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MULTIVALUED    OPERATORS WITH GENERALIZED 

VARIATIONAL INEQUALITIES APPLIED TO 

MANAGEMENT OF MIGRATION EQUILIBRIUM 

Silvia MARZAVAN1, Madlena NEN2 

In this paper, we derive some new existence results for the generalized 

variational inequalities by introducing multivalued (α) operators. The theory of 

variational inequalities has opened a tendency in modern mathematics. Variational 

inequalities allow the approach some problems more general than the classical ones 

and describe in convenient formulations the phenomena structure, including 

economic, geographic and demographic phenomena. 
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1. Introduction 

Variational inequalities (VI) have many applications in technical and 

natural sciences, particularly, in the plasticity theory, hydrodynamics, etc.  

The variational inequality problem has been utilized to formulate and 

study the different problems in the different disciplines, ranging from market 

problems to the management of network equilibrium problems. The equilibrium is 

a central concept in numerous disciplines including economics, management and 

engineering. Date problems which have been formulated and studied as 

variational inequality problems include: traffic network equilibrium problems, 

financial equilibrium problems, migration equilibrium problems, as well as 

environmental network problems, and knowledge network problems etc.  

Variational inequality theory is a powerful unifying methodology for the 

study of equilibrium problems. Since equilibrium theory was the central theme to 

economics variational inequality theory provided a mechanism by which 

relationship between operations research and other disciplines could be 

established. For example, the migration phenomen. Human migration is a topic 

that has received attention not only from economists but also from sociologists, 

geographers and mathematicians. 

It is generally accepted that migration is a shared responsibility of the 

countries of origin, but also of those of transit and destination. Starting with 2015, 

EU and Africa worked in a spirit of partnership to find common solutions to the 
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challenges of mutual interest related to the migration phenomenon. We can 

consider that in the future the migration phenomenon will have a major impact on 

the economic and education areas. The “brain drain” will (continue to) be a pillar 

in the migration phenomen also. Taking this into consideration, we can consider 

that on the long term, the migration pattern will reach an equilibrium. 

Assume a closed economy in which there are n locations, typically 

denoted by i, and J classes, typically denoted by k. Assume further that the 

attractiveness of any location i as perceived by class k is represented by a utility 
k
iu . 

Mathematically, a multiclass population vector p K  is said to be in 

equilibrium if for each class k; k=1,...,J; 
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Equilibrium conditions reveal that for a given class k only those locations i 

with maximal utility equal to an indicator k  will have a positive volume of the 

class. 

It allows addressing broader issues then those classified in convenient 

formulation and description of the structure of phenomena. Over the years, 

solving variational inequalities have been used various methods, such as 

projection method and variants thereof, Wiener-Hopf equations, auxiliary 

principle technique, technical resolution and proximal equations. To resolve 

certain class of variational inequalities involving nonlinear functions 

indistinguishable using auxiliary principle technique introduced by Glowinski, 

Tremolieres and Lions [7]. 

Let ( , )X  be a real  Banach space with the topological dual 
*

( , )X  , 

*, : X X       the pairing of elements from X   and  .X   

We denote by 2X 

 the totality of all nonempty subsets of X   and 

consider the multivalued or set-valued mapping  : 2XT K X


  . Let 

    :D T x X T x    be its range and      G T R T D T   be its graph. 

We be not distinguish between a set-valued mapping T  and its graph  G T . So 

that, T  or  G T  is monotone if 

1 2 1 2, 0f f x x    for all  1 1f T x   and  2 2f T x   (1) 

for all      1 1 2 2, , ,x f x f G T . 



Multivalued operators applied to the management of migration equilibrium             235 

 

 

To prove the existence of a solution of the operator equation (inclusion) 

involving a monotone mapping  T x f  it is necessary to assume that T  is 

maximal. The set-valued mapping T  is maximal monotone if its graph  G T  has 

no monotone extension in X X  . The maximality ensures some required 

topological properties.  

