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BUILDING A MIMETIC MODEL OF A NONLINEAR 

DYNAMIC SYSTEM 

Mihai PASCADI1, Bogdan TIGANOAIA2 

The paper extends the results introduced in [1] in the attempt to provide a 

management instrument that would allow economic, technologic, and other types of 

systems’ modeling based on trajectory / behavior monitoring. The conditions imposed 

in building the model in [1] are being relaxed in this paper, with the benefit of 

accelerating the model development. Steps ahead are also made in analyzing the 

convergence of the model to the “to be modeled” system. Numeric illustration 

confirms (in a 2-dimensional space) both that a good approximation of the model may 

be achieved based on the new results and that the real and the modeled systems have 

similar trajectories.  
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1. Introduction 

 

“The theory of dynamical systems is very broad and is extremely active in 

terms of research. It also depends substantially on most of the main areas of 

mathematics.” [2]. The last 20 to 30 years have seen an intense development both 

in theory, in quantitative and qualitative analysis such as presented in [2] and [3] 

but also in applications like (technical, economic, social, bio, geo) systems 

engineering and control, as shown in [4], including modeling, simulation and 

systems optimization.  “Today, we are facing major technological and social 

challenges, such as global warming, nuclear catastrophe, cyber security, worldwide 

shortage of potable water, and violent religious extremism. Addressing these 

problems will not only require knowledge in technologies and social sciences but 

also a deep understanding of the systems and their behaviors.” [8]. Examples of 

dynamic modelling cover the entire spectrum of scientific and technological 

applications: biochemistry such as in [9], systems control [10] or quantum optics 

[11]. The range of modeling methods is also wide: Fuzzy Equations [12], Deep 

Boltzmann machines [13], convolutional neural networks [14], wavelet networks 

[15] etc. The conclusions chapter of ths paper also comments on two applications 

of the method in economy and technical systems management.  
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The purpose of this paper is to improve a previous method [1] and to analyze 

the ability of a specific mimetic model to fit a modeled system. 

It would be ideal to understand the evolutions taking place around us by: 

1. watching a system’s trajectory (memorizing its coordinates in time), 

2. building a model based on the above observations, 

3. making predictions based on the built model. 

This kind of approach could be called a mimetic approach as the task is to try to 

build a model that would imitate the real system in its behavior. According to [8], 

such a model would be classified as a Black Box model (one does not need to 

understand what’s in the system). Of course, one may ask if the simple observation 

of a system would be sufficient in order to model it (are there any hidden 

parameters? – and if so, how do they influence the system’s evolution?). For the 

purpose of this paper, there will be used the supposition that the system is 

completely characterized by its visible parameters.  

 

2. Building the model  

 

[1] proposes approximating a nonlinear dynamical system by approximating 

its vector field system function F. 

𝒙̇ = 𝑭(𝒙) (2.1) 

where x, F(x) ϵ D⸦ Rn (also called the phase space). 

The approximating function proposed in [1] was supposed to be gradually 

built by observing the approximated system and collecting information regarding 

its behavior in time:  

𝑥1, … , 𝑥𝑇, where, 𝑥𝑡 ∈  𝐑𝑛 – called the approximation points (2.2) 

and  𝑥𝑡+1 − 𝑥𝑡 = 𝐹̃(𝑥𝑡) ∗ (𝑡𝑡+1 − 𝑡𝑡)  

with  𝐹 = (𝑓1, … , 𝑓𝑛) and 𝐹̃(𝑥𝑡) approximating F in 𝑥𝑡. 

 

 

Regarding the approximation of the components of  𝐹 = (𝑓1, … , 𝑓𝑛),  various 

methods used for approximation of a function can be used (two of which mentioned 

here): 

1. Uniform approximation - for every continuous function on [a, b], the following 

norm is defined:  ||f||= max
 𝑥∈[𝑎,𝑏]

 |f(x)|. The best polynomial approximation (also called 

minimax polynomial) of a continuous function f is p* n (x) with the following 

propriety: ||f- p* n (x)|| = min
pn ∈πn

 ||f - p n (x)|| = min
pn ∈πn

max
 𝑥∈[𝑎,𝑏]

|f(x) −  pn (x)| [7]. 

Characterization theorem: p* n (x) is an uniform approximation if e(x) = f(x) - p* n 

(x) has n+2 extreme values (+E and –E), with alternation of signs between 2 

consecutive extreme values. Cebasev polynomials are used in the uniform 

approximation because these polynomials fulfil the characterization theorem. For a 

continuous function f, the minimax polynomial is:  p* n (x) =∑ 𝐶𝑝 𝑇𝑝(𝑥)𝑛
𝑝=0 , where 
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Cp are the coefficients of Taylor series with Cebasev polynomials of the function f(x) 

- p* n (x) and Tp(x) is Cebasev polynomial. Better approximations of minimax 

polynomial are obtained by using Rémes algorithms. More details about this type of 

approximation in [7]. 

