; k)

]
= (n+ 1)xA−kIZ

(A−kI,λ)
n+1 (x; k),

which proves (2.12). �
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Theorem 2.7. For the matrices A and A+ kI in CN×N satisfying the condition in (1.8).
The Konhauser matrix polynomials satisfy the following pure recurrences matrix relation

(xλ)kZ(A+kI,λ)
n (x; k) =(A+ (kn+ 1)I)kZ

(A,λ)
n (x; k)

− (n+ 1)Z
(A,λ)
n+1 (x; k).

(2.13)

Proof. From (2.11) and (2.12), we have the pure recurrence matrix relation in (2.13). Hence
the proof is established. �

3. Lie operators associated with Konhauser matrix polynomials

In this section, we define some linear partial differential operators in two independent
variables x and y. We will investigate their commutative properties while operating on
Konhauser matrix polynomials.

With the help of matrix differential recurrence relations given in [26] and [27], we

obtain matrix differential recurrence relations for Z
(A,λ)
n (x; k) as follows

x1−kD Z(A,λ)
n (x; k) = −kλk Z

(A+kI,λ)
n−1 (x; k);n ≥ 1, (3.1)

which gives the equation (4.10) in [27], and[
x−ADkxA+kI − xkλkI

]
Z(A,λ)
n (x; k) = (n+ 1)λkZ

(A−kI,λ)
n+1 (x; k). (3.2)

From (3.1) and (3.2), we get the following matrix differential equation for Z
(A,λ)
n (x; k)(

D

λ

)k[
xA+IDZ(A,λ)

n (x; k)

]
− xA

(
xD − kn

)
Z(A,λ)
n (x; k) = 0, (3.3)

which is equivalent to[
x1−kD

[
xkI−A

(
D

λ

)k

− I

]
xAZ(A,λ)

n (x; k)

]
+ (n+ 1)Z

(A,λ)
n+1 (x; k) = 0.

Replacing n by y ∂
∂y and D by ∂

∂x , we get the matrix partial differential equation satisfied

by Z
(A,λ)
n (x, y; k) = ynZ

(A,λ)
n (x; k) as

LZ(A,λ)
n (x, y; k) = 0.

∂k

λk∂xk

[
xA+I ∂

∂x
Z(A,λ)
n (x; k)

]
− xA

(
x
∂

∂x
− ky

∂

∂y

)
Z(A,λ)
n (x; k) = 0.

(3.4)

First we consider the following linear partial differential operators of the Lie group

A =y
∂

∂y
I,

B =
x1−k

y

∂

∂x
I; y ̸= 0,

C =x−Ay
∂k

λk∂xk
xA+kI − yxkI.

(3.5)

Then

λ−Ax−AL = CB+ kA. (3.6)
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According to the differential operators properties, we have the following rules

A
[
Z(A,λ)
n (x; k)× yn

]
=nZ(A,λ)

n (x; k)yn,

B
[
Z(A,λ)
n (x; k)× yn

]
=− kZ

(A+kI,λ)
n−1 (x; k)yn−1;n ≥ 1,

C
[
Z(A,λ)
n (x; k)× yn

]
=(n+ 1)Z

(A−kI,λ)
n+1 (x; k)yn+1,

(3.7)

where A, A + kI and A − kI are matrices in CN×N which satisfy the condition (1.8), and
the commutator relations satisfied by using the differential operators I, A, B, and C are

[A,B] =− B,
[A,C] =C,
[B,C] =− kI,

(3.8)

where [A,B]u = (AB− BA)u and I stands for the identity operator.
These commutator relations show that I, A, B, and C generate a Lie group transfor-

mations. We express the extended forms of the transformation group generated by each of
the differential operators A, B, and C as follows:

eaAf (A,λ)(x, y) = f (A,λ)

(
x, yea

)
, (3.9)

in which the differential operator A is defined as in (3.5) and where f (A,λ)(x, y) is an arbitrary
matrix function,

ebB
[
ynf (A,λ)(x)

]
= ynebBf (A,λ)(x) = ynf (A,λ)

((
kb

y
+ xk

) 1
k
)
; y ̸= 0 (3.10)

and

ecC
[
ynf (A,λ)(x)

]
= yne−cyxk

exp

(
cy

(
Dx

λ
I +

1

λx
A

)k

xk

)
f (A,λ)(x). (3.11)

4. Generating matrix functions cancelled by conjugates of (A− nI)

In this section, we extend the differential operators B and C, which we defined in
the previous section to the exponential form. Consider an arbitrary matrix polynomials

Z
(A,λ)
n (x, y; k) = ynZ

(A,λ)
n (x; k) in two independent variables. Also, we consider the arbitrary

constants b and c. The exponential operators exp(bB) and exp(cC) are called the extended
form of the transformation groups generated by B and C, respectively.

