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Verification of the quasi-analytic solutions of  Ordinary Differential Equations using the  Accurate Element Method
Maty Blumenfeld
 

O ecuaţie diferenţială ordinară poate avea o soluţie analitică ((x) valabilă pe tot domeniul de integrare (care inlocuită in ecuaţie va conduce la o identitate) sau o soluţie numerică reprezentată de un şir de valori (a căror exactitate este mai greu de cuantificat). Integrarea bazată pe metoda AEM (Accurate Element Method) se efectuează pe un număr redus de sub-domenii (elemente), pe fiecare obţinând-se o soluţie polinomială numită cvasi-analitică. Soluţia cvasi-analitică poate fi verificată (similar cu cea analitică) prin înlocuire în ecuaţia diferenţială. Deoarece soluţia cvasi-analitică poate avea o mică abatere faţa de soluţia exactă, rezultatul înlocuirii nu va conduce la o identitate ci la un reziduu care poate fi cuantificat. Acesta  permite fie acceptarea soluţiei, fie recalcularea ei cu parametri uşor modificaţi până la atingerea unui nivel de eroare admisibil. Articolul prezintă o strategie completă pentru ambele variante.

It is usually considered that an ordinary differential equation (ODE) can have on the whole integration domain either an analytic solution ((x) (which replaced in the ODE leads to an identity) or a numeric solution (represented by a string of numerical values whose accuracy is more difficult to quantify). The integration of a ODE by the Accurate Element Method leads to Piecewise Polynomial Solutions represented by a small number of polynomials, each one valid on a single sub-domain (element); they can be considered as quasi-analytic solutions. A quasi-analytic solution is suitable for verification by replacing it in the ODE that does not lead to identities but to a quantifiable residual. Based on the value of the residual one can decide either to accept the solution or to compute it once again with slightly modified parameters until an imposed allowable precision is reached. The paper presents a strategy valid for both cases.

1. Introduction


Finding a solution for an ODE is not always difficult; on the contrary it is difficult to find a methodology to undisputedly validate this solution. A pertinent analysis of the errors generated by the numerical methods that try to solve ODEs is developed by George W. Collins
, from whom we quote: 
- “Modern computers will almost always produce numbers, but whether they represent the solution to the problem or the result of error propagation may not be obvious…

- A numerical solution to a differential equation is of little use if there is no estimate of its accuracy. However,… the formal estimate of the truncation error is often more difficult than finding the solution.       

- Virtually all general algorithms for the solution of differential equations contain a section for the estimate of the truncation error and the subsequent adjustment of the step size h so that predetermined tolerances can be met
. Unfortunately, these methods of error estimate will rely on the variation of the step size at each step. This will generally triple the amount of time required to effect the solution.”
This paper deals with a rigorous methodology for verifying the solution of ODEs.
2. Verification of the solution and its accuracy

Consider a first order Ordinary Differential Equation (ODE)
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where E1(x), E0(x), EF(x) are three any type functions of x.

 If the ODE can be integrated by quadratures it may result an analytic solution ((x), which – replaced in (1) – leads to an identity.


When the ODE is not integrable by quadratures, one may obtain an approximate solution by using a numerical method of integration. In this case the result is usually represented by a string of numerical values. It is obvious that it is not possible to verify the solution by replacing it in (1), because no function ((x) is involved in this procedure
. 

The Accurate Element Method leads to a polynomial solution that can be replaced in (1), which allows calculating a possible residual, therefore to appreciate how far is this solution from an exact one. This is a global (final) verification, concerned only by the result being therefore independent on the various steps covered in order to obtain ((x). The same solution allows also analyzing its accuracy comparing the results obtained by dividing differently the integration domain.
The basic ideas of AEM only recently published (since 2001) are nowadays known by a handful of people, so that a short presentation of the method is necessary.