2. Least Squares - discrete data sets are commonly involved in technical calculations. 

The source of the data may be experimental observations or numerical computations 

[5]. Least squares is a general class of methods for fitting observed data to a 

theoretical model function. In the general setting there are given a set of data and 

some class of functions, F. The goal then is to find the “best” f∈ 𝐹  to fit the data to 

y = f(x). Usually the class of functions F will be determined by some small number 

of parameters; the number of parameters will be smaller (usually much smaller) than 

the number of data points. The theory here will be concerned with defining “best” and 

examining methods for finding the “best” function to fit the data [6].  (Ordinary) Least 

Squares Best Approximant - The least-squares best approximant to a set of data, x, y 

from a class of functions, F, is the function f *∈ 𝐹  that minimizes the l2 norm of the 

error. That is, if  f * is the least squares best approximant, then 

‖𝑦 − 𝑓∗(𝑥)‖2 = min
𝑓∈ℱ

‖𝑦 − 𝑓(𝑥)‖2  

The general assumption is that the minimum is unique. This method is sometimes 

called the ordinary least squares method. It assumes there is no error in the 

measurement of the data x, and usually admits a relatively straightforward solution. 

Least squares can be used in the following versions: continuous approximation 

(trigonometric least square; Cebasev least square) and discrete approximation 

(trigonometric least square; Cebasev least square). 

As exemplification, the continuous least square approximation g*(x) of f(x) on 

C([a, b]) is defined by    

∫ 𝑤(𝑥) ∗ [𝑓(𝑥) − 𝑔∗(𝑥)]2𝑏

𝑎
 dx = min

𝑔𝜖𝐺
∫ 𝑤(𝑥)  ∙ [𝑓(𝑥) − 𝑔(𝑥)]2 𝑑𝑥

𝑏

𝑎
 

More details about this type of approximation in [6] and [7].  

 

In approximating the components of  𝐹 = (𝑓1, … , 𝑓𝑛), the following function was 

proposed as a sum of n-dimensional, bell-shaped functions:  

𝑓𝑖 =  ∑ 𝜑𝑡
𝑇
𝑡=1 , with 𝑓𝑖, 𝜑𝑡 ϵ R. 

(2.3) 

where  

𝜑𝑡 ≝
𝑎𝑡

(𝑏𝑡 ∗ (𝑥 − 𝑥𝑡)2 + 1)
 (2.4) 

and  

𝑎𝑡, 𝑏𝑡 are parameters while  𝑥𝑡 is one of T approximating points in 𝑹𝑛 

and (𝑥 − 𝑥𝑡)2 is the scalar product of the difference vector 𝑥 − 𝑥𝑡 with itself, 𝑥𝑡 

is an approximation point and x is another point in 𝑹𝑛 where the approximated 

value of F is to be calculated. 
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In order to determine the above parameters, [1] proposed the following 

method and conditions: (i) The approximating bell-shaped functions were grouped 

in pairs that had to approximate the “highest mountain” and the “deepest valley”, 

during each iteration; (ii) the “height” of the up-ward oriented bell should coincide 

with the maximum value of the 𝑓𝑖 component of F while the depth of the down-

ward oriented bell should coincide with the minimum value of the 𝑓𝑖 component of 

F; (iii) The value of the sum function of the pair of bells should be the arithmetic 

average of the maximum value and minimum value of 𝑓𝑖 in the middle of the 

segment that unites in 𝑹𝑛 the position of the absolute minimum point and 

respectively absolute maximum point; (iv) the value of the b parameters is the same 

for the up-ward and down-ward oriented bell functions. 

The above (i) condition was expressed as follows: 

𝑓𝑖
1(𝑥) = 𝜑𝑚𝑛 + 𝜑𝑚𝑥

=
𝑎𝑚𝑛

(𝑏𝑚𝑛 ∗ (𝑥 − 𝑥𝑚𝑛)2 + 1)
+

𝑎𝑚𝑥

(𝑏𝑚𝑥 ∗ (𝑥 − 𝑥𝑚𝑥)2 + 1)
 

(2.5)  

while (ii) was:  

𝑓𝑖
1(𝑥𝑚𝑛) = 𝑦𝑚𝑛 (2.6) 

𝑓𝑖
1(𝑥𝑚𝑥) = 𝑦𝑚𝑥 (2.7) 

  

3. Relaxing the imposed conditions to the approximating function 

As opposed to the approach in [1], (iii) and (iv) are given up while keeping 

(i) and (ii) i.e. (2.5), (2.6) and (2.7).  