Here, we show how readily new generating matrix functions for the Konhauser ma-

trix polynomials Z
(A,λ)
n (x, y; k) can be derived from the operational representations of the

Konhauser matrix polynomials.

From this discussion, we see that Z
(A,λ)
n (x, y; k) = ynZ

(A,λ)
n (x; k) is a solution of the

following matrix differential equation

LZ(A,λ)
n (x, y; k) = 0

and

AZ(A,λ)
n (x, y; k) = nZ(A,λ)

n (x, y; k)
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for arbitrary n. With the help of (3.10) and (3.11), we get

ecCebB[Z(A,λ)
n (x; k)yn] = ecCynZ(A,λ)

n

((
xk +

kb

y

) 1
k

; k

)
= yn exp

(
− cy

(
xk +

kb

y

))
exp

[
cy

(
D

λ
I +

1

λ

(
xk +

kb

y

)− 1
k

A

)k

×
(
xk +

kb

y

)]
Z(A,λ)
n

((
xk +

kb

y

) 1
k

; k

)
= F (x, y,A); y ̸= 0.

(4.1)

Put S = ebB+cC then SAS−1 is conjugate of A and F (x, y,A) is cancelled by L and S(A −
nI)S−1.

Now we consider the following cases :
Case 1. Putting c = 0 and b = 1, then (4.1) reduces to

eB[Z(A,λ)
n (x; k)yn] = ynZ(A,λ)

n

((
xk +

k

y

) 1
k

; k

)
; y ̸= 0. (4.2)

Separately, we consider the left hand side of (4.2) and we write exponential operators in a
series form so that we have the following relation

eB[Z(A,λ)
n (x; k)yn] =

∞∑
m=0

Bm

m!
[Z(A,λ)

n (x; k)yn]

=

∞∑
m=0

Bm−1

m!
(−k)Z

(A+kI,λ)
n−1 (x; k)yn−1

. . .

. . .

. . .

=

∞∑
m=0

Bm−m

m!

[
(−k)× (−k)× (−k) . . .× (−k)

]
Z

(A+mkI,λ)
n−m (x; k)yn−m

= yn
n∑

m=0

1

m!

(
− k

y

)m

Z
(A+kmI,λ)
n−m (x; k); y ̸= 0,

where A and A+mkI are matrices in CN×N which satisfy the condition (1.8).
Hence, we obtain

eB[Z(A,λ)
n (x; k)yn] = yn

n∑
m=0

1

m!

(
− k

y

)m

Z
(A+kmI,λ)
n−m (x; k);Z

(A,λ)
−m (x; k) = 0. (4.3)

Equating the two values and after minor adjustments, we get a generating matrix relation
as

Z(A,λ)
n

(
(xk + kt)

1
k ; k

)
=

∞∑
m=0

km

m!
(−t)mZ

(A+kmI,λ)
n−m (x; k), (4.4)

where t = 1
y and y ̸= 0.

If we put k = 1, the Z
(A,λ)
n (x; k) reduces to the Laguerre matrix polynomials, L

(A,λ)
n

(
x+

t
)
. Thus putting k = 1 in (4.4), we get the following formula on Laguerre matrix polynomi-

als:

L(A,λ)
n

(
x+ t

)
=

∞∑
m=0

1

m!
(−t)mL

(A+mI,λ)
n−m (x), (4.5)
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where A and A+mI are matrices in CN×N which satisfy the condition (1.5).
Case 2. Putting b = 0 and c = 1, then (4.1) reduces to

eC[Z(A,λ)
n (x; k)yn] = yne−yxk

exp

[
y

(
D

λ
I +

1

λx
A

)k

xk

]
Z(A,λ)
n (x; k). (4.6)

But we have

eC[Z(A,λ)
n (x; k)yn] =

∞∑
m=0

Cm

m!
[Z(A,λ)

n (x; k)yn]

=
∞∑

m=0

Cm−1

m!
(n+ 1)Z

(A−kI,λ)
n+1 (x; k)yn+1

. . .

. . .

. . .

=
∞∑

m=0

Cm−m

m!