3. The accurate element method
The procedure for solving an ODE has two main goals: find a solution and verify it. An analytic method obtains the solution by an integration procedure, while the verification consists in replacing the solution into the ODE in order to obtain an identity. For the numerical procedures usually accepted – especially the one-step methods (Euler, Heun, Runge-Kutta, Runge-Kutta-Fehlberg) – the verification is not referred to the ODE as a governing equation, but to the round-off and truncation errors at each “integration” step. 

On the contrary, the Accurate Element Method obtains a polynomial solution and verifies globally the procedure by replacing it in the ODE. The difference between an analytic method and the AEM procedure is that the first obtains a solution valid for the whole integration domain, while the second leads to several polynomial solutions each one valid on a limited domain. Due to this particularity, the result obtained by AEM will be referred as a quasi-analytic solution.


The Accurate Element Method is a versatile tool that solves in the same way any type of problem (Initial Value, Boundary Value or Eigen Value) [1],[2],[5],[6]. Only the Initial Value Problem is analyzed here. The AEM is based on two concepts: the Complete Transfer Relation (CTR) and the Concordant Functions (CF).

3.1 Complete Transfer Relations (CTR) 


The Complete Transfer Relations (CTR) represent the result of the integration of the ODE. Consider the first-order ODE (1) that can be integrated only once  between a start (initial) point xS and a target (final) point xT leading to
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(2)
If the coefficients E​1 and E0 are constants, this integral can be performed straightforward
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While 
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results immediately, the only difficulty (typical for this integral equation) is related to the integration of 
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 that includes the unknown function ((x) under the integral sign. This integral can be performed replacing ((x) by an approximation function 
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. The only possible approximation is a linear interpolation expressed as a function involving the two end values: (S (start value, usually known) and (T (target value, usually unknown)
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If (4) is replaced in (3) the first integral can now be performed leading to a single relation (CTR) from which it results the unknown target value (T. Unfortunately if the linear approximation (4) is used the result will be poor and unacceptable, being similar to that obtained by using Euler's method.

3.2 Concordant Functions (CF)

Instead of (4) AEM introduces a higher-order polynomial referred as a Concordant Function (CF) that depends ALWAYS on the same two end unknowns ((S and (T). Suppose for instance the following third-degree polynomial noted as CF4 (four terms)
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In order to obtain the four unknown constants Ci (i = 1,2,3,4), two end conditions are obvious:
for x = xS, 
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(a) 
for x = xT ,
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The two other necessary conditions are obtained rigorously by AEM from the derivative of (7):
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This relation is also transferred to both ends by replacing x in (8) by the two end abscissas. If one notes 
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                                   for x=xS,     
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   for  x=xT,    
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The conditions (a), (b), (c), (d), represent a system of 4 equations from which it results the four constants Ci that depend at this stage not only on the initial unknowns (S and (T but also on the two unknown end derivatives 
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 . The Accurate Element Method eliminates accurately these new unknowns by using the governing equation itself. If the ODE (1) is transferred to both ends one obtains the end derivatives as

For x=xS  ,
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For x=xT,
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By replacing (e) in (c) and (f) in (d), the four constants depend now only on (S, (T and a free term :
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where the constants 
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(i=1,2,3,4) depend on each specific case. Using (9) it results 
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 , where K1, K2, K3 are three constants resulting from the integration procedure. Finally, the relation (3) becomes
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Because (S is in fact known, (T results immediately. 

This strategy allows the use of higher degree polynomials by applying a similar methodology [1,2]. For instance for CF6 (a five-degree polynomial with 6 constants) it is necessary to use besides the first derivative of the ODE as above, also its second derivative. This procedure (increasing by two units the degree of the polynomial and adding simultaneously a higher order derivative, which is applied at both ends giving two new accurate conditions) may continue similarly for polynomials of higher degree. Consequently, the relation (10) is valid for a CF of any degree. In fact seven different CFs have been used [1,2]: CF4, CF6, CF8, CF10, CF12, CF14, CF16, the last being a fifteen degree polynomial.
 The use of a CF properly adapted to each specific problem [3] allows obtaining very good results that can be considered accurate, by dividing (when necessary) the integration interval in a small number of sub-intervals (elements).