By making the following notations:   

𝑘𝑛 = 𝑏𝑚𝑛 ∗ (𝑥𝑚𝑥 − 𝑥𝑚𝑛)2 + 1 ≜  𝑏𝑚𝑛 ∗ 𝛿2 + 1 

and  

𝑘𝑥 = 𝑏𝑚𝑥 ∗ (𝑥𝑚𝑛 − 𝑥𝑚𝑥)2 + 1 ≜ 𝑏𝑚𝑥 ∗ 𝛿2 + 1 

(3.1) 

Determining 𝑎𝑚𝑛 and 𝑎𝑚𝑥 is reduced to resolving:   

(
1 𝑘𝑥

−1

𝑘𝑛
−1 1

) (
𝑎𝑚𝑛

𝑎𝑚𝑥
) = (

𝑦𝑚𝑛

𝑦𝑚𝑥
) 

(3.2) 

The results are:   

𝑎𝑚𝑛 =  
𝑘𝑛

𝑘𝑛∗𝑘𝑥−1
∗ (𝑘𝑥 ∗ 𝑦𝑚𝑛 − 𝑦𝑚𝑥) , 

and  

𝑎𝑚𝑥 = 
𝑘𝑥

𝑘𝑛∗𝑘𝑥−1
∗ (𝑘𝑛 ∗ 𝑦𝑚𝑥 − 𝑦𝑚𝑛) 

(3.3) 

 

(3.4) 

while keeping in mind that 𝑏𝑚𝑛, 𝑏𝑚𝑥  can be established based on additional 

conditions as it may be convenient.   
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4. Studying the convergence of the approximating method 

4.1 The algorithm  

Changes to the algorithm described in [1] are related to the changes above in chapter 

3 and as well to the distance used to measure the approximation error. The 

approximation is being developed after monitoring the system and collecting the 

values of the 𝑓𝑖 components of the system’s function F (which = 𝒙̇)  in a number 

of discrete points the systems’ trajectory passes through: (𝒙, 𝒙̇)𝑡, 𝑡 = 1, 𝑇 . A 

Residual function (still to be approximated function) that initially equals 𝑓𝑖 in the 

known points is being iteratively diminished in absolute value by subtracting the 

pairs of bell functions as determined and described above in chapter 2. For 

convergence evaluation purposes, known 𝑓𝑖 components may be considered; in this 

case, a stop criterion may be defined: if d(𝑓𝑖, 𝑓𝑖̃) < ℮𝑎 (acceptable error), then stop; 

otherwise, continue to gather information (increase T) and iterate.  

4.2 The approximation error and the associated distances 

The approximation error may be defined component by component, based 

on a distance between functions defined on 𝐷 ⊂ ℝ𝑛 .  

The absolute error is given by d(𝑓𝑖, 𝑓𝑡̃),  

℮ = d(𝑓𝑖, 𝑓𝑡̃) (4.2.1) 

where 𝑓𝑖 is the i-th component of 𝑭 = (𝑓1, … , 𝑓𝑛) and  𝑓𝑡̃ is the t-th iteration of the 

approximation of 𝑓𝑖. A relative approximation error could be defined as well. 

In order to prove convergence, any suitable distance may be used. For 

instance, if the intention is measure error all over D, the bellow proposed distance 

𝑑𝜎 is the most relevant, especially as a stop criterion for the algorithm. For 

convergence demonstration purposes a different distance, 𝑑𝑥 was suitable to be 

used (see please Lemma 3, in the next chapter).  

The first proposed distance 𝑑𝜎 is:  

𝑑𝜎(𝑓, 𝑔) = ∑|𝑓 − 𝑔|

𝑥𝜖𝐷

 
(4.2.2) 

“d” is a distance if considering f,g,h: 𝐷 ⊂ ℝ𝑛 → ℝ:  

Indeed:  

1. As |𝑓(𝑥) − 𝑔(𝑥)| ≥ 0 ∀𝑥 ∈ 𝐷, ∑ |𝑓 − 𝑔|𝑥𝜖𝐷 ≥ 0 𝑠𝑜 d(f, g) ≥ 0 

2. 𝑑(𝑓, 𝑔) = 0 ⇔  ∑ |𝑓 − 𝑔|𝑥𝜖𝐷 = 0 ⇔ |𝑓(𝑥) − 𝑔(𝑥)| =  0   ∀𝑥 ∈ 𝐷 𝑠𝑜 𝑓 =
𝑔 ∀ 𝑥 ∈ 𝐷 

