UPPER BOUND OF SECOND HANKEL DETERMINANT FOR k-BI-SUBORDINATE FUNCTIONS

Ahmad Motamednezhad1, Serap Bulut2, Ebrahim Analouei Adegani3

In this work, we determine an upper bound of the functional $H_2(2) = a_2a_4 - a_3^2$ for functions belonging to a subclass of analytic bi-univalent functions which is defined by subordination conditions in the open unit disk D. In addition, we get a smaller upper bound and more accurate estimation than the previous results and we correct their mistake.

Keywords: Univalent function, k-bi-subordinate functions, second Hankel determinant, subordination.

MSC2010: Primary 30C45; Secondary 30C50.

1. Introduction

Let A be a class of analytic functions in the open unit disk $D = \{ z \in \mathbb{C} : |z| < 1 \}$, of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in D). \quad (1)$$

A function $f : D \to \mathbb{C}$ is called univalent on D if $f(z_1) \neq f(z_2)$ all $z_1, z_2 \in D$ with $z_1 \neq z_2$. Let S be the class of functions $f \in A$ which are univalent in D.

A function $f \in A$ is said to be starlike, if it satisfies the inequality

$$\Re \left(\frac{zf'(z)}{f(z)} \right) > 0 \quad (z \in D). \quad (2)$$

We denote the class which consists of all functions $f \in A$ that are starlike by S^*.

A function $f \in A$ is said to be convex, if it satisfies the inequality

$$\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > 0 \quad (z \in D). \quad (3)$$

We denote the class which consists of all functions $f \in A$ that are convex by C.

For two functions f and g which are analytic in D, we say that the function f is subordinate to g, and write $f(z) \prec g(z)$, if there exists a Schwarz function w, that is a function analytic in D with $w(0) = 0$ and $|w(z)| < 1$ in D, such that $f(z) = g(w(z))$ for all $z \in D$.

In particular, if the function g is univalent in D, then $f \prec g$ if and only if $f(0) = g(0)$ and $f(D) \subseteq g(D)$, [7].

1 Faculty of Mathematical Sciences, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran, e-mail: a.motamedne@gmail.com

2 Faculty of Aviation and Space Sciences, Kocaeli University, Arslanbey Campus, 41285 Kartepe-Kocaeli, Turkey, e-mail: serap.bulut@kocaeli.edu.tr

3 Faculty of Mathematical Sciences, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran, e-mail: analoey.ebrahim@gmail.com
By means of the subordination, the conditions (2) and (3) are, respectively, equivalent to
\[
\frac{zf'(z)}{f(z)} < \frac{1 + z}{1 - z} \quad \text{and} \quad 1 + \frac{zf''(z)}{f'(z)} < \frac{1 + z}{1 - z}.
\]
Ma and Minda [11] gave a unified presentation of various subclasses of starlike and convex functions by replacing the subordinate function \(\frac{zf'(z)}{f(z)}\) by a more general analytic function \(\varphi\) with positive real part in the unit disk \(\mathbb{D}\), symmetric with respect to the real axis and starlike with respect to \(\varphi(0) = 1\), and \(\varphi'(0) > 0\).

One of the important tools in the theory of univalent functions are the Hankel determinants which are used, for example, in showing that a function of bounded characteristic
\[
\begin{vmatrix}
a_n & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2}
\end{vmatrix}
\]
where the Hankel determinants \(H_2(1) = a_3 - a_2^2\) and \(H_2(2) = a_4a_2 - a_3^2\) are well-known as Fekete-Szegö and second Hankel determinant functionals, respectively. Further, Fekete and Szegö [8] introduced the generalized functional \(a_3 - \lambda a_2^2\), where \(\lambda\) is some real number. Problems in this field has also been argued by several authors (see for example [1, 4, 6, 9, 14, 15, 16, 20]).

In 1983, Sălăgean [17] introduced differential operator \(D^k : \mathcal{A} \to \mathcal{A}\) defined by
\[
D^0f(z) = f(z), \quad D^1f(z) = Df(z) = zf'(z),
\]
and in general
\[
D^kf(z) = D(D^{k-1}f(z)), \quad k \in \mathbb{N} = \{1, 2, \ldots\}.
\]
We easily find that
\[
D^kf(z) = z + \sum_{n=2}^{\infty} a_nz^n, \quad k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\},
\]
with \(D^0f(0) = 0\).