The variational inequalities can be regarded as generalizations of these 

equations. 

In more general framework (we give up the finite dimension of X ) let K  

be a nonempty closed convex set in X  and T  be multivalued mapping from X  

into X   . Then, for a given f X  , the problem of finding an elemnet u K  

such that  

, 0Tu f x u   , for all x K       (2) 

is called a variational inequality  VI  of the first kind. More precisely, sometimes 

we denote it by  ,VI T K  and the set of solutions by  ,SOL T K . 

Clearly, when K X  or u  is an interior point of K , then we range over a 

neighborhood of u  and the variational inequality  ,VI T K  reduces to the 

equation  T u f . 

2. Multivalued    operators and multivalued mappings 

Let  K  be a nonempty closed subsetof a real Banach space X . 

We consider the multivalued or set-valued mapping : 2XT K X


   , 

find  ,x f K X    such that  f T x  and 

, 0f g x y   , for all y K       (3) 

is called a generalize variatonal  inequalitity  GVI . More precisely, 

sometimes we denote it by  ,GVI T K  and the solutions by  ,SOL T K . 

The symbols " ", ”” and " "


 denote the norm-convergence, the 

weak convergence and the weak


 convergence, respectively. Then T  is 

hemicontinuous if the function   1 ,t T tx t y x y    is continuous on 

 0,1 , and T  is demicontinuous if nx x  in X  implies nTx Tx


 in X  . 

Obviously, if T  is demicountinuos then the restrictions of to any finite-

dimensional subspaces or X  are continuos. 
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The mapping : ( ) 2XT D T X


    is of class ( ) , denoted  T  , if 

for any sequence {( , )} ( )n nx x G T   for which ( , )n nx x   ( , )x x  in X X   and  

limsup , 0n nx x x   , 

it follows that the sequence  nx  converges strongly to  x . 

The multivalued mapping : ( ) 2XT D T X


    is a strongly ( ) - 

monotonous, if there exists a continuous strictly increasing function 

   : 0, 0,c    , such that  0 0c   and  

 ,f g x y c x y    , for all    , , ,x y X f T x g T y   . 

We say that T  is upper semicontinuous if, for each open set *X  , the 

set { ;  ( ) }x K T x    is open in K. We recall that if the graph ( )G T  is closed, 

then each T is closed. 

Theorem 2.1.  

Let :T K X X   ,  T x  is a nonempty, bounded, closed, and convex 

subset of X  . Suppose that T is upper semicontinuous from K into X  . Then 

there exists a solution to the  ,GVI T K (See [3]). 

Now, we can establish the existence result:  

Theorem 2.2. 

Let K  be a nonempty, convex, and weakly compact subset of the real 

reflexive Banach spaces X , and : 2XT K


  be an upper semicontinuous 

multifunction such that: 

( )T x  is a nonempty, closed, and convex subset of X  , for each x K ; 

T satisfies condition ( )  and ( )T K  is bounded. 

Then, there exists a solution to the  ,GVI T K . 

Proof 

Let  X   be a family, for each M  , by Theorem 2.1, there exists a 

point    ,M Mx f K M X     such that  M Mf T x  and  

, 0M Mf x y  , for all y K M       (4) 

For each M  , put   , : ,M N Nx f N M N    . Since the family 

 M  has a finite intersection property and  K T K


  is weakly compact in 

X X  , it follows that M

M





  . Let  ,x f  M

M





 , we claim that 
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 ,x f  is a solution to the  ,GVI T K . Let y K , and let M   such that 

,x y M . Since  ,
M

x y


  and X X   is reflexive, there exist a sequence 

  ,
n nM Mx f   ,x f  and nM M  for all n  (see [18]). From now, on 

we put 
nn Mx x  and 

nn Mf f . By (4), we have that , 0n nf x x  , for all 

n .  

It follows that limsup , 0n n
n

f x x


  . 

