GENERAL SOLUTION OF FULL ROW RANK LINEAR SYSTEMS OF EQUATIONS VIA A NEW EXTENDED ABS MODEL

Leila Asadbeigi¹, Mahmoud Paripour², Esmaeil Babolian³

ABS methods have been used broadly for solving linear and nonlinear systems of equations comprising large number of constraints and variables. Also, ABS methods provide a unification of the field of finitely terminating methods for the general solution of full row rank linear systems of equations. In this paper, we theoretically describe a new ABS algorithm based on the two-step ABS methods for solving general solution of full row rank linear systems of equations. This new algorithm requires the same number of multiplications as Gaussian elimination method, but does not need pivoting. Computational complexity and numerical results indicate that our new version of ABS algorithm needs less work than the corresponding two-step ABS algorithms and Huang's method.

Keywords: ABS methods, Two-step ABS algorithms, General solution of full row rank linear systems of equations

MSC2010: 15A 06; 15A 12; 15A 52; 65F 22; 65F 05; 65F 10

1. Introduction

ABS methods were introduced by Abaffy, Broyden and Spedicato initially for solving a determined or underdetermined linear system and later extended for linear least squares, nonlinear equations, optimization problems and Diophantine equations [1, 4]. These extended ABS algorithms offer some new approaches that are better than classical ones under several respects. Also, extensive computational experience has shown that ABS methods are implementable in a stable way, being often more accurate than the corresponding initial algorithm. ABS methods can be more effective than some of the other traditional methods. See more about ABS algorithms in [5, 6, 7]. A review of ABS algorithms is observed in [8].

The basic ABS algorithm works on a system of the form

\[A x = b \] (1)

where \(A = [a_1, \ldots, a_m]^T \), \(a_i \in \mathbb{R}^n \), \(1 \leq i \leq m \), \(x \in \mathbb{R}^n \), \(b \in \mathbb{R}^m \), \(m \leq n \).

The basic ABS methods determine the solution of (1) or signify lack of its existence in at most \(m \) iterates. Now, we present a new extended ABS algorithm based on the two-step ABS algorithms that were proposed in [2, 3] for the general solution of full row rank linear systems of equations. In order to have less numerical complexity, we modify some of the parameters of the basic two-step ABS methods. The remainder of this paper is organized as follows;

In Section 2, we construct a new two-step ABS model for solving general solution of full row rank linear systems of equations. Rank reducing process is done in two phases, for per iterate. The first phase helps us to have a solution of the \(i \)-th iteration and the next phase leads to compute general solution of that iterate. Also, we state and prove related
In Section 3, we present a new extended two-step ABS algorithm for the general solution of full row rank linear equations. The i-th iteration solves the first $2i$ equations in at most $\lceil \frac{m+1}{2} \rceil$ steps. Furthermore, we propose some parameters to have less computational complexity. Computational complexity and numerical results are discussed in Section 4, in detail. In Section 5, we conclude that our new algorithm requires the same number of multiplications as Gaussian elimination method, but does not need pivoting. Moreover, we need less work than those corresponding two-step ABS methods and Huang’s algorithm.

2. Constructing a new two-step ABS model

The basic ABS algorithm starts with an initial vector $x_0 \in \mathbb{R}^n$ and a nonsingular matrix $H_0 \in \mathbb{R}^{n \times n}$ (Spedicato’s parameter). Given that x_i is a solution of the first i equations, the ABS algorithm computes x_i as the solution of the first $i+1$ equations as the following steps [1]:

1. Determine z_i (Broyden’s parameter) so that $z_i^T H_i a_i \neq 0$ and set $P_i = H_i^T z_i$,
2. Update the solution by $x_{i+1} = x_i + \alpha_i P_i$ where the stepsize α_i is given by $\alpha_i = \frac{b_i - a_i^T x_i}{a_i^T P_i}$.
3. Update the Abaffian matrix H_i by $H_{i+1} = H_i - \frac{H_i a_i w_i^T H_i}{w_i^T H_i a_i}$.