[
(n+ 1)× (n+ 2)× . . .× (n+m)

]
Z

(A−mkI,λ)
n+m (x; k)yn+m

= yn
∞∑

m=0

ym

m!
(n+ 1)mZ

(A−mkI,λ)
n+m (x; k),

(4.7)

where A and A−mkI are matrices in CN×N which satisfy the condition (1.8).
Equating both values and after minor adjustments, we get a generating matrix relation

as

exp

[
y

(
D

λ
I +

1

λx
A

)k

xk − xkI)

]
Z(A,λ)
n (x; k)

=
∞∑

m=0

ym

m!
(n+ 1)mZ

(A−mkI,λ)
n+m (x; k).

(4.8)

For k = 1 in (4.8), we give the generating matrix relation on Laguerre matrix polynomials:

exp

[
y

(
D

λ
I +

1

λx
A

)
x− xI)

]
L(A,λ)
n (x) =

∞∑
m=0

ym

m!
(n+ 1)mL

(A−mI,λ)
n+m (x). (4.9)

Simplifying more, we have

exp

(
y
D

λ
xI +

y

λ
A− xyI)

)
L(A,λ)
n (x) = e

y
λ (A+I)

[
e−xyeyL(A,λ)

n (xey)

]
. (4.10)

Using etDxf(x) = etf(xet), we get

e
y
λ (A+I)

[
e−xyeyL(A,λ)

n (xey)

]
=

∞∑
m=0

ym

m!
(n+ 1)mL

(A−mI,λ)
n+m (x), (4.11)

where A and A−mI are matrices in CN×N which satisfy the condition (1.5).
Further, we proceed to determine ebBeC, where b is an arbitrary constant.
Case 3. If we substitute c = 1 and b ̸= 0 in (4.1), then we obtain

ebBeC[Z(A,λ)
n (x; k)yn] = yne−y exp

[
y

(
D

λ
I +

1

λ

(
xk +

kb

y

)− 1
k

A

)k

×
(
xk +

kb

y

)]
Z(A,λ)
n

(
(xk +

kb

y
)

1
k ; k

)
; y ̸= 0.

(4.12)
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Also we get

ebBeC[Z(A,λ)
n (x; k)yn] = eCebB[Z(A,λ)

n (x; k)yn]

= eC
∞∑

m=0

(−kb)m

m!
Z

(A+mkI,λ)
n−m (x; k)yn−m

=

∞∑
s=0

∞∑
m=0

1

m!s!
(n−m+ 1)s(−kb)mZ

(A+(m−s)kI,λ)
n−m+s (x; k)yn−m+s.

On the other hand, equating both values and after minor adjustments, we get

e−y exp

[
y

(
D

λ
I +

1

λ

(
xk +

kb

y

)− 1
k

A

)k(
xk +

kb

y

)]
Z(A,λ)
n

((
xk +

kb

y

) 1
k

; k

)
=

∞∑
s=0

∞∑
m=0

1

m!s!
(n−m+ 1)s(−kb)mZ

(A+(m−s)kI,λ)
n−m+s (x; k)ys−m; y ̸= 0,

(4.13)

where A and A+ (m− s)kI are matrices in CN×N which satisfy the condition (1.8).
In particular for k = 1 in (4.13), we get

e−y exp

[
y

(
D

λ
I +

1

λ

(
x+

b

y

)−1

A

)(
x+

b

y

)]
L(A,λ)
n

(
(x+

b

y
)

)
=

∞∑
s=0

∞∑
m=0

1

m!s!
(n−m+ 1)s(−b)mL

(A+(m−s)I,λ)
n−m+s (x)ys−m; y ̸= 0.

(4.14)

After simplifications, we give

e−ye
yD
λ (x+ b

y ) exp

[
y

λ

(
x+

b

y

)2

A− y

(
x+

b

y

)
I

]
L(A,λ)
n

(
(x+

b

y
)

)
= e−ye

y
λ exp

[
y

λ

(
x+

b

y

)2

e2yA− yey
(
x+

b

y

)
I

]
L(A,λ)
n

(
(x+

b

y
)ey

)
=

∞∑
s=0

∞∑
m=0

1

m!s!
(n−m+ 1)s(−b)mL

(A+(m−s)I,λ)
n−m+s (x)ys−m; y ̸= 0,

(4.15)

where A and A+ (m− s)I are matrices in CN×N which satisfy the condition (1.5).

5. Some more generating matrix relations for Konhauser matrix polyno-

mials Z
(A,λ)
n (x; k)

As an application of our results, we give some more recurrence matrix relations for

Konhauser matrix polynomials Z
(A,λ)
n (x; k)(

x
∂

∂x
I +A

)
Z(A,λ)
n (x; k) = (A+ knI)Z(A−I,λ)

n (x; k), (5.1)

where A and A − I are matrices in CN×N which satisfy the condition (1.8) (see eq. (3.20)
[26]).