Since T has the class ( ) , this implies that the sequence  nx  has a 

subsequence norm converning x. We can suppose that the whole sequence  nx  is 

norm converging to x . By [18], the graph of T is closed, hence  f T x . Again 

by (4), we have 

, 0n nf x y  , for all n . 

Thus, we have  

0 limsup , limsup , lim , ,n n n n n
nn n

f x y f x x f x y f x y
 

        ,     

since lim , 0n n
n

f x x


  .  

We remark the condition (4), emphasized by P. Cubiotti, J.-C. Yao  [4] is 

weaker than hemicontinuity assuption and Theorem 2.2 extends the standard 

Stampacchia’s existence result. 

Theorem 2.3.  

Let K be a nonempty, convex, and weakly compact subset of the real 

reflexive Banach spaces X, and : 2XT K


  be an upper semicontinuous 

multifunction such that: 

( )T x  is a nonempty, closed, and convex subset of X  , for each x K ; 

(ii) T satisfies condition ( ) ; 

The graph of T  is closed in K X  . 

Further, assume that exists a nonempty bounded closed convex set 

S X   such that  T x S   for all x K . 

Then there exists a solution to the  ,GVI T K ). 

Now, we consider set-valued (multivalued) mappings : 2XT X


 ,  

f X   is a fixed element, and   fK y T y f   . We study certain 
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properties of the set fK . Denote by  Conv ( )X   the set of all convex closed 

subsets of X   and let  :rB y X y r   .  

We introduce the upper and lower support functions for T  by the formulas 

 
 *

, sup ,
x T x

T x y x y




       and    
 *

, inf ,
x T x

T x y x y

 
    ,    

with the upper norm on  Conv ( )X   defined by 

 
 *

sup
Xx T x

T x x







  

Our operators could be non-convex and non-closed set-value, i.e., we 

distinguish  T x  and  coT x  (the minimal closed convex set containing  T x ),  

and let       , :gr coT x g D T X g coT x    .  

In addition, the following relations hold: 

     , , , , , ;T x y coT x y coT x y x y X
  

            
 

     , , , , , ;T x y coT x y coT x y x y X
  

            
 

     1 2 1 2 1 2, , , , , , ;T x y y T x y T x y x y y X
  

                

     1 2 1 2 1 2_
, , , , , , ;T x y y T x y T x y x y y X

 
                

    , .coT x T x x X


    

We know the following definitions: 

1. A mapping :T X Conv ( )X   is called upper semicontinuous at 

( )x D T  if for each neighborhood  V of ( )T x  in X   there is a 

neighborhood U of x  in X  such that ( )T U V  and A  is upper 

semicontinuous if it is upper semicontinuous at each point  ( )x D A .  The 

upper semicontinuity plays an important role in the fixed-point theory for 

multivalued maps.  

2. The mapping T  is called locally bounded if for any  ( )x D T  there are 

positive numbers     and  M   such that 

( )T y M

  for  y X   with  .y x    

Our study of variational inequalities involving multivalued mappings is 

based on the following Brower fixed-point extension []: 
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Proposition 2.1  

Let K  be a nonempty, convex compact set in a locally convex space X  

and : 2KT K   a mapping such that the set  T x  is nonempty and convex for all 

x K , and the preimages  1T y  are relatively open with respect to K  for 

all y K . Then T  has a fixed point. 

We can now extend an existence result ([18], pp. 453) to variational 

inequalities with multivalued mappings, i.e., the following problem: 

Find a pair    ,x g K T x   such that this satisfies the inequality  

, 0g y x   for all y K        (5) 

We give sufficient conditions for this problem to have solutions. 

Theorem 2.4 

Let : 2XT K X


   be a multivalued mapping defined a nonempty 

subset K X . If the following conditions are satisfied: 

• the mapping T  is locally bounded and upper semicontinuous; 

• the set  K  is nonempty, convex, and compact. 

Then the variational inequality (3.1) has a solution    ,x g K T x  . 

Proof  

In the contrary case, to each  h T x  there corresponds an element 

z K  such that  

, 0h z x          (6) 

Define the multivalued mapping : 2KS K   by 

   : , 0S x z K h z x    . 