Here, we are motivated to study on a method that satisfies two new equations at a time. We consider the system (1) under the assumption that A is full rank in row, i.e., $\text{rank}(A)=m$ and $m \leq n$. Suppose that $m = 2l$ (if m is odd, we can add a trivial equation to the system). Take $A^{2i} = [[a_1, \ldots, a_{2i}]^T$, $b^{2i} = [[b_1, \ldots, b_{2i}]^T$ and $r_j(x) = a_j^T x - b_j(j = 1, \ldots, m)$. Assume that we are at the i-th iteration and x_i satisfies $A^{2i} x = b^{2i}$. We determine $H_i \in \mathbb{R}^{n \times n}$, $z_i \in \mathbb{R}^n$ and $\lambda_i \in \mathbb{R}$ so that $x_i = x_{i-1} - \lambda_i H_i^T z_i$ is a solution of the first $2i$ equations of the system (1), which is $A^{2i} x_i = b^{2i}$. As a result, we have $r_j(x_i) = 0, j = 1, \ldots, 2i$. Thus, for $j = 2i - 1$ and $j = 2i$, we have

$$
\begin{align*}
\begin{cases}
a_{2i-1}^T (x_{i-1} - \lambda_i H_i^T z_i) - b_{2i-1} = 0, \\
a_{2i}^T (x_{i-1} - \lambda_i H_i^T z_i) - b_{2i} = 0,
\end{cases}
\end{align*}
$$

or equivalently

$$
\begin{align}
\begin{cases}
\lambda_i (H_i a_{2i-1})^T z_i = r_{2i-1}(x_{i-1}), \\
\lambda_i (H_i a_{2i})^T z_i = r_{2i}(x_{i-1}).
\end{cases}
\end{align}
\tag{2}
$$

Suppose that $r_{2i-1}(x_{i-1}) \neq 0$ and $r_{2i}(x_{i-1}) \neq 0$. Then, λ_i must be nonzero and (2) is compatible if and only if we take

$$
\lambda_i = \frac{r_{2i-1}(x_{i-1})}{(H_i a_{2i-1})^T z_i} = \frac{r_{2i}(x_{i-1})}{(H_i a_{2i})^T z_i}
\tag{3}
$$

where $r_{2i-1}(x_{i-1}) = r_{2i}(x_{i-1}) = r_{2i-1}(x_{i-1}) r_{2i}(x_{i-1})$. There are various ways to satisfy (3). We consider the following model:

1. Choose an appropriate update for H_i so that $H_i a_{2i-1} = H_i a_{2i} \neq 0$
2. Select a vector z_i from an orthogonal space to the vector $H_i a_{2i}$, so that $z_i^T H_i a_{2i} \neq 0$.

Now, since two new equations are considered in each iterate, we use a rank one update as (4) and another rank one update as (5). Therefore, we have a new rank two update for each iterate. Here, we present H_i and H_l satisfying the following properties:

$$
H_i a_{2i-1} = H_i a_{2i} \neq 0, \quad i = 1, \ldots, l,
\tag{4}
$$

and

$$
H_l a_j = 0, \quad j = 1, \ldots, 2i.
\tag{5}
$$
Now, assume
\[
c_j = \begin{cases}
 a_{2i} - a_j, & j \neq 2i, \\
 a_{2i}, & j = 2i.
\end{cases}
\]
(6)

As relations (4), (5) and (6), we will construct (7) and (8) such that
\[
H_ic_j = 0, \quad j = 1, \ldots, 2i - 1,
\]
(7)

and
\[
H_ic_j = 0, \quad j = 1, \ldots, 2i.
\]
(8)

We compute \(H_{i+1}\) from \(H_i\), such that the relations (7) and (8) hold and proceed inductively. We define \(H_{i+1} = H_i + g_{2i+1}d_{2i+1}^T\) where \(g_{2i+1}, d_{2i+1} \in \mathbb{R}^n\). We need to have
\[
\begin{cases}
 H_{i+1}c_j = 0, & j = 1, \ldots, 2i + 1, \\
 H_ic_j = 0, & j = 1, \ldots, 2i.
\end{cases}
\]

So, we have
\[
\begin{cases}
 (H_i + g_{2i+1}d_{2i+1}^T)c_j = 0, & j = 1, \ldots, 2i + 1, \\
 H_ic_j = 0, & j = 1, \ldots, 2i.
\end{cases}
\]