The Koebe one-quarter theorem [7] ensures that the image of \(\mathbb{D}\) under every univalent function \(f \in \mathcal{S}\) contains a disk of radius \(1/4\). Thus every function \(f \in \mathcal{S}\) has an inverse \(f^{-1}\), such that
\[
f^{-1}(f(z)) = z \quad (z \in \mathbb{D}), \quad \text{and} \quad f(f^{-1}(w)) = w \quad \left(|w| < r_0(f); \ r_0(f) \geq \frac{1}{4} \right),
\]
where the inverse \(f^{-1}\) has the power series expansion (see [10])
\[
g(w) := f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_3^2 - 5a_2a_4 + a_3)w^4 + \ldots. \tag{4}
\]
A function \(f \in \mathcal{A}\) is said to be bi-univalent in \(\mathbb{D}\) if both \(f\) and \(f^{-1}\) are univalent in \(\mathbb{D}\), in the sense that \(f^{-1}\) has a univalent analytic continuation to \(\mathbb{D}\). Let \(\Sigma\) denote the class of bi-univalent functions in \(\mathbb{D}\). For a brief history of functions in the class \(\Sigma\) and also different other characteristics of these functions see [2, 10, 18, 19, 21] and the references therein.
In this work, we assume that the function \(\varphi \) is an analytic function with positive real part in the unit disk \(\mathbb{D} \), satisfying \(\varphi(0) = 1, \varphi'(0) > 0 \), such that \(\varphi(\mathbb{D}) \) is symmetric with respect to the real axis. Such a function has the power series expansion of the form
\[
\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \ldots, \quad z \in \mathbb{D} \quad (B_1 > 0).
\] (5)

By means of the subordination, Bulut [3] defined the class \(\mathcal{B}_{\Sigma}^{m,k}(\gamma; \varphi) \) of analytic bi-univalent functions as follows:

Definition 1.1. Let \(m, k \in \mathbb{N}_0 : m > k \) and \(\gamma \in \mathbb{C} \setminus \{0\} \). A function \(f \in \Sigma \) given by (1) is said to be in the class \(\mathcal{B}_{\Sigma}^{m,k}(\gamma; \varphi) \) if the following conditions are satisfied:
\[
1 + \frac{1}{\gamma} \left(\frac{D^m f(z)}{D^k f(z)} - 1 \right) \prec \varphi(z)
\] (6)
and
\[
1 + \frac{1}{\gamma} \left(\frac{D^m g(w)}{D^k g(w)} - 1 \right) \prec \varphi(w),
\] (7)
where \(z, w \in \mathbb{D} \) and the function \(g = f^{-1} \) is defined by (4).

Remark 1.1. For \(m = k + 1 \), we get the class \(\mathcal{B}_{\Sigma}^{k+1,k}(\gamma; \varphi) = \mathcal{B}_{\Sigma,k}(\gamma; \varphi) \) of \(k \)-bi-subordinate functions of complex order \(\gamma \in \mathbb{C} \setminus \{0\} \).

Remark 1.2. If we set
\[
m = k + 1, \quad \gamma = 1 \quad \text{and} \quad \varphi(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \quad (0 \leq \beta < 1)
\]
in Definition 1.1, then the class \(\mathcal{B}_{\Sigma}^{m,k}(\gamma; \varphi) \) reduces to the class \(\mathcal{S}_{\Sigma,k}(\beta) \) of \(k \)-bi-starlike functions. In other words, a function \(f \in \Sigma \) is said to be in the class \(\mathcal{S}_{\Sigma,k}(\beta) \), if the following conditions are satisfied (see [15]):
\[
\text{Re} \left(\frac{D^{k+1} f(z)}{D^k f(z)} \right) > \beta \quad \text{and} \quad \text{Re} \left(\frac{D^{k+1} g(z)}{D^k g(z)} \right) > \beta.
\]
For \(k = 0 \) and \(k = 1 \), we get the classes
\[
\mathcal{S}_{\Sigma,0}(\beta) = \mathcal{S}_{\Sigma}^{(2)}(\beta) \quad \text{and} \quad \mathcal{S}_{\Sigma,1}(\beta) = \mathcal{K}_{\Sigma}(\beta),
\]
which are the class of bi-starlike functions of order \(\beta \) and bi-convex functions of order \(\beta \), respectively. In particular, we have the classes
\[
\mathcal{S}_{\Sigma,0}(0) = \mathcal{S}_{\Sigma}^{(2)} \quad \text{and} \quad \mathcal{S}_{\Sigma,1}(0) = \mathcal{K}_{\Sigma},
\]
which are the class of bi-starlike functions and bi-convex functions, respectively.