The resulting Concordant Function valid on a single element will be considered a quasi-analytic solution of the ODE and can be used like any analytic function in different ways: to draw a continuous and reliable variation of the solution along x or – more important – it can be replaced into the ODE in order to verify the solution.

3.3. The Accurate Element Method is a one step implicit method

The target value can be usually expressed as
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In the first case (11) the method is considered explicit, while in the second (12) as implicit, because the unknown parameter (T is involved in both left and right terms. The equation (10) is of this last type; consequently it results that AEM is an implicit method, therefore unconditionally stable. For instance an integral of an ODE using a single element starting from xS=0 and having xT=10 000 as target was perfectly stable (see[1], page 118). It is important to underline that for a linear ODE the Accurate Element Method obtains (T directly from (10), without any iterative approach or any procedure for solving a non-linear system of equations usually specific for the implicit methods.

3.4 Target Value Problem and Piecewise (Field) Polynomial Solution


The paper [3] has put forward two types of ODE problems that have to be solved:

a. Target Value Problem (TVP): Supposing the initial value 
[image: image33.wmf](

)

S

S

x

x

=

f

=

f

 as known, one has to calculate the value of the function 
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 at the target point, no matter how far this point is. This will be considered as a Target Value Problem (TVP), being in fact the trivial approach of an Initial Value Problem (IVP).

b. Piecewise (Field) Polynomial Solution: Supposing the integration field xS – xT divided in a small number NE of sub-intervals (elements), find NE polynomials (n(x) (n=1,2…NE) that can be considered as quasi-analytic solutions of the ODE on each element.

Some numerical experiments described in [3] have shown that:

1. The Target Value Problem can be solved with a small number of elements, usually (but not always) by using a higher order CF, namely CF14 or CF16. When CF4 or CF6 are used, a greater number of elements is necessary in order to reach a similar accuracy. The accuracy has been verified [1,2,3] by using the following method: the computation based on NE elements leads to a target value noted as (T(NE); in order to verify the result a new computation is performed using NE+1 elements leading to a slightly modified value (T(NE+1). A relative estimated error can be calculated by using these two values 


Relative estimated error = ((T(NE+1) – (T(NE)) / (T(NE+1)   

(13)
This estimated error gives a good indication of the number of significant digits of the target value [3]. 

For instance the ODE
( 1.1 – 0.1 x )((1) + (5 – 2 x + 3 x2 + 4 x3 + x4 )((0) + (2 + 3 x + 2 x2 + x3)=0   (14)

having as initial condition
                      (S = ((x=xS=0)=1  
                 (15)

has been solved by CF16 using a single element. By using two elements the following estimated significant digits have been retained by comparing the two results
– Integration between xS = 0 and xT = 5 :           (T = – 0.1606841854
     (16) – Integration between xS = 0 and xT = 10 :    
    (T = – 0.0862443663
     (17)

2. The Piecewise (Field) Polynomial Solution needs a completely different approach. In fact obtaining a good target value with a single element does not mean that the ((x) corresponding to certain CF represent necessarily an accurate solution of the ODE. In [3] an ODE (for which the analytic solution was known) has been integrated between xS = 3.92 and xT = 5.54 by using a third-degree polynomial CF4. The superposed graphic of the known analytic solution (continuous curve) and CF4 solution (dotted curve) for a single element is given in Fig.1. Any comment concerning their coincidence is useless. Nevertheless it is remarkable the fact that though the use of the CF leads to a completely different trajectory than the analytic solution, they both tend to meet (with a certain error) at the target point. This is due to the stock of information detained by the Concordant Function that includes not only the function but also one (for CF4) or many derivatives (for a higher degree CF). 