3. 𝑑(𝑓, 𝑔) = ∑ |𝑓 − 𝑔|𝑥𝜖𝐷 = ∑ |𝑔 − 𝑓|𝑥𝜖𝐷 = 𝑑(𝑔, 𝑓) 

4. For 𝑥 ∈ 𝐷, the following inequalty is true:  
|𝑓 − ℎ| ≤ |𝑓 − 𝑔| + |𝑔 − ℎ| 

By summing up to the left and to the right, after all 𝑥 ∈ 𝐷, the result is:  
∑ |𝑓 − ℎ|𝑥∈𝐷 ≤ ∑ |𝑓 − 𝑔|𝑥∈𝐷 + ∑ |𝑔 − ℎ|𝑥∈𝐷 , and consequently:  

𝑑𝜎(𝑓, 𝑔) = ∑ |𝑓 − 𝑔|𝑥𝜖𝐷  is a distance. 
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The second distance proposed is: 

𝑑𝑥(𝑓, 𝑔) = max
𝑥𝜖𝐷

|𝑓 − 𝑔|  
 

(4.2.3) 

For the second distance 𝑑𝑥(𝑓, 𝑔):  

1. As |𝑓(𝑥) − 𝑔(𝑥)| ≥ 0 ∀𝑥 ∈ 𝐷, max
𝒙⋲D

|𝑓(𝑥) − 𝑔(𝑥)| ≥ 0 𝑠𝑜  d(f, g) ≥ 0 

2. 𝑑(𝑓, 𝑔) = 0 ⇔  max
𝒙⋲D

|𝑓(𝑥) − 𝑔(𝑥)| = 0 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 |𝑓(𝑥) −

𝑔(𝑥)| ≥ 0 ∀𝑥 ∈ 𝐷 𝑠𝑜  |𝑓(𝑥) − 𝑔(𝑥)| =
0 𝑎𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑒, 𝑓 = 𝑔 ∀ 𝑥 ∈ 𝐷 

3. 𝑑(𝑓, 𝑔) = max
𝒙⋲D

|𝑓(𝑥) − 𝑔(𝑥)| = max
𝒙⋲D

|𝑔(𝑥) − 𝑓(𝑥)| = 𝑑(𝑔, 𝑓) 

4. Let’s suppose that an arbitrary point 𝑥 ∈ 𝐷 is chosen, where always:  
|𝑓 − ℎ| ≤ |𝑓 − 𝑔| + |𝑔 − ℎ| 

because, depending on the order of f,g,h, , the following cases stand: 

f,g,h 𝑓 − 𝑔 ≤ ℎ − 𝑔 + ℎ − 𝑓 ⇔ 2𝑔 ≤ 2ℎ, true (considered case f ≤ g ≤h) 

g,f,h 𝑔 − 𝑓 ≤ ℎ − 𝑔 + 𝑓 − ℎ ⇔ 2𝑓 ≤ 2ℎ, true (considered case g ≤ f ≤h) 

g,h,f 𝑓 − 𝑔 ≤ ℎ − 𝑔 + 𝑓 − ℎ ⇔ 0 ≤ 0, true 

f,h,g 𝑔 − 𝑓 ≤ 𝑔 − ℎ + ℎ − 𝑓 ⇔ 0 ≤ 0, true 

h,f,g 𝑔 − 𝑓 ≤ 𝑔 − ℎ + ℎ − 𝑓 ⇔ 0 ≤ 0, true 

h,g,f 𝑓 − 𝑔 ≤ 𝑔 − ℎ + 𝑓 − ℎ ⇔ 2ℎ ≤ 2𝑔, true, (considered case h ≤ g ≤f) 

Let 𝑥𝑓,ℎ so that |𝑓(𝑥𝑓,ℎ) − ℎ(𝑥𝑓,ℎ)| = max
𝒙⋲D

|𝑓(𝑥) − 𝑔(𝑥)|; the above 

relationship remains true in this point as well:  
|𝑓 − ℎ| = max

𝒙⋲D
|𝑓(𝑥) − 𝑔(𝑥)| ≤ |𝑓 − 𝑔| + |𝑔 − ℎ|

≤ max
𝒙⋲D

|𝑓(𝑥) − 𝑔(𝑥)| + max
𝒙⋲D

|𝑔(𝑥) − ℎ(𝑥)| 

The conclusion is:  

 𝑑(𝑓, 𝑔) = max
𝒙⋲D

|𝑓(𝑥) − 𝑔(𝑥)| is a distance.  