Thus, we must define \(g_{2i+1}, d_{2i+1} \in \mathbb{R}^n\) in such a way that
\[
H_{i+1}c_j + (d_{2i+1}^Tc_{2i+1})g_{2i+1} = 0, \quad j = 1, \ldots, 2i + 1,
\]
(9)

and \(H_ic_j = 0, j = 1, \ldots, 2i\). By defining \(d_{2i+1} = H_i^Tw_{2i+1}\), the condition (9) is satisfied for \(j \leq 2i - 1\) by the induction hypothesis. Letting \(j = 2i + 1\) in (9), we get
\[
(d_{2i+1}^Tc_{2i+1})g_{2i+1} = -H_ic_{2i+1}.
\]
(10)

We consider the choice \(g_{2i+1} = -H_ic_{2i+1}\) with \(d_{2i+1}^Tc_{2i+1} = 1\), which clearly holds in (10). Now, we define \(w_{2i+1} \in \mathbb{R}^n\) such that
\[
w_{2i+1}^TH_{i+1}c_{2i+1} = 1.
\]
(11)

Later, as Theorem 2.2., we will conclude that the above system has solution and \(H_i\) is well-defined. Therefore, the updating formula for \(H_i\) is given by
\[
H_{i+1} = H_i - H_ic_{2i+1}w_{2i+1}^TH_i
\]
(12)

where \(w_{2i+1}\) can be any vector satisfying (11). Now to satisfy (12) and complete the induction, \(H_1\) should be chosen so that \(H_1a_1 = H_1a_2 \neq 0\) or
\[
H_1c_1 = 0.
\]
(13)

Let \(H_0\) be an arbitrary nonsingular matrix. We obtain \(H_1\) from \(H_0\) by using a rank one update. Take \(H_1 = H_0 - u_1v_1^T\) where \(u_1, v_1 \in \mathbb{R}^n\) are chosen so that (13) is satisfied. So, we have
\[
H_0c_1 - (v_1^Tc_1)u_1 = 0.
\]

The above equation is satisfied if we set \(u_1 = H_0c_1, v_1 = H_0^Tw_1\), and we choose \(w_1 \in \mathbb{R}^n\) satisfying the next condition
\[
w_1^TH_0c_1 = 1.
\]
(14)

Clearly, (14) can be held with a proper choice of \(w_1 \in \mathbb{R}^n\), whenever \(a_1\) and \(a_2\) are linearly independent. Thus, we have a rank one update
\[
H_1 = H_0 - H_0c_1w_1^TH_0
\]
(15)

where \(w_1\) is an arbitrary vector satisfying (14). In order to compute the general solution and update the second phase for the \(i\)-th iteration, we introduce a matrix \(H_i\) with properties
\[
H_ic_j = H_{i-1}a_j = 0, \quad j = 1, \ldots, 2i.
\]

So, we define the matrix \(H_i\) by a rank one update as the next formula
\[
H_{i+1} = H_i - H_i a_i w_{2i}^TH_i = H_i - H_i c_{2i}w_{2i}^TH_i, \quad i = 1, \ldots, l.
\]
(16)
Notice that $w_{2i} \in \mathbb{R}^n$ is an arbitrary vector satisfying the following condition:
\begin{equation}
w_{2i}^T H_i a_{2i} = 1, \quad (w_{2i}^T H_i c_{2i} = 1)
\end{equation}

Hence, the general solution of the i-th iteration is given by $x_i = x_i - H_i^T s$ where $s \in \mathbb{R}^n$ is arbitrary. Clearly, the general solution for the last iteration is presented by
\begin{equation}
x_l = x_l - H_l^T s
\end{equation}

where $s \in \mathbb{R}^n$ is arbitrary.

Lemma 2.1. The vectors a_1, \cdots, a_m are linearly independent if and only if the vectors c_1, \cdots, c_m are linearly independent.

Therefore, we proved the following theorem.