Example 1.1. If we set \(f(z) = \frac{z}{1-z} \) and \(\varphi(z) = \frac{1 + z}{1 - z} \) where \(z \in \mathbb{D} \), then both \(f(z) \) and \(g(w) = f^{-1}(w) = \frac{w}{1 + w} \) are univalent in \(\mathbb{D} \) and so \(f \in \Sigma \). On other the hand, conditions (6) and (7) hold for \(k = 1, \ m = 2 \) and \(\gamma = 1 \), that is,
\[
1 + \frac{z f''(z)}{f'(z)} = \frac{1 + z}{1 - z} < \frac{1 + z}{1 - z}, \quad \text{this is equivalent with} \quad \text{Re} \left(\frac{1 + z}{1 - z} \right) > 0
\]
and
\[
1 + \frac{w g''(w)}{g'(w)} = \frac{1 - w}{1 + w} < \frac{1 + w}{1 - w}, \quad \text{this is equivalent with} \quad \text{Re} \left(\frac{1 - w}{1 + w} \right) > 0.
\]
Therefore \(f \in \mathcal{B}_{\Sigma}^{2,1} \left(\frac{1 + z}{1 - z} \right) \), in other words \(f \) is 1-bi-convex function (bi-convex function).

Since every convex function is a starlike function, so also \(f \) is 1-bi-starlike function (bi-starlike function).
then we have

\[|a_2a_4 - a_3^2| \leq \begin{cases} \frac{4(1-\beta)^2}{3} (4\beta^2 - 8\beta + 5) , & \beta \in \left[0, \frac{29-\sqrt{137}}{32}\right] \\ (1-\beta)^2 \left(\frac{13\beta^2-14\beta-7}{16\beta^2-20\beta+5} \right) , & \beta \in \left(\frac{29-\sqrt{137}}{32}, 1\right) \end{cases} \]

Corollary 1.1. [6, Corollary 2.2] Let the function \(f \) given by (1) be in the class \(S_{\Sigma}^\gamma(\beta) \) (0 \(\leq \beta < 1 \)). Then

\[|a_2a_4 - a_3^2| \leq \frac{20}{3}. \]

Theorem 1.2. [6, Theorem 2.3] Let the function \(f \) given by (1) be in the class \(K_{\Sigma}(\beta) \) (0 \(\leq \beta < 1 \)). Then

\[|a_2a_4 - a_3^2| \leq \frac{(1-\beta)^2}{24} \left(\frac{5\beta^2 + 8\beta - 32}{3\beta^2 - 3\beta - 4} \right). \]

Corollary 1.2. [6, Corollary 2.4] Let the function \(f \) given by (1) be in the class \(K_{\Sigma} \). Then

\[|a_2a_4 - a_3^2| \leq \frac{1}{3}. \]

The class \(S_{\Sigma,k}(\beta) \) of \(k \)-bi-starlike functions is defined by Orhan et al. [15] and they obtained an upper bound for the second Hankel determinant of functions \(f \in S_{\Sigma,k}(\beta) \) (see [15, Theorem 2.1]). They got for \(\eta, \mu \leq 1 \)

\[|a_2a_4 - a_3^2| \leq T_1 + (\eta + \mu)T_2 + (\eta^2 + \mu^2)T_3 + (\eta + \mu)^2T_4 = G(\eta, \mu), \]

where

\[
T_1 = T_1(p) = \frac{(1-\beta)^2}{3(2^{3k})} \left(\left(1-\beta^2 \right)^2 \frac{3(k^2)+2^{2k} - \frac{13}{4}^k \frac{1}{3}^{k+1}}{2^{2k}} + \frac{1}{4} \frac{p^4 - \frac{p^3}{2} + 2p}{2^{3k}} \right) \geq 0 \\
T_2 = T_2(p) = \frac{(1-\beta)^2}{2^{2k+1}} \left(\frac{1}{3^{2k}} + \frac{1}{4} \frac{p^4 - \frac{p^3}{2} + 2p}{2^{3k}} \right) \geq 0 \\
T_3 = T_3(p) = \frac{(1-\beta)^2}{2^{3k}} \frac{p(4 - p^2)(p-2)}{24(2^{3k})} \leq 0 \\
T_4 = T_4(p) = \frac{(1-\beta)^2}{16(9^k)} \frac{(4 - p^2)^2}{4} \geq 0.
\]

They claimed that

\[T_3 + 2T_4 > 0 \quad \text{for} \quad p \in [0, 2), \]

to maximize the function \(G(\eta, \mu) \) on the closed square \([0, 1] \times [0, 1]\). But there is a mistake in their proof. Now we give a counterexample that this inequality is not true:

If we choose

\[\beta = 0, \quad k = 10 \quad \text{and} \quad p = 0, 9, \]

then we have

\[T_3 + 2T_4 = -3, 134800373 \times 10^{-11} < 0. \]

The main purpose of this paper is that, by using a different method from the one in [15], to determine the functional \(H_2(\alpha) = a_2a_4 - a_3^2 \) for functions belonging to the subclass of analytic bi-univalent functions \(R_{\Sigma,m,k}(\gamma, \varphi) \) which is defined by subordination principle in the open unit disk \(D \). In addition, we get more accurate estimation than the previous results and we give the correction of [15, Theorem 2.1].

In order to prove our main results, we need the following lemmas.
Lemma 1.1. [7, p. 190] Let \(u \) be analytic function in the unit disk \(\mathbb{D} \), with \(u(0) = 0 \), and \(|u(z)| < 1 \) for all \(z \in \mathbb{D} \), with the power series expansion
\[
 u(z) = \sum_{n=1}^{\infty} c_n z^n.
\]
Then, \(|c_n| \leq 1 \) for all \(n \in \mathbb{N} \). Furthermore, \(|c_n| = 1 \) for some \(n \in \mathbb{N} \) if and only if \(u(z) = e^{i\theta} z^n \), \(\theta \in \mathbb{R} \).

Lemma 1.2. [9] If \(\psi(z) = \sum_{n=1}^{\infty} \psi_n z^n \), \(z \in \mathbb{D} \), is a Schwarz function, then
\[
 \psi_2 = x \left(1 - \psi_2^2\right),
\]
\[
 \psi_3 = (1 - \psi_2^2) (1 - |x|^2) s - \psi_1 (1 - \psi_2^2) x^2,
\]
for some \(x, s \), with \(|x| \leq 1 \) and \(|s| \leq 1 \).

2. Main Results

Whilst Lemma 1.1 holds for complex-valued \(c_n \) \((n \in \mathbb{N})\), in this paper we restrict our attention to the case of real valued \(c_1 \).

Theorem 2.1. Let the function \(f \) given by (1) be in the class \(\mathcal{B}_{\Sigma}^{m,k}(\gamma; \varphi) \). Then
\[
 |a_2 a_4 - a_3^2| \leq B_1 |\gamma|^2 \times \begin{cases}
 R & \text{if } Q \leq 0, P \leq -Q \\
 P + Q + R & \text{if } (Q \geq 0, P \geq -Q), \text{ or, } (Q \leq 0, P \leq -Q) \\
 \frac{4P R - Q^2}{4P} & \text{if } Q > 0, P \leq -Q,
\end{cases}
\]
where
\[
 P = \frac{\left\lvert [2(2^{m-2}) (2^{2k} - 3^{k}) - 2^{k} (2^m - 3^k) + (4^m - 4^k)] \gamma^2 B_3^3 \right\rvert (4^m - 4^k) (2^m - 2^k)^4}{(4^m - 4^k) (2^m - 2^k)^4} + \frac{B_3}{(4^m - 4^k) (2^m - 2^k)} - \frac{B_1}{(4^m - 4^k) (2^m - 2^k)} + \frac{B_1}{(3^m - 3^k)^2},
\]
\[
 Q = \frac{\left\lvert [2(2^{m-2}) (2^{2k} - 3^{k}) - 2^{k} (2^m - 3^k) + (4^m - 4^k)] \gamma^2 B_3^3 \right\rvert (4^m - 4^k) (2^m - 2^k)^4}{(4^m - 4^k) (2^m - 2^k)^4} + \frac{|B_2|}{(4^m - 4^k) (2^m - 2^k)} + \frac{B_1}{(4^m - 4^k) (2^m - 2^k)} - \frac{2B_1}{(3^m - 3^k)^2},
\]
\[
 R = \frac{B_1}{(3^m - 3^k)^2}.
\]