The goal of this approach is not the analysis of the target value as it was done above, but to verify the coincidence between the AEM solution and the supposed (but not known) analytic solution. If such a coincidence tendency is proved, then the Piecewise Polynomial Solution can be used for a reliable graphic representation of the solution and/or as an analytic instrument to be used for other purposes. Because the analytic solution is usually unknown, the following verification methodology has to be used [3]:
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Fig.1





Fig.2


a. The xS – xT interval (Fig.1) can be divided successively in 2,3,4…elements of equal lengths, the integration being performed for each number of elements. The procedure has shown that the CF4 polynomial solution converges towards the analytic solution when the number of elements increases. For instance, when 6 elements are used, the coincidence seems to be pretty good (Fig.2). But the visual examination of a graph is not enough to decide if a CF curve is satisfactory convergent, because the visual (qualitative) appreciation can be roughly delusive. A numerical parameter becomes necessary.


b. A numerical convergence criterion can be established by comparing two solutions ((x)(NE) and ((x)(NE+1) corresponding to an increasing number of elements (NE). The ordinates of the two solutions are compared in NP points inside the integration domain according to [3]

[image: image37.wmf](

)

å

=

=

+

+

÷

÷

ø

ö

ç

ç

è

æ

f

+

f

f

-

f

=

NP

n

0

n

2

)

NE

(

)

1

NE

(

)

NE

(

)

1

NE

(

2

/

NP

1

criterion

e

convergenc

        
      (18)

The most difficult problem is to choose the value of the criterion (18), which can be considered as a conventional frontier (“allowable”) between "unacceptable" and "acceptable". The value chosen in [3]
                          allowable convergence criterion =  10-2
        (19)
is disputable.

4. The verification method 

4.1 Verification procedure. As it was shown above AEM cannot give a general solution valid throughout the whole integration domain, but can lead to very good polynomial solutions (E(x) each one valid on a limited sub-domain (element) E. Consequently one can replace in ODE (1) the particular (E(x) obtained for each element. Because (E(x) is more or less different from a possible analytic solution, the replacement of (E(x) in (1) will lead to a residual, not to an identity. In order to determine the residual, the ODE (1) will be written as
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(20)
This relation has the following particularity: the left side is a known function, because EF(x) is part of the ODE to be solved, while the right side depends on the solution (analytic or numeric) that has been found. Because (E(x) is usually not an exact solution, if replaced in (20) it leads to a function different from EF(x)
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  (20a)
The procedure to emphasize the residual consists now in comparing EF(x) (known) and the computed (EF(x))E. This can be done by calculating the difference
 R=(EF(x))E – EF(x)



(21)
or using discrete relative values (when EF(x)
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  (22)
This value has to be compared with an allowable residual:
Rrel <  Rallow
     


(23)
Remark. If Rrel verifies the relation (23) the verification can be considered as successful. Nevertheless this does not represent a verification of the accuracy of the target value of the function, because (20a) includes not only the value of the function, but also of its derivative.

4.2 Finding the best fitted Concordant Function. The analysis performed in [3] on the Piecewise  Polynomial Solutions has shown that one cannot forecast which Concordant Function will lead to the best fitted (E(x). Consequently, for each element it is necessary to analyze the solutions (E(x) corresponding to all the seven Concordant Functions mentioned previously (CF4, CF6… CF16).

In has been shown above that any Concordant Function used for solving a first order ODE can be written in a form similar to (7), the number of coefficients depending on the degree of the CF [1]. In a final form all the coefficients can be written as functions of (S, (T and a free term [see rel (9)]. Usually the best Target value is obtained for a higher CF. Consequently (T can be obtained spending a minimum of time by using CF16, this value being used also for the other CFs in order to calculate Rrel (23) and selecting the best resulted value. The convergence criterion (18) will be calculated only for the CF thus selected. 

5. The computation strategy

5.1 The computation starts always by considering the whole integration domain as a single element E, therefore between xL,actual=xS and xR,actual=xT. If (23) is not satisfied for any of the CFs involved, the computation continues for a new element obtained by halving the integration length according to
xL,actual =xL,previous      (24)        ;      xR,actual =( xL,previous + xR,previous)/2

(25)
If (30) is satisfied the verification for the element E is finished; if the final target xT has not yet been reached, the computation continues with
xL,actual =xR,previous     
(26)       ;         xR,actual = xT   (final target !) 