Theorem 2.1. Assume that we have $m = 2l$ arbitrary linearly independent vectors $a_1, \cdots, a_m \in \mathbb{R}^n$ and an arbitrary nonsingular matrix $H_0 \in \mathbb{R}^{n \times n}$. Let H_1 be generated by (15) and w_1 is satisfying (14) and the sequence of matrices H_i, $i = 2, \cdots, l$, be generated by
\begin{equation}
H_i = H_{i-1} - H_{i-1} c_{2i-1} w_{2i-1}^T H_{i-1},
\end{equation}
with $w_{2i-1} \in \mathbb{R}^n$ satisfying the following condition:
\begin{equation}
w_{2i-1}^T H_{i-1} c_{2i-1} = 1.
\end{equation}

Also, let the sequence of matrices H_1, \cdots, H_l be generated by (16) with $w_{2i} \in \mathbb{R}^n$ satisfying (17). Then, when we are at the i-th iteration, the following properties (i) - (iv) hold for $i = 1, \cdots, l$:
\begin{enumerate}
 \item $H_i a_{2i-1} = H_i a_{2i} \neq 0,$
 \item $H_i a_j = 0, \quad j = 1, \cdots, 2i - 1,$
 \item $H_i c_j = 0, \quad j = 1, \cdots, 2i - 1,$
 \item $H_i c_j = 0, \quad j = 1, \cdots, 2i.$
\end{enumerate}

Theorem 2.2. Assume that a_1, \cdots, a_m are linearly independent vectors in \mathbb{R}^n. Let $H_0 \in \mathbb{R}^{n \times n}$ be an arbitrary nonsingular matrix and H_1 be defined by (15), with $w_1 \in \mathbb{R}^n$ satisfying (14) and for $i = 2, \cdots, l$, the sequence of matrices H_i be generated by (19) with $w_{2i-1} \in \mathbb{R}^n$ satisfying (20). Then, for all i, $1 \leq i \leq l$, and j, $2i \leq j \leq m$, the vectors $H_i a_j$ are nonzero and linearly independent.

Proof. We proceed by induction. For $i = 1$, the theorem is true. Since if $\sum_{j=2}^{m} \alpha_j H_1 a_j = 0$, we have
\begin{align*}
\sum_{j=2}^{m} \alpha_j \left(H_0 - H_0 c_1 w_1^T H_0 \right) a_j &= 0, \\
\sum_{j=2}^{m} \alpha_j H_0 a_j - \left(\sum_{j=2}^{m} \alpha_j w_1^T H_0 a_j \right) H_0 c_1 &= 0,
\end{align*}

or
\begin{equation}
\beta_1 H_0 a_1 - (\beta_1 - \alpha_2)H_0 a_2 + \sum_{j=3}^{m} \alpha_j H_0 a_j = 0
\end{equation}

where $\beta_1 = \sum_{j=2}^{m} \alpha_j w_1^T H_0 a_j$. Now, since a_1, \cdots, a_m are nonzero and linearly independent and H_0 is nonsingular, $H_0 a_j$ for $1 \leq j \leq m$ are nonzero and linearly independent. Hence, $\beta_1 = \alpha_2 = \alpha_3 = \cdots = \alpha_m = 0$. Therefore, the vectors $H_1 a_j$, for $2 \leq j \leq m$, are nonzero and linearly independent. Now, we assume that the theorem is true up to $1 \leq i \leq l - 1$, and then we prove it for $i + 1$. From (12), for $2i + 2 \leq j \leq m$, we have
\begin{equation}
H_{i+1} a_j = H_i a_j - (w_{2i+1}^T H_i a_j) H_i c_{2i+1}.
\end{equation}
We need to show that the relation
\[\sum_{j=2i+2}^{m} \alpha_j H_{i+1} a_j = 0, \tag{22} \]
implies that \(\alpha_j = 0 \), for \(2i + 2 \leq j \leq m \). Using (21) we can write (22) as follows:
\[\sum_{j=2i+2}^{m} \alpha_j H_i a_j - \beta_j (H_i c_{2i+1}) = 0, \]
where \(\beta_j = \sum_{j=2i+2}^{m} \alpha_j w_{2i+1}^T H_i a_j \). Thus, we have
\[\sum_{j=2i+2}^{m} \alpha_j H_i a_j - \beta_j H_i (a_{2i+2} - a_{2i+1}) = 0. \]
As a result
\[\sum_{j=2i+3}^{m} \alpha_j H_i a_j + \beta_j H_i a_{2i+1} - (\beta_j - \alpha_{2i+2}) H_i a_{2i+2} = 0. \tag{23} \]
By the induction hypothesis, the vectors \(H_i a_j \), for \(2i \leq j \leq m \), are nonzero and linearly independent. Now as the assumption of the induction, we are going to prove that the vectors \(H_i a_j \) are nonzero and linearly independent for \(2i + 1 \leq j \leq m \). Using (16), we have
\[H_i a_j = H_i a_j - H_i a_{2i} w_{2i}^T H_i a_j. \tag{24} \]
We must prove the relation
\[\sum_{j=2i+1}^{m} \alpha_j' H_i a_j = 0, \tag{25} \]
implies that \(\alpha_j' = 0 \), for \(j \geq 2i + 1 \). Using (24), we can write (25) as follows:
\[\sum_{j=2i+1}^{m} \alpha_j' H_i a_j - \left(\sum_{j=2i+1}^{m} \alpha_j' w_{2i}^T H_i a_j \right) H_i a_{2i} = 0. \]
As the linear independence of \(H_i a_j \), for \(2i \leq j \leq m \), we conclude that \(\alpha_j' = 0 \), for \(j \geq 2i + 1 \).
Consequently, for relation (23), we have \(\beta_j' = \alpha_{2i+2} = \alpha_{2i+3} = \cdots = \alpha_m = 0 \). Hence, the vectors \(H_{i+1} a_j \), for \(2i + 2 \leq j \leq m \) are nonzero and linearly independent.