 

4.3 The convergence of the approximating method 

The convergence analysis is based on the relationship between two successive 

iterations of the Residual function (still to be approximated function):  

𝑅𝑡̃ = 𝑅𝑡−1̃ − ∅𝑡−1 

Where ∅𝑡
 (𝑥) is the t-th iteration of the  𝑓𝑖 of F 

(4.3.1) 

The codomain of 𝑅𝑡−1̃  ≜ ∁(𝑅𝑡−1̃) is superior bounded by 𝑅𝑡−1,𝑥 and inferior 

bounded by 𝑅𝑡−1,𝑛. 𝑅𝑡−1̃ reaches the values 𝑅𝑥 and 𝑅𝑛 at least in 𝑥𝑚𝑛, 

respectively 𝑥𝑚𝑥. 
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5. Three Lemmas on the convergence of the approximating method  

Lemma 1 

0 ∈  ∁(𝑅𝑡̃), ∀𝑡 > 0, 𝑡 ∈ 𝑵  (5.1) 

(The Codomain of the Residual function after the t-th iteration ∁(𝑅𝑡̃) includes the 

value “0”.) 

Indeed, as        𝑅𝑡̃ = 𝑅𝑡−1̃ − ∅𝑡−1 

and through construction:   

∅𝑡−1(𝑥𝑛) = min
𝑥∈𝐷

𝑅𝑡−1̃  with 𝑥𝑛 so chosen that  𝑅𝑡−1̃(𝑥𝑛) = min
𝑥∈𝐷

𝑅𝑡−1̃  

and 

∅𝑡−1(𝑥𝑥) = max
𝑥∈𝐷

𝑅𝑡−1̃  𝑤𝑖𝑡ℎ 𝑥𝑥 so chosen that 𝑅𝑡−1̃(𝑥𝑥) = max
𝑥∈𝐷

𝑅𝑡−1̃ 

It results that  𝑅𝑡̃(𝑥𝑛) =0 and respectively 𝑅𝑡̃(𝑥𝑥) =0 (the approximating 

function ∅𝑡−1 was designed to reduce the maximum and respectively minimum 

values of the Residual Function 𝑅𝑡−1̃ to “0” in two points where it reaches its 

minimum and maximum value.    

Lemma 2 

∀𝑥 ∈ 𝐷, 𝑥 ≠ 𝑥𝑒𝑎 ∈ 𝐸𝐴 =
{𝑥 ∈ 𝐷, 𝑥 ≠ 𝑥𝑛 ∧ 𝑥 ≠ 𝑥𝑥|𝑅𝑡−1̃(𝑥) = 𝑅𝑡−1,𝑥 𝑜𝑟 𝑅𝑡−1̃(𝑥) = 𝑅𝑡−1,𝑛},  

∀ 𝑅𝑡−1̃(𝑥), ∃𝑏𝑚𝑛, 𝑏𝑚𝑥 ∈ 𝑹+ 𝑎. î.:  
𝑅𝑡−1,𝑛 < 𝑅𝑡̃(𝑥) = 𝑅𝑡−1̃(𝑥) − ∅𝑡−1(𝑥) <  𝑅𝑡−1,𝑥 

 

(5.2) 

 

In other words:  

The Residual function after the t-th iteration: 𝑅𝑡̃(𝑥) with the exception of its t-1 

iteration absolute maximum and minimum points remains strictly bounded 

between the minimum and maximum values of 𝑅𝑡−1̃ : 
𝑅𝑡−1,𝑛 < 𝑅𝑡̃(𝑥) <  𝑅𝑡−1,𝑥 

 In fact, for (i) 𝑥 ∈ 𝐷\𝐸𝐴, and for (ii)  𝑏𝑚𝑛, 𝑏𝑚𝑥 conveniently chosen the 

“amplitude” of the codomain of the Residual function decreases from one 

iteration to the next.  

This means that the successive iterations of the Residual function are lower and 

upper bounded in a clipper that is closing and (based on Lemma 1) contains 

always the value “0”.  

However, based on the above the only conclusion is that the Residual 

function has a limit (but not necessarily the constant function “0”).   

In order to proof that:  

𝑅𝑡−1,𝑛 < 𝑅𝑡̃(𝑥) = 𝑅𝑡−1̃(𝑥) − ∅𝑡−1(𝑥), ∀𝑥 in the considered set, 

it is sufficient:  

(i) to remark that the most unfavorable situation is when ∅𝑡−1(𝑥) is positive 

and 
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(ii) to show that in this latter case the value of ∅𝑡−1(𝑥) can be diminished as 

much as one desires by modifying 𝑏𝑚𝑛 ș𝑖 𝑏𝑚𝑥 so that the above inequality 

becomes/is true (knowing that 𝑅𝑡−1̃(𝑥) >  𝑅𝑡−1,𝑛) on the considered set 

D\EA:    