Let us consider the differential operator (infinite small generator the Lie group)

B1 =
x

y

∂

∂x
I +

1

y
A; y ̸= 0. (5.2)

Then we observe

B1

[
Z(A,λ)
n (x; k)× yA

]
=(A+ knI)Z

(A−I,λ)
n−1 (x; k)yA−I ;n ≥ 1. (5.3)
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Using the same method as used in (4.2), we get the extended form of the transformation Lie
group generated by B1 as

ebB1

[
Z(A,λ)
n (x; k)× yA

]
= yAe

bA
y Z(A,λ)

n (xe
b
y ; k). (5.4)

Also, using (5.3) and (5.4), we get

ebB1

[
Z(A,λ)
n (x; k)× yA

]
=yA

∞∑
m=0

1

m!
(A+ (kn−m+ 1)I)m

×
(
b

y

)m

Z(A−mI,λ)
n (x; k); y ̸= 0,

(5.5)

where A and A−mI are matrices in CN×N which satisfy the condition (1.8).

Equating both values of ebB1

[
Z

(A,λ)
n (x; k)×yA

]
and making appropriate adjustments,

we get

eAtZ(A,λ)
n (xet; k) =

∞∑
m=0

1

m!
(A+ (kn−m+ 1)I)mtmZ(A−mI,λ)

n (x; k), (5.6)

where A and A−mI are matrices in CN×N which satisfy the condition (1.8) and t = b
y and

y ̸= 0.
For k = 1 in (5.6), we give

eAtL(A,λ)
n (xet) =

∞∑
m=0

1

m!
(A+ (n−m+ 1)I)mtmL(A−mI,λ)

n (x), (5.7)

where A and A−mI are matrices in CN×N which satisfy the condition (1.5).

For Z
(A,λ)
n (x; k), the recurrence matrix relation is given by [27](

kn− xD

)
Z(A,λ)
n (x; k) = k(A+ (kn− k + 1)I)kZ

(A,λ)
n−1 (x; k);n ≥ 1. (5.8)

Let us define the differential operator B2

B2 =k
∂

∂y
− x

y

∂

∂x
; y ̸= 0, (5.9)

Then we have

B2

[
Z(A,λ)
n (x; k)× yn

]
=k(A+ (kn− k + 1)I)Z

(A,λ)
n−1 (x; k)yn−1;n ≥ 1. (5.10)

The extended form of the transformation group generated by the infinite generator B2 is
given as

ebB2

[
Z(A,λ)
n (x; k)× yn

]
= (bk + y)nZ(A,λ)

n

(
xy

1
k

(bk + y)
1
k

; k

)
;

∣∣∣∣ ybk
∣∣∣∣ < 1. (5.11)

It has been obtained by using the similar method as

ebB2

[
Z(A,λ)
n (x; k)× yn

]
=

∞∑
m=0

1

m!
bmBm

2

[
Z(A,λ)
n (x; k)× yn

]

= yn
∞∑

m=0

1

m!
(A+ (kn− km+ 1)I)mk

(
bk

y

)m

Z
(A,λ)
n−m (x; k); y ̸= 0.

(5.12)
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Hence equating both values of ebB2

[
Z

(A,λ)
n (x; k) × yn

]
in (5.11) and (5.12), and making

appropriate adjustments, we get

(1 + t)nZ(A,λ)
n

(
x

(1 + t)
1
k

; k

)
=

∞∑
m=0

tm

m!
(A+ (kn− km+ 1)I)mk

× Z
(A,λ)
n−m (x; k); |t| < 1,

(5.13)

where t = bk
y and y ̸= 0.

For k = 1 in (5.13), we give

(1 + t)nL(A,λ)
n

(
x

1 + t

)
=

∞∑
m=0

tm

m!
(A+ (n−m+ 1)I)mL

(A,λ)
n−m (x); |t| < 1. (5.14)

6. Conclusion

In this paper a new approach has been introduced for studying some important prop-

erties of Konhauser matrix polynomials Z
(A,λ)
n (x; k) viz matrix recurrence relations, matrix

differential recurrence relations, matrix differential equation and certain generating matrix
relations. The method developed can also be used to study some other Konhauser ma-

trix polynomials Y
(A,λ)
n (x; k) which play vital role in Mathematical Physics, Chemistry and

Mechanics. In a forthcoming paper, we propose to extend the present investigation to Kon-

hauser matrix polynomials Y
(A,λ)
n (x; k) and to the biorthogonal matrix polynomials with a

view to showing how their theories can be developed within a unifying framework.
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