Proof. Let \(f \in \mathcal{B}_{\Sigma}^{m,k}(\gamma; \varphi) \). Then by definition of subordination and Lemma 1.1, there exist two Schwarz functions \(u \) and \(v \), of the form \(u(z) = \sum_{n=1}^{\infty} c_n z^n \) and \(v(z) = \sum_{n=1}^{\infty} d_n z^n \), \(z \in \mathbb{D} \) such that
\[
 1 + \frac{1}{\gamma} \left(\frac{D^m f}{D^k f}(z) - 1 \right) = \varphi(u(z))
\]
and
\[
 1 + \frac{1}{\gamma} \left(\frac{D^m g}{D^k g}(w) - 1 \right) = \varphi(v(w)),
\]
where
\[
 \varphi(u(z)) = 1 + B_1 c_1 z + (B_1 c_2 + B_2 c_1^2) z^2 + (B_1 c_3 + 2B_2 c_1 c_2 + B_3 c_1^2) z^3 + \cdots
\]
and
\[\varphi(v(w)) = 1 + B_1 d_1 w + (B_1 d_2 + B_2 d_2^2) w^2 + (B_1 d_3 + 2B_2 d_1 d_2 + B_3 d_3^2) w^3 + \cdots. \] (11)

From (8), (10) and (9), (11), we have
\[(2^m - 2^k) a_2 = \gamma B_1 c_1 \] (12)
\[(3^m - 3^k) a_3 - 2^k (2^m - 2^k) a_2^2 = \gamma (B_1 c_2 + B_2 c_2^2) \] (13)
\[(4^m - 4^k) a_4 - \left[3^k (2^m - 2^k) + 2^k (3^m - 3^k) \right] a_2 a_3 + 2^{2k} (2^m - 2^k) a_3^2 = \gamma (B_1 c_3 + 2B_2 c_1 c_2 + B_3 c_3^2) \] (14)

and
\[-(2^m - 2^k) a_2 = \gamma B_1 d_1 \] (15)
\[(3^m - 3^k) (2a_2^2 - a_3) - 2^k (2^m - 2^k) a_2^2 = \gamma (B_1 d_2 + B_2 d_2^2) \] (16)
\[-(4^m - 4^k) \left(5a_2^2 - 5a_2 a_3 + a_4 \right) + \left[3^k (2^m - 2^k) + 2^k (3^m - 3^k) \right] a_2 (2a_2^2 - a_3) - 2^{2k} (2^m - 2^k) a_3^2 = \gamma (B_1 d_3 + 2B_2 d_1 d_2 + B_3 d_3^2), \] (17)

respectively. From (12) and (15), we get that
\[c_1 = -d_1 \] (18)

and
\[a_2 = \frac{\gamma B_1 c_1}{2^m - 2^k}. \] (19)

Nevertheless, from (13) and (16), we get
\[a_3 = \frac{\gamma^2 B_1^2 c_1 c_2^2}{(2^m - 2^k)^2} + \frac{\gamma B_1 (c_2 - d_2)}{2(3^m - 3^k)}. \] (20)

Furthermore, from (14) and (17), we obtain
\[a_4 = \frac{\left[(2^m - 2^k) (3^k - 2^{2k}) + 2^k (3^m - 3^k) \right] \gamma^2 B_1^2 c_1^2}{(4^m - 4^k)(2^m - 2^k)^3} + \frac{5 \gamma^2 B_1^2 c_1 (c_2 - d_2)}{4(2^m - 2^k)(3^m - 3^k)} \]
\[+ \frac{\gamma B_1 (c_3 - d_3)}{2(4^m - 4^k)} + \frac{\gamma B_2 c_1 (c_2 + d_2)}{(4^m - 4^k)} + \frac{\gamma B_3 c_3^2}{(4^m - 4^k)}. \] (21)

Therefore, after calculations we have
\[\left| a_2 a_4 - a_3^2 \right| = \left| \frac{\gamma^2 B_1^2 c_1^2 (c_2 - d_2)}{4(2^m - 2^k)(3^m - 3^k)^2} + \frac{\gamma^2 B_1 B_2 c_2^2 (c_2 + d_2)}{(4^m - 4^k)(2^m - 2^k)^2} \right| \]
\[+ \frac{\gamma^2 B_1 B_3 c_3 (c_3 - d_3)}{(4^m - 4^k)(2^m - 2^k)} + \frac{\gamma^2 B_2^2 c_1^2 (c_2 - d_2)}{4(3^m - 3^k)^2} \] (22)