∀𝜀 > 0, ∃𝑏𝑚𝑛(𝜀) 𝑜𝑟 𝑏𝑚𝑥(𝜀) 𝑠𝑜 𝑡ℎ𝑎𝑡 ∅𝑡−1(𝑥) <  𝜀         (∗) 

Remark: (*) is implied by lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

∅𝑡
 (𝑥) = 0 

For simplicity, the following notations are made: 

𝑏𝑛 ≜ 𝑏𝑚𝑛, 𝑏𝑥 ≜ 𝑏𝑚𝑥 , 𝑎𝑛 ≜ 𝑎𝑚𝑛, 𝑎𝑥 ≜ 𝑎𝑚𝑥, 𝑥𝑥 ≜ 𝑥𝑚𝑥, 𝑥𝑛 ≜ 𝑥𝑚𝑛, 𝑦𝑛 ≜ 𝑦𝑚𝑛 , 𝑦𝑥 ≜
𝑦𝑚𝑥  

corresponding to the relationships (2.5),...,(2.4).  

Knowing (2.5) and (2.1), (2.3) and (2.4) one may remark that: 

lim
𝑏𝑛→∞

𝑎𝑛 = 𝑦𝑛 −  𝑦𝑥 ∗ 𝑘𝑥
−1 = 𝑦𝑛 −  𝑦𝑥 ∗ (𝑏𝑥 ∗ 𝛿2 + 1)−1 

lim
𝑏𝑥→∞

𝑎𝑛 = 𝑦𝑛 

lim
𝑏𝑥→∞

𝑎𝑥 = 𝑦𝑥 −  𝑦𝑛 ∗ 𝑘𝑛
−1 = 𝑦𝑥 −  𝑦𝑛 ∗ (𝑏𝑛 ∗ 𝛿2 + 1)−1 

lim
𝑏𝑛→∞

𝑎𝑥 = 𝑦𝑥 

and thus,  

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

𝑎𝑛 = 𝑦𝑛 

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

𝑎𝑥 = 𝑦𝑥 

while: 

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

∅𝑡
 (𝑥) = 

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

𝑎𝑛

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

(𝑏𝑛 ∗ (𝑥 − 𝑥𝑛)2 + 1)
+

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

𝑎𝑥

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

(𝑏𝑥 ∗ (𝑥 − 𝑥𝑥)2 + 1)
= 

𝑦𝑛

∞
+

𝑦𝑥

∞
= 0 

Consequently, for 𝑏𝑛, 𝑏𝑥 sufficiently large, ∅𝑡−1
 (𝑥) becomes sufficiently 

small so that the relationship (*) is fulfilled.  

Similarly, for the second part of the relationship to be proven (6.1): 

𝑅𝑡̃(𝑥) = 𝑅𝑡−1̃(𝑥) − ∅𝑡−1(𝑥) <  𝑅𝑡−1,𝑥, ∀𝑥 in the considered set,  

it is sufficient:  

(i) to remark that the most unfavorable situation is when ∅𝑡−1(𝑥) is negative 

and 

(ii) to show that in this latter case the absolute value of ∅𝑡−1(𝑥) can be 

diminshed as much as needed by modifying 𝑏𝑚𝑛 ș𝑖 𝑏𝑚𝑥 so that the above 

inequality becomes/is true (knowing that 𝑅𝑡−1̃(𝑥) <  𝑅𝑡−1,𝑥 ) on the 

considered set D\EA:  

∀𝜀 > 0, ∃𝑏𝑛(𝜀) 𝑜𝑟 𝑏𝑥(𝜀) 𝑠𝑜 𝑡ℎ𝑎𝑡 ∅𝑡−1(𝑥) <  𝜀         (∗∗) 
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Similarly to the (*) case, the following calculation is made  

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

|∅𝑡
 (𝑥)| = 

|
lim

𝑏𝑥→∞
lim

𝑏𝑛→∞
𝑎𝑛

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

(𝑏𝑛∗(𝑥−𝑥𝑛)2+1)
+

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

𝑎𝑥

lim
𝑏𝑥→∞

lim
𝑏𝑛→∞

(𝑏𝑥∗(𝑥−𝑥𝑥)2+1)
|= 

|
𝑦𝑛

∞
+

𝑦𝑥

∞
| = 0 

Consequently, (**) is fulfilled.  