(27)
Due to this procedure:

1.The lengths of the elements will usually differ from each other.


2.For a successful computation the final target xT is always reached.

3.The number of the elements will depend on the particular evolution of 

the computation, therefore the total number of elements will be known only when the computation is finished.

5.2 Information that has to be given by the user

The methodology presented above reduces to a minimum the information that has to be compulsory given by the user:

5.2.1 Functions that define the ODE to be solved:     E1(x), E0(x), EF(x).

5.2.2 Limits of the whole integration domain: xS (Start point), xT (Target point).

5.2.3 Initial (start) condition: 


       (S = ((x= xS).

5.2.4 Value of Rallow: this allowable residual value that has to be chosen for each specific case is disputable. Some examples are given below, but they have to be considered only as test values.

6. Examples

6.1 Example 1. An ODE (14) will be integrated between xS = 0 and xT = 4, for
E1(x) = 1.1 – 0.1 x  
 (28) ;  E0(x) = 5 – 2 x + 3 x2 + 4 x3 + x4     (29) 
 EF(x) = 2 + 3 x + 2 x2 + x3      


(30)

the initial condition being    (S = ((x= 0) = 1  (31)       and    Rallow = 5·10-4
     (32)
6.1.1 Computation progress and main results

a. Test Nr.1. 
The computation performed with CF16 between (xL)Test 1=0 and (xR)Test 1=4, gives
    ((R)Test 1,CF16 = ((x= 4) = –1.9754489934925×10-1 

(33)   

Besides ((R)Test 1,CF16 the program gives the piecewise polynomial solution (E(x),
based on which it results Rrel (22). The values of the Rrel (Table 1, Test 1) are greater than (32), therefore the Test Nr.1 fails. 

b. Test Nr.2.
The computation performed between (xL)Test2= 0 and (xR) Test2= (0+4)/2=2 gives
((R)Test2,CF16 = ((x= 2) = –3.965673629816620×10-1     
(34)
The only Rrel (Table 1, Test 2) smaller than (32) corresponds to CF16, therefore Test 2 is successful.

c. Test Nr.3. The computation between (xL)Test3=(xR)Test2=2 and (xR)Test3=xT=4, by using as initial condition ((L)Test3=((R)Test2 [rel.(24)] leads to

((R)Test3 = ((x= 4) = (T = –1.975448993 676190×10-1         (35)
The Rrel (Table 1, Test 3) smaller than (32) corresponds to CF8 (5×10-6), therefore Test 3 is successful.

The computation leads to two Piecewise Polynomial Solutions, after 3 Tests.
Table 1



              

  Table 2
	
	Rrel for Test Nr. 
	
	Number

of

steps
	Target value

(Runge-Kutta)

(T
	Time

Ratio

TR-K/TAEM

	
	1
	2
	3
	
	
	
	

	Start →

Target→
	xS=0

xT=4
	xS=0

xT=2
	xS=2

xT=4
	
	
	
	