Corollary 2.1. Considering the assumptions of Theorem 2.2., the following statement are true;

(i) When we are at the \(i \)-th iteration, we have \(H_i a_{2i-1} = H_i a_{2i} \neq 0 \). Also, there exist \(z_i \in \mathbb{R}^n \) and \(w_{2i} \in \mathbb{R}^n \) such that \(z_i^T H_i a_{2i} \neq 0 \) and \(w_{2i}^T H_i a_{2i} \neq 0 \).
(ii) Each of the systems (14) and (20) has solution.
(iii) \(H_i, H_{i+1}, x_i \) and \(x_{i-1} \) are well-defined for \(i = 1, \cdots, l \).

Theorem 2.3. For the matrices \(H_i \) generated by (15) and (19) and the matrices \(H_{i+1} \) given by (16), we have
\[
\begin{align*}
dim R(H_i) &= n - 2i + 1, & 1 \leq i \leq l, \\
dim N(H_i) &= 2i - 1, & 1 \leq i \leq l, \\
dim R(H_{i+1}) &= n - 2i, & 1 \leq i \leq l, \\
dim N(H_{i+1}) &= 2i, & 1 \leq i \leq l, \\
dim R(H_{i+1}) &= n - m, & \\
dim N(H_{i+1}) &= m.
\end{align*}
\]

Remark 2.1. For the matrices \(H_i \) generated by (15) and (19), we have \(x_i = x_{i-1} - \lambda_i H_i^T z_i, (i = 1, \cdots, l) \), where \(x_i \) is a solution of the first \(2i \) equations of the system and \(\lambda_i \) will be discussed in Algorithm 1.
3. Introducing a new two-step ABS algorithm

Algorithm 1. Assume that $A_{m \times n} = [a_1, a_2, \ldots, a_m]^T$ is a full row rank linear matrix where $m = 2l$ and $Ax = b$ is a compatible full row rank linear system, $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$.

1. Let $x_0 \in \mathbb{R}^n$ be an arbitrary vector and choose $H_0 \in \mathbb{R}^{n \times n}$ (an arbitrary nonsingular matrix). Set $i = 1$.
2. (a) Compute $r_1(x_0) = a_1^T x_0 - b_1$ and $r_2(x_0) = a_2^T x_0 - b_2$.
 (b) If $r_1(x_0) r_2(x_0) \neq 0$, we let
 \[
 \begin{align*}
 a_1 &= r_2(x_0) a_1, \\
 b_1 &= r_2(x_0) b_1, \\
 a_2 &= r_1(x_0) a_2, \\
 b_2 &= r_1(x_0) b_2.
 \end{align*}