The decrease of the amplitude (maximum value-minimum value) of the 

codomain of the Residual function on 𝑥 ∈ 𝐷\𝐸𝐴 from one iteration to the next is 

a direct consequence of the strict inequality:  

𝑅𝑡−1,𝑛 < 𝑅𝑡̃(𝑥) <  𝑅𝑡−1,𝑥 

which implies that on the considered domain:    

𝑅𝑡−1,𝑛 < 𝑅𝑡,𝑛 < 𝑅𝑡,𝑥 < 𝑅𝑡−1,𝑥 

Lemma 3 

If for all “t” iterations of the approximation algorithm,  

𝑐𝑎𝑟𝑑(𝐸𝐴𝑛
𝑡 ) = 𝐾𝑛 < ℵ0 

respectively  

𝑐𝑎𝑟𝑑(𝐸𝐴𝑥
𝑡 ) = 𝐾𝑥 < ℵ0, 

the approximation process remains convergent.  

Above:  

𝐸𝐴𝑛
𝑡−1 = {𝑥𝑒𝑛 ∈ 𝐸𝐴, |a. î. 𝑅𝑡−1̃(𝑥𝑒𝑛) = 𝑅𝑡−1,𝑛 }, 

𝐸𝐴𝑥
𝑡−1 = {𝑥𝑒𝑥 ∈ 𝐸𝐴, |a. î. 𝑅𝑡−1̃(𝑥𝑒𝑥) = 𝑅𝑡−1,𝑥 } 

Otherwise, the authors do not have at this moment a method to characterize the 

approximation process.  

 

The subset of minimum extreme points is to be separated from 

𝐸𝐴 = {𝑥 ∈ 𝐷, 𝑥 ≠ 𝑥𝑛 ∧ 𝑥 ≠ 𝑥𝑥|𝑅𝑡−1̃(𝑥) = 𝑅𝑡−1,𝑥 𝑠𝑎𝑢 𝑅𝑡−1̃(𝑥) = 𝑅𝑡−1,𝑛}  

corresponding to the t-1 iteration,  

𝐸𝐴𝑛
𝑡−1 = {𝑥𝑒𝑛 ∈ 𝐸𝐴, |a. î. 𝑅𝑡−1̃(𝑥𝑒𝑛) = 𝑅𝑡−1,𝑛 } . 

The Residual function (still to approximate) at the “t” iteration is determined 

with the relationship  

𝑅𝑡̃(𝑥) = 𝑅𝑡−1̃(𝑥) − ∅𝑡−1(𝑥) 

Let ”C” be the image of 𝐸𝐴𝑛
𝑡−1 through 𝑅𝑡−1̃(𝑥) − ∅𝑡−1(𝑥). C shall include 

values given by: 

𝑅𝑡̃(𝑥) = 𝑅𝑡−1,𝑛 − ∅𝑡−1(𝑥𝑒𝑛) 

In the unfavorable case where  
∅𝑡−1(𝑥1) > 0 

all the values in C shall be smaller than 𝑅𝑡−1,𝑛 and this iteration shall increase 

the approximation error associated to the 𝑑𝑥 distance.  

𝑅𝑡−1,𝑛 > min(C) = 𝑅𝑡,𝑛 
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In this case, the preimage of 𝑅𝑡,𝑛 shall be the new 𝐸𝐴𝑛
𝑡 .  

The possible cases for 𝐸𝐴𝑛
𝑡  are: 

1. a finite number of elements 𝑐𝑎𝑟𝑑(𝐸𝐴𝑛
𝑡 ) = 𝐾 < ℵ0 

2. an infinite set of elements (𝑐𝑎𝑟𝑑(𝐸𝐴𝑛
𝑡 ) ≥ ℵ0) 

In case 1., during the next iteration:   

(i) the approximation error will increase (𝑑𝑥)  

(ii) 𝑐𝑎𝑟𝑑(𝐸𝐴𝑛
𝑡 ) shall decrease by at least 1 (the element for which the 

Residual function becomes 0) and new points in  𝐸𝐴𝑛
𝑡  cannot appear (by 

applying Lemma 2 for the points in D\EA), and  

(iii) in the most unfavorable case, all the 𝐾 − 1 elements will become 

elements of 𝐸𝐴𝑛
𝑡+1.  

Supposing that the following iterations will occur as well in the most unfavorable 

scenario, (which is improbable but not impossible), during the next K-1 

iterations, one by one, the extreme minimum values smaller than 𝑅𝑡−1,𝑛 and equal 

among them shall be eliminated. The next extreme minimum point(s) shall be all 

greater than 𝑅𝑡−1,𝑛 and the approximation error at the step “t+K” shall become 

smaller than the one at step t-1.  

In the second case, the number of extreme values is infinite, and one may not 

exclude particular situations where after each supplementary iteration the error 

defined based 𝑑𝑥 would increase, the approximation process being divergent.  