	CF4
	0.5
	9×10-2
	2×10-3
	
	100
	-7×10120
	0.23

	CF6
	0.8
	9×10-2
	10-4
	
	500
	-7×1074
	1.04

	CF8
	1.1
	3×10-2 (Fig.3)
	5×10-6
	
	1000
	-2.3×10-1
	2.11

	  CF10
	   0.9
	1×10-2
	5×10-4
	
	2000
	-0.197544 90
	4.13

	CF12
	3.6
	3×10-3 (Fig.4)
	4×10-2
	
	3000
	-0.197544  90
	6.35

	CF14
	5×104
	1×10-3
	2.2
	
	4000
	-0.197544899 6
	8.39

	CF16
	6×104
	4×10-4 (Fig.5)
	1×102
	
	6000
	-0.197544899 4  
	12.7

	Decision
	NO
	CF16
	CF8
	
	7000
	-0.1975448993 8
	14.85


6.1.2 Comparison with Runge-Kutta


A comparison between the results obtained by two programs based on AEM and Runge-Kutta, respectively, both written by the author, non-compiled and without any optimization are given in Table 2. Because the Runge-Kutta program used has no error estimation or step size h adjustment, the tests with 100 or 500 steps indicate a pronounced instability. Only for more than 2000 steps the computation becomes credible, the result of (T = ((x= 4) being similar to (35) for 7000 steps. A comparison concerning the duration is given in the last column of Table 2. It results a duration 14.85 times grater for Runge-Kutta, though in this last case no time has been spent for the error estimation.

6.1.3 Graphic comparison between EF(x) and EF(x)E for different CFs


A more clear picture of the phenomenon results, if – before calculating the difference (21) – the computed function (EF(x))E obtained from (20a) and the given function EF (x) (30) are represented on the same graph. From the seven Rrel computed for the Test 2 (Table 1), the graph corresponding to the three best values have been represented, namely CF8 in Fig.3, CF12 in Fig.4 and CF16 in Fig.5. It is easy to observe that, when the value of Rrel decreases the graph of (EF(x))E tends to be superposed to EF (x). The Fig.5 shows a good agreement between the two curves that justifies the value (32) chosen for Rallow. It has to be observed the good agreement of EF (x) and (EF(x))E at both ends, the error increasing always towards the middle of the element.
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           Fig.5

6.1.4 Final graph of the solution

From the results summarized in Table 1 it results that the program has divided the whole domain in two elements for which the best fitted solutions are CF16 between x=0 and x=2 (Element Nr.1) and CF8 between x=2 and x=4 (Element Nr.2). The overall variation of the function-solution is given in Fig.6 based on these CFs. This variation coincides to that given in [3] where it was obtained by using a totally different procedure.
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 Fig.7

6.1.5 The significant digits of the target value (T = ( (x=4)


The estimation of the accuracy of the target value has been given in [3]. In the present paper the main goal is to obtain the Piecewise Polynomial Solutions. Nevertheless an estimation of the precision of (T is also possible by simply comparing the values (33) obtained with a single element and (35) resulted by using two elements, therefore in a different way. It results that the value
(T = -1.975448993 



(36)
can be considered as accurate because 10 digits are significant.

Remark. In this particular case a good value of (T has been obtained with a single element. If there is a significant difference between this value and that obtained by using the strategy presented here, one can find an estimation of the error by repeating the computation increasing the Rallow. The final number of elements will thus be modified, allowing the comparison between two different paths.

6.2 Example 2. The ODE given in Example 1 will be integrated between xS = 0 and xT = 10, the other conditions being maintained. From the results given in Table 3 one retains that the Piecewise Polynomial Solutions need 5 elements with different lengths and different Concordant Functions. There were necessary 14 Tests. The variation of the function-solution is drawn in Fig.7 the Target value being (17); each one of the 5 functions can be perceived. It has to be mentioned that for this example analyzed by using the fourth order Runge-Kutta (constant steps) no solution has been obtained even for a huge number of elements [3].








         Table 3

	
	Abscissas end length of the element
	CF retained

	Element
	(xL)E
	(xR)E
	Length h
	CF
	Rrel

	1
	0
	1.25
	1.25
	CF16
	1.8×10-5

	2
	1.25
	2.34375
	1.09375
	CF14
	1.4×10-5

	3
	2.34375
	4.1578125
	1.9140625
	CF6
	7.4×10-5

	4
	4.1578125
	7.12890625
	2.87109375
	CF6
	1.1×10-4

	5
	7.12890625
	10
	2.87109375
	CF4
	6.2×10-5


6.3 Example 3. The same ODE (Example 1) will be integrated between xS = 0 and xT = 100, the other conditions being maintained. The result obtained after 41 Tests leads to 9 elements with different CFs (Fig.8). It is interesting to observe that the target value (T1 = – 9.807785367947842×10-3 obtained by using a single element is quite near to (T9 = –9.80778536798790×10-3 corresponding to 9 elements. One can therefore accept as accurate value     (T = –9.8077853679×10-3   with 11 significant digits.
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7. Initial Value – second order ODEs


A second order ODE is given by
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  (37)
The AEM integrates twice this equation [1]. If the initial (start) values are known, the methodology for finding the Piecewise Polynomial Solutions is the same, the function EF(x) (20) being written as
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(38)

For a Boundary Value Problem the methodology – still valid but slightly modified – will be analyzed elsewhere.