Condition (6) implies that the set  S x  is a nonempty for all x K . In 

addition,  S x  is convex. 

We denote that the  1S x
 is relatively open in K . First, specify 

   1 : , 0S z x K h z x     . 

Let  nx  be a sequence, with nx z  and  n nh T x , so that 

, 0n nh z x   for all n . By the local boundedness, we also have nh  g  in X  . 

By the previous proposition, there exists a fixed point  x S x . This leads 

to the contradiction , 0h x x  . Hence there is a  g T x  and x K , 

satisfying (5). 
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3. Variational inequalities with multivalued mappings 

Let  K D T  be a convex closed set. O. V Solonoukha [3] investigated 

the solvability for the multivariational inequality  

  , , ,T x y x f y x y K


            (7) 

Involving the multivalued mapping : 2XT K


 , called briefly VIM . 

We start giving an equivalence of VIM( ,T K ) with a usual multivalued 

mapping in the form (5). 

Theorem 3.1  

Let 0x  be a solution of VIM (7) with  coT y  a bounded set. Assume that 

K  in also compact set and T is locally bounded, upper semicontinuous and a 

generalized pseudomonotone mapping. The exists an element  0g coT x  such 

that 

 0 0, , ,g y x f y x y K     . 

Proof  

If the claim is not true, to each  0g coT x  there corresponds an element 

z K  such that 0 0, ,h z x h z x   . We define a similar multivalued mapping 

S  and we follow the proof of Theorem 2.4. 

This theorem allows us to approach the previous VIM  ,T K  by a simpler 

and regular form. In this setting, the mapping T is called coercive if 

 
_

,T x x

x

  
  as x  . 

In the standard way [11], we can establish the following existence result: 

Theorem 3.2. 

Let  K D T  be a closed convex and compact set in a real reflexive 

Banach space and : 2XT X


  be a locally bounded, generalized 

pseudomonotone mapping. 

Assume, further, that T is coercive. Then VIM (7) has a nonempty weakly 

compact set of solutions for any f X  . 

In the case K X , if the mapping T satisfies the assumptions of theorem 

3.2, then, for any f X  , the operator inclusion  coT x f  has at least one 

solution x X . In other words, coT   is surjective, i.e.,  R coT X  . 
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More generally, let  : D    be a convex lower semicontinuous 

function with the domain     D x X x     . Consider the variational 

inequality of the second kind, that is, for a given f X  , find  x D   such that  

     , ,T x y x y x f y x 


       ,    y D      (8) 

The corresponding coerciveness condition has the form 

   
_

,T x x x

x

   
  as x        (9) 

and we can prove a similar existence result: 

Theorem 3.3 

Let  : D    be a convex lower semicontinuous function on a real 

reflexive Banach space X  and  : 2XT D T


  be a locally bounded generalized 

pseudomonotone mapping. Assume, further, that T  satisfies the coerciveness 

condition (9). Then the VIM (8) has a nonempty weakly compact set of solutions 

for any f X  . 

4. Conclusions 

It is well known that the equilibrium theory plays an important role in the 

study of variational inequality and its variant forms.  

In this paper, we have introduced and studied a new class of variational 

inequalities, which is called multivalued extended general variational inequalities. 

Using the projection operator technique, it is shown that the multivalued extended 

general quasi-variational inequalities are equivalent to the fixed-point problems. 

This alternative equivalent fixed point formulation is used to discuss the existence 

of a solution of new class of variational inequalities.  

Variational inequality theory is a powerful unifying methodology for the 

study of equilibrium problems, for example, the migration phenomen. We can 

conclude that the equilibrium theory was the central theme to economics 

variational inequality theory, that provided a mechanism to bridge operations 

research to other disciplines. Hence the importance of a scientific, comprehensive 

approach to study the migration phenomenon, that is likely to have a significant 

impact in the future on the economic and education sectors.  
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