According to Lemma 1.2 and (18), we find that
\[c_2 - d_2 = (1 - c_1^2) \left(x - y \right) \quad \text{and} \quad c_2 + d_2 = (1 - c_1^2) \left(x + y \right) \] (23)

and
\[c_3 = (1 - c_1^2) \left(1 - |x|^2 \right) s - c_1 \left(1 - c_1^2 \right) x^2 \quad \text{and} \]
\[d_3 = (1 - d_1^2) \left(1 - |y|^2 \right) t - d_1 \left(1 - d_1^2 \right) y^2, \]

where
\[c_3 - d_3 = (1 - c_1^2) \left[(1 - |x|^2) s - (1 - |y|^2) t \right] - c_1 (1 - c_1^2)(x^2 + y^2). \] (24)
for some x, y, s, t with $|x| \leq 1$, $|y| \leq 1$, $|s| \leq 1$ and $|t| \leq 1$. Applying (23) and (24) in (22), it follows that

$$|a_2a_4 - a_3^2| = B_1|\gamma|^2 \left[\frac{-(2m-2k^2)(2^k - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)}{(4^m - 4^k)(2^m - 2k)} \frac{\gamma^2 B_3^3}{(4^m - 4^k)(2^m - 2k)^4} + B_3 \right] \frac{c^3}{4(3^m - 3^k)^2} \left(x^2 + y^2 \right) \right] B_1 \right] \left(1 - c^2 \right) \left(\frac{1 - c^2}{2(4^m - 4^k)(2^m - 2k)} \right) \left((1 - |x|^2) s - (1 - |y|^2) t \right) \left. \right|.

Since $|c_1| \leq 1$, we assume that $c_1 = c \in [0, 1]$. So we have

$$|a_2a_4 - a_3^2| \leq B_1|\gamma|^2 \left[\frac{-(2m-2k^2)(2^k - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)}{(4^m - 4^k)(2^m - 2k)} \frac{\gamma^2 B_3^3}{(4^m - 4^k)(2^m - 2k)^4} + B_3 \right] \frac{c^3}{4(3^m - 3^k)^2} \left(x^2 + y^2 \right) \right] B_1 \right] \left(1 - c^2 \right) \left(\frac{1 - c^2}{2(4^m - 4^k)(2^m - 2k)} \right) \left((1 - |x|^2) s - (1 - |y|^2) t \right) \left. \right|.

Now, for $\lambda = |x| \leq 1$ and $\mu = |y| \leq 1$, we obtain

$$|a_2a_4 - a_3^2| \leq B_1|\gamma|^2 \left[T_1 + (\lambda + \mu)T_2 + (\lambda^2 + \mu^2)T_3 + (\lambda + \mu)T_4 \right] = B_1|\gamma|^2 F(\lambda, \mu),$$
where
\[T_1 = T_1(c) = \left[-\frac{(2m - 2k)(2^{k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)}{(4^m - 4^k)(2^m - 2^k)^2} \gamma^2 B_1^3 + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right] c^4 + \frac{2B_1c(1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} \geq 0 \]
\[T_2 = T_2(c) = \left[\frac{\gamma B_1^2}{4(2^m - 2^k)(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right] c^2 (1 - c^2) \geq 0 \]
\[T_3 = T_3(c) = \frac{B_1c(c-1)(1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} \leq 0 \]
\[T_4 = T_4(c) = \frac{B_1(1 - c^2)^2}{4(3^m - 3^k)^2} \geq 0. \]

We now need to maximize the function \(F(\lambda, \mu) \) on the closed square \([0, 1] \times [0, 1]\) for \(c \in [0, 1] \).

With regards to \(F(\lambda, \mu) = F(\mu, \lambda) \), it is sufficient that we investigate the maximum of
\[G(\lambda) = F(\lambda, \lambda) = T_1 + 2\lambda T_2 + 2\lambda^2(T_3 + 2T_4), \quad (25) \]
on \(\lambda \in [0, 1] \) according to \(c \in (0, 1), c = 0 \) and \(c = 1 \).

Firstly, if we let \(c = 1 \), then we obtain
\[
\max \{ G(\lambda) : \lambda \in [0, 1] \} = \left[-\frac{(2^m - 2k)(2^{k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)}{(4^m - 4^k)(2^m - 2^k)^2} \gamma^2 B_1^3 + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right] \]
\[
= \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \]

Secondly, letting \(c = 0 \), so we get
\[G(\lambda) = \frac{4B_1}{4(3^m - 3^k)^2} \lambda^2, \]
hence we can see that
\[\max \{ G(\lambda) : \lambda \in [0, 1] \} = G(1) = \frac{B_1}{(3^m - 3^k)^2}. \]

Finally, we let \(c \in (0, 1) \). Considering equation (25) for \(0 \leq \lambda \leq 1 \) we get
(i) If \(T_3 + 2T_4 \geq 0 \), it is clear that
\[G'(\lambda) = 4(T_3 + 2T_4)\lambda + 2T_2 \geq 0 \]
for \(0 < \lambda < 1 \) and any fixed \(c \in (0, 1) \), that is \(G(\lambda) \) is an increasing function. Hence
\[\max \{ G(\lambda) : \lambda \in [0, 1] \} = G(1) = T_1 + 2T_2 + 2T_3 + 4T_4. \]
(ii) If \(T_3 + 2T_4 < 0 \), then we consider for critical point
\[\lambda_0 = \frac{-T_2}{2(T_3 + 2T_4)} = \frac{T_2}{2k} \]
for any fixed \(c \in (0, 1) \), where \(k = -(T_3 + 2T_4) > 0 \), the following two cases:

Case 1. For \(\lambda_0 = \frac{T_2}{2k} > 1 \), it follows that \(k \leq \frac{T_2}{2} \leq T_2 \), and so \(T_2 + T_3 + 2T_4 \geq 0 \).
Therefore,
\[G(0) = T_1 \leq T_1 + 2(T_2 + T_3 + 2T_4) = G(1). \]

Case 2. For \(\lambda_0 = \frac{T_2}{2k} \leq 1 \), since \(T_2 \geq 0 \), we get that \(\frac{T_2}{2k} \leq T_2 \). Therefore,
\[G(0) = T_1 \leq T_1 + \frac{T_2}{2k} = G(\lambda_0) \leq T_1 + T_2. \]
Considering the above cases for point of \(c \), it follows that the function \(G(\lambda) \) gets its maximum when \(T_3 + 2T_4 \geq 0 \), it means
\[
\max \{ G(\lambda) : \lambda \in [0, 1] \} = G(1) = T_1 + 2T_2 + 2T_3 + 4T_4.
\]
Therefore, \(\max F(\lambda, \mu) = F(1, 1) \) on the boundary of the square.
Let \(K : [0, 1] \to \mathbb{R} \),
\[
K(c) = B_1|\gamma|^2 \max F(\lambda, \mu) = B_1|\gamma|^2 F(1, 1) = B_1|\gamma|^2(T_1 + 2T_2 + 2T_3 + 4T_4).
\]
By replacing the values of \(T_1, T_2, T_3 \) and \(T_4 \) in the above function \(K \), we have
\[
K(c) = B_1|\gamma|^2 \left\{ \left[-\frac{(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)}{(4^m - 4^k)(2^m - 2^k)^4} \right] \frac{\gamma^2 B_1}{(4^m - 4^k)(2^m - 2^k)} + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right. \\
- 2 \left(\frac{|\gamma|B_1^2}{(4^m - 4^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right) - \frac{B_1}{(4^m - 4^k)(2^m - 2^k)} + \frac{B_1}{(3^m - 3^k)^2} \right\} c^4 \\
+ \left[2 \left(\frac{|\gamma|B_1^2}{(4^m - 4^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right) + \frac{B_1}{(4^m - 4^k)(2^m - 2^k)} - \frac{2B_1}{(3^m - 3^k)^2} \right\} c^2 \\
+ \frac{B_1}{(3^m - 3^k)^2}
\]
Suppose \(c^2 = u \) and for the simplicity, set
\[
P = \left[-\frac{(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)}{(4^m - 4^k)(2^m - 2^k)^4} \right] \frac{\gamma^2 B_1^3}{(4^m - 4^k)(2^m - 2^k)} + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \\
- 2 \left(\frac{|\gamma|B_1^2}{(4^m - 4^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right) - \frac{B_1}{(4^m - 4^k)(2^m - 2^k)} + \frac{B_1}{(3^m - 3^k)^2}
\]
\[
Q = 2 \left(\frac{|\gamma|B_1^2}{(4^m - 4^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right) + \frac{B_1}{(4^m - 4^k)(2^m - 2^k)} - \frac{2B_1}{(3^m - 3^k)^2}
\]
\[
R = \frac{B_1}{(3^m - 3^k)^2}
\]
According to
\[
\max(Pu^2 + Qu + R)_{0 \leq u \leq 1} = \begin{cases}
R & \text{if } Q \leq 0, P \leq -Q \\
P + Q + R & \text{if } (Q \geq 0, P \geq -Q), \text{ or, } (Q \leq 0, P \geq -Q) \\
\frac{4PR-Q^2}{4P} & \text{if } Q > 0, P \leq -\frac{Q}{2}
\end{cases}
\]
it follows that
\[
|a_2a_4 - a_3^2| \leq B_1|\gamma|^2 \times \begin{cases}
R & \text{if } Q \leq 0, P \leq -Q \\
P + Q + R & \text{if } (Q \geq 0, P \geq -Q), \text{ or, } (Q \leq 0, P \geq -Q) \\
\frac{4PR-Q^2}{4P} & \text{if } Q > 0, P \leq -\frac{Q}{2}
\end{cases}
\]
where \(P, Q \) and \(R \) are given by (27). This completes the proof. □
For
\[m = k + 1, \gamma = 1 \quad \text{and} \quad \varphi(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \quad (0 \leq \beta < 1) \]
in Theorem 2.1, we get the following correction of the estimates in [15, Theorem 2.1]:

Corollary 2.1. Let the function \(f \) given by \((1)\) be in the class \(S_{\Sigma_k}^{\ast} (\beta) \) \((0 \leq \beta < 1)\). Then

\[|a_{2a4} - a_{3}^2| \leq 2(1 - \beta) \times \begin{cases} R & \text{if} \quad Q \leq 0, P \leq -Q \\ P + Q + R & \text{if} \quad (Q \geq 0, P \geq -\frac{Q}{2}), \text{ or, } (Q \leq 0, P \geq -Q) \\ \frac{4PR - Q^2}{4P} & \text{if} \quad Q > 0, P \leq -\frac{Q}{2}, \end{cases} \]

where

\[P = (1 - \beta) \left\{ -\frac{2^{2k} + 3(2^k) - 3^{k+1}}{3(2^{2k-3})} (1 - \beta)^2 + \frac{1}{3(2^{2k-1})} \right\} - \frac{1 - \beta}{(2^{2k})(3^k)} \]
\[Q = (1 - \beta) \left[\frac{1 - \beta}{(2^{2k})(3^k)} + \frac{1}{2^{2k-1}} - \frac{1}{3^{2k}} \right], \]
\[R = \frac{1 - \beta}{2(3^{2k})}. \]

For \(k = 0 \) in Corollary 2.1, we get the following result that is an improvement of the estimates which in Theorem 1.1.

Corollary 2.2. Let the function \(f \) given by \((1)\) be in the class \(S_{\Sigma}^{\ast} (\beta) \) \((0 \leq \beta < 1)\). Then

\[|a_{2a4} - a_{3}^2| \leq 2(1 - \beta)^2 \begin{cases} \frac{2}{3} (4\beta^2 - 8\beta + 3) & , \quad 0 \leq \beta \leq \frac{29 - \sqrt{549}}{32} \\ \frac{13\beta^2 - 14\beta - 15}{12\beta^2 - 52\beta - 6} & , \quad \frac{29 - \sqrt{549}}{32} \leq \beta \leq \frac{1}{2} \\ \frac{19\beta^2 - 50\beta + 39}{52\beta^2 - 76\beta + 34} & , \quad \frac{1}{2} \leq \beta < 1 \end{cases} \]

For \(\beta = 0 \), Corollary 2.2 yields the following coefficient estimates for bi-starlike functions. This result is an improvement of the estimates obtained in Corollary 1.1.

Corollary 2.3. Let the function \(f \) given by \((1)\) be in the class \(S_{\Sigma}^{\ast} \). Then

\[|a_{2a4} - a_{3}^2| \leq 4. \]

For \(k = 1 \) in Corollary 2.1, we get the following result that is an improvement of the estimates in Theorem 1.2.

Corollary 2.4. Let the function \(f \) given by \((1)\) be in the class \(K_{\Sigma} (\beta) \) \((0 \leq \beta < 1)\). Then

\[|a_{2a4} - a_{3}^2| \leq \frac{(1 - \beta)^2}{24} \begin{cases} 11\beta^2 - 40\beta + 48 & , \quad 0 \leq \beta < 1 \end{cases} \]

For \(\beta = 0 \), Corollary 2.4 yields the following coefficient estimates for bi-convex functions. This result is an improvement of the estimates obtained in Corollary 1.2.

Corollary 2.5. Let the function \(f \) given by \((1)\) be in the class \(K_{\Sigma} \). Then

\[|a_{2a4} - a_{3}^2| \leq \frac{1}{5}. \]
3. Conclusion

In the final section, we found improved upper bounds for the functional $|H_2(2)|$ for functions in the class $S_{\Sigma}^{m,k}(\gamma;\varphi)$. The technique of proof for Theorem 2.1 can be extended to other classes of functions similar to $S_{\Sigma}^{m,k}(\gamma;\varphi)$ as for example $M_{\Sigma}(\varphi,\beta)$ introduced in Definition 1.1 of [12], in order to improve previous estimates by their Theorem 2.1. Sharp estimates for $|H_2(2)|$ are for now open problems.

Acknowledgement

The authors thank to the referee for her/his valuable comments and suggestions.

REFERENCES