8. ODE with non-polynomial coefficients


The AEM uses for the integration of ODEs polynomial replacing functions
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. Consequently the whole procedure is simplified if the functions E1(x), E0(x), EF(x) are also polynomials (see Example 1). If any of these functions is non-polynomial, it can be replaced by a polynomial interpolation function (for instance Lagrange), the problem being thus reduced to a known one. It has to be underlined that this last approximation has no significant influence on the final accuracy because in (20a) are involved the original functions E1(x), E0(x) and not those obtained by interpolation. The only possible influence may be the increase of the number of Piecewise Polynomial Solutions. 


If the ODE is non-linear the functions E1(x), E0(x) are anyway replaced by polynomials [1] consequently there is nothing special to be mentioned. The check up relation (23) remains a permanent control of the evolution of the computation. 

Example 4. The following ODE will be integrated between xS = 0  and xT = 1,
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(39)
the initial condition being
(S = ((x= 0) = 20 
(40)            and  
Rallow = 10-7

(41)

The functions E1(x), E0(x), EF(x) are replaced by eight-degree Lagrange polynomials, after which the usual procedure is applied. The  analysis  leads  to  a
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         Fig.10
single CF16 polynomial solution valid on the whole integration domain (Fig.9), with an element error = 1.6 x 10-9. The corresponding target value is
                     ((x= 1) = 13.76963206 4958           (likely with 10 significant digits).

Example 5. The same ODE (39) will be integrated between xS = 0 and xT = 5, using six-degree Lagrange polynomials. This time there were needed 17 tests, leading to 6 elements (CF14, CF16, CF16, CF12, CF16, CF12, the element errors being between 2.8 x 10-9 and 8.3 x 10-8). The target value (Fig.10) is
                      ((x=5) = – 7035.118 04157     (likely with 7 significant digits)

Remark. The first test (with a single element) leads to 
                           (Test1(x=5) =  – 7024.513    ( estimated error 1.5x10-3).

9. Conclusions


The Accurate Element Method, which is an implicit method, allows the obtaining of quasi-analytic solutions represented by a small number of polynomials, each one valid on a single sub-domain (element). Replaced in the solved ODE these solutions allow the computation of a residual on each element that gives a rigorous criterion concerning the precision of the solution. The other numerical methods used for the integration of ODEs try to find the level of the errors for each step of the integration procedure, the final value that results from the analysis being usually a sum of each step errors, methodology which is time consuming. On the contrary the residual calculated by AEM results independently for each element so that the precision estimation at any step does not depend on the history of the integration on the previous steps.
Example 1 shows that residual estimation is of paramount importance to the method.  In Test 2 the relative residual was 3×10-2 for CF8 and 4×10-4 for CF16. Consequently, the integration was performed using CF16. In Test 3 the relative residual was 5×10-6 for CF8 and 100 for CF16.  The latter value confirms the danger of using blindly a polynomial function for solving numerically some problems. The AEM methodology used in Example 1 avoids strictly misusing the polynomial functions.  As a result, CF16 was eliminated and the integration performed by using CF8, which is a lower degree polynomial that fits better the local solution between xS=2 and xT=4.
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� It is useful to mention that the optimal h-value will usually depend on the given ODE and the approximation method. For an ODE with unknown solution, it is generally impossible to predict the optimal h.


� The string of numerical values may be replaced by an interpolation function, which is usually quite far from a possible analytic solution, so that replacing it in (1) gives no convincing results.
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