 (c) If $r_1(x_0) r_2(x_0) = 0$ and one of the residual values is nonzero, without loss of generality we assume that $r_2(x_0) \neq 0$ and we let
 \[
 \begin{align*}
 a_1 &= a_2 + a_1, \\
 b_1 &= b_2 + b_1, \\
 a_2 &= a_2, \\
 b_2 &= b_2.
 \end{align*}

 (d) If $r_1(x_0) r_2(x_0) = 0$, and both of the residual values are zero, x_1 will be x_0 and go to (5).
3. (a) Take $c_1 = a_2 - a_1$.
 (b) Select $w_1 \in \mathbb{R}^n$ such that $w_1^T H_0 c_1 = 1$ and compute $H_1 = H_0 - H_0 c_1 w_1^T H_0$.
 (c) Select $w_2 \in \mathbb{R}^n$ such that $w_2^T H_1 a_2 = 1$ and compute $H_1 = H_1 - H_1 a_2 w_2^T H_1$.
4. (a) Take $x_1 = x_0 - \lambda_1^T H_1^T z_1$.
5. Set $i = 2$ and go to 6.
6. While $i \leq \frac{m}{2}$, do steps 6(a)-8(b).
 (a) Compute $r_{2i-1}(x_{i-1}) = a_{2i-1}^T x_{i-1} - b_{2i-1}$ and $r_{2i}(x_{i-1}) = a_{2i}^T x_{i-1} - b_{2i}$.
 (b) If $r_{2i-1}(x_{i-1}) r_{2i}(x_{i-1}) \neq 0$, then we let
 \[
 \begin{align*}
 a_{2i-1} &= r_{2i}(x_{i-1}) a_{2i-1}, \\
 b_{2i-1} &= r_{2i}(x_{i-1}) b_{2i-1}, \\
 a_{2i} &= r_{2i-1}(x_{i-1}) a_{2i}, \\
 b_{2i} &= r_{2i-1}(x_{i-1}) b_{2i}.
 \end{align*}

 (c) If $r_{2i-1}(x_{i-1}) r_{2i}(x_{i-1}) = 0$ and one of the residual values is nonzero, without loss of generality we assume that $r_{2i}(x_{i-1}) \neq 0$ and we let
 \[
 \begin{align*}
 a_{2i-1} &= a_{2i} + a_{2i-1}, \\
 b_{2i-1} &= b_{2i} + b_{2i-1}, \\
 a_{2i} &= a_{2i}, \\
 b_{2i} &= b_{2i}.
 \end{align*}

 (d) If $r_{2i-1}(x_{i-1}) r_{2i}(x_{i-1}) = 0$ and both of the residual values are zero, x_i will be x_{i-1} and go to 8(b).
7. (a) Take $c_{2i-1} = a_{2i} - a_{2i-1}$.
 (b) Select $w_{2i-1} \in \mathbb{R}^n$ such that $w_{2i-1}^T H_{i-1} c_{2i-1} = 1$, and compute $H_i = H_{i-1} - H_{i-1} c_{2i-1} w_{2i-1}^T H_{i-1}$.
 (c) Select $w_{2i} \in \mathbb{R}^n$ such that $w_{2i}^T H_i a_{2i} = 1$ and compute $H_i = H_i - H_i a_{2i} w_{2i}^T H_i$.
4. (a) Take $x_i = x_{i-1} - \lambda_i^T H_i^T z_i$.
 (b) Set $i = i + 1$.
 Endwhile.
8. (a) Take $x_i = x_{i-1} - \lambda_i^T H_i^T z_i$.
 (b) Set $i = i + 1$.
 Endwhile.
9. Stop (x_i is a solution of the system.)
From (18), we can compute general solution of the system after the final iterate by $x_l = x_l - H^T_l s$ where $s \in \mathbb{R}^n$ is arbitrary.

Remark 3.1. To reduce computational complexity of the above algorithm, we propose the following tactics:
1. Taking x_0 and H_0 as the zero vector and the identity matrix I_n, respectively, is proper in step (1) as Algorithm 1.
2. To compute $w_1 \in \mathbb{R}^n$, we take $t_j = H_0 c_1$ and then we define w_1 as follows:

$$w_1 = \begin{cases}
\frac{1}{\text{sign}(t_{jM})} H_{jM}, & i = jM, \\
0, & i \neq jM.
\end{cases}$$

Then, we take $t_{jM} = \max \{ |t_j| : j \in \{1, \ldots, n\} \}$ such that $w^T_1 t_j = 1$. To determine the other $w_{2i-1} \in \mathbb{R}^n$, $i = 2, \ldots, l$, we let $t'_i = H_{i-1} c_{2i-1}$ and then, we continue the similar way.
3. We can choose $w_{2i} = z_i \in \mathbb{R}^n$, $i = 1, \ldots, l$, by defining the next parameters $d_j = H_i a_{2i}$, and

$$w_{2i} = z_i = \begin{cases}
\frac{1}{\text{sign}(d_{jM})} d_{jM}, & i = jM, \\
0, & i \neq jM.
\end{cases}$$

Now, we take $d_{jM} = \max \{ |d_j| : j \in \{1, \ldots, n\} \}$ such that $w^T_{2i} d_j = z^T_i d_j = 1$.

4. Computational complexity and numerical results

At first, considering the points 2. and 3. as Remark 3.1., we compute the number of multiplications for Algorithm 1. as follows;

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Multiplications for Each Iterate</th>
</tr>
</thead>
<tbody>
<tr>
<td>residual values</td>
<td>2n</td>
</tr>
<tr>
<td>The products of residual values</td>
<td>1</td>
</tr>
<tr>
<td>a_{2i-1}, a_{2i}</td>
<td>2n</td>
</tr>
<tr>
<td>b_{2i-1}, b_{2i}</td>
<td>2</td>
</tr>
<tr>
<td>H_i</td>
<td>$(2n + 1)(n - 2i + 2)$</td>
</tr>
<tr>
<td>H_{0l}</td>
<td>$(2n + 1)(n - 2i + 1)$</td>
</tr>
<tr>
<td>x_i</td>
<td>2n</td>
</tr>
</tbody>
</table>

Hence, the total number of multiplications for the l iterates is

$$N = \sum_{i=1}^{l} \left[2n + 1 + 2n + 2 + (2n + 1)(n - 2i + 2) + (2n + 1)(n - 2i + 1) + 2n \right],$$

$$N = 2mn^2 - m^2 n + O(mn) - O(m^2) + O(m).$$

The total number for Huang’s method is $\frac{1}{2}mn^2 + O(mn)$ multiplications and $3mn^2 - \frac{7}{2}m^2 n + \frac{1}{2}m^3 + O(mn) + O(m^2) + O(n^2)$ for the two-step methods presented by Amini et al. [2, 3]. Our computations indicate that our numerical results are better than Amini et al. introduced by two-step algorithm. In addition, when $n < 2m$, we need the cheaper number of multiplications up to the corresponding Huang’s algorithm. Also, when m tends to n, the total number for our two-step method is n^3 multiplications, while it is $\frac{7}{2}n^3$ for Huang’s algorithm and $\frac{14}{15}n^3$ for those two-step methods given by Amini et al. in 2004 and 2007.
Obviously, when \(m \) and \(n \) are not too large, the lower order terms have influence on our results.

Remark 4.1. We recommend using all of the points as Remark 3.1., and setting of \(H_0 \) the identity matrix \(I_n \). In this case, for the \(i \)-th iteration, the number of multiplications of the matrix \(H_i \) is \((n - 2i + 2)(4i - 1)\) and it is \((n - 2i + 1)(4i + 1)\) multiplications for the matrix \(H_i \). So, our algorithm needs \(nm^2 - \frac{2}{3}m^3 + O(nm) + O(m^2) \) multiplications. Hence, for \(m = n, \frac{1}{3}n^3 \), multiplications plus lower order terms are needed.

5. **Conclusion**

The presented work is a new extended two-step ABS algorithm for solving general solution of compatible full row rank linear systems of equations in at most \(\left\lceil \frac{m+1}{2} \right\rceil \) iterates. The number of multiplications of our new version ABS algorithm is the same as that in Gaussian elimination method, but no pivoting is necessary. Moreover, we need less computational complexity up to those corresponding two-step ABS algorithms and Huang’s method. Furthermore, this work offers more flexibility for the definition of the Abaffian matrix.

REFERENCES