The above reasoning was applied for the set of extreme minimum points, but the 

reasoning is similar in the case of the set of extreme maximum points.  

In conclusion, with the exception of some particular situations characterized as 

above, the approximation process is convergent over the entire set EA.  
 

6. The relationship between the approximation error of F and the 

modeled system’s trajectory 

Trajectories’ separation speed 

As the basic idea of the mimetic modeling is to approximate the system’s evolution 

by approximating its system function F, a legitimate question is: “given an 

approximation error of F, what would be the approximation error of the system’s 

trajectory?” 

 
Fig. 6.1: 𝑥̇𝑑𝑡 – elementary displacement of the approximated system; 𝑥̇̃𝑑𝑡 – elementary 

displacement of the approximating system; 𝑑℮ - trajectory elementary error; 𝑑℮⊥ - trajectory 

radial error; 𝑑℮∥ - trajectory tangential error 
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The trajectory elementary error in determining the trajectory in a given 

point x is: 

𝑑℮ = 𝑥̇̃𝑑𝑡 − 𝑥̇𝑑𝑡 

(6.1) 

where 𝑥̇̃ = 𝐹̃ and 𝑥̇ = 𝐹, which implies:   
𝑑℮

𝑑𝑡
= 𝑥̇̃ − 𝑥̇ =  𝐹̃ − 𝐹, thus:  

℮̇ =  𝐹̃ − 𝐹 (6.2) 

Fig. 6.1 represents the separation rate (speed) between the two trajectories 

(the approximated and approximating systems’ trajectories) in a given point “x”.  

The above put in words would be: the trajectories’ separation speed in each point 

𝒙 ∈ 𝑫 is precisely the difference between the approximated and approximating 

system functions which coincides with the approximation error of F; (℮̇, 𝐹̃, 𝐹, ∈
ℝ𝑛 ). Separation speed is different from point to point and different initial 

conditions generate different real and modeled trajectories.  

There are two kinds of trajectory error characterizations of interest: (i) for 

a particular trajectory – what is the resulting trajectory error? (ii) a global 

characterization of D regarding the trajectory errors. The simplest way to measure 

a particular trajectory absolute error is to measure the distance between the final 

positions indicated by the two trajectories (real and approximated). The relative 

error would be given by the ratio between the absolute error and the distance 

between the final and initial positions on the real trajectory. The global 

characterization of the trajectory error could be based on considering an average 

error within D (the average “ave” value of the trajectories’ separation speed). The 

interpretation in this case is based on the most unfavorable case (as if the 

separation of the trajectories is cumulated all over D and there is no compensation 

between errors).  

ave
𝑥∈𝐷

‖℮̇‖ = ave
𝑥∈𝐷

(‖𝐹̃ − 𝐹‖) (6.3) 

In order to be able to specify what means low separation vs high separation 

speeds a reference is needed. A convenient reference is the average (ave()) speed 

of the real system which is given by F. 

℮̇𝑎𝑣𝑒,𝑟𝑒𝑙 =
ave
𝑥∈𝐷

(‖𝐹̃ − 𝐹‖)

ave
𝑥∈𝐷

(‖𝐹‖)
 

(6.4) 

Fig. 6.1 illustrates the two errors – the tangential error:  

℮̇∥ = ‖𝑥̇‖ − ‖𝑥̇̃‖ cos 𝛼 

which represents the separation speed along the trajectory (the model 

moves slower or faster than the real one) while 

(6.5) 

℮̇⊥ = ‖𝑥̇̃‖ sin 𝛼 

represents the radial separation speed from the trajectory (the model 

moves on another path than the real one).  

(6.6) 
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Based on 4.5 and 4.6 there may be defined the average relative values:   

℮̇∥,𝑚𝑒𝑑,𝑟𝑒𝑙 =
ave
𝑥∈𝐷

(‖𝑥̇‖ − ‖𝑥̇̃‖ cos 𝛼)

ave
𝑥∈𝐷

(‖𝐹‖)
 

(6.7) 

℮̇⊥,𝑚𝑒𝑑,𝑟𝑒𝑙 =
ave
𝑥∈𝐷

(‖𝑥̇̃‖ sin 𝛼)

ave
𝑥∈𝐷

(‖𝐹‖)
 

(6.8) 

7. Numeric illustration  

7.1 The convergence of the approximating method and mimetic model to the 

approximated model (2-dimensions).  

Fig. 7.1.1 (next page) illustrates the comparison between the approximated function 

(f1,f2) in the upper left and right areas with the approximating function (𝑓1, 𝑓2) in 

the lower left and right areas but as well the two systems’ trajectories. The figure 

also displays the approximation errors for 𝑓1
~, 𝑓2

~
 as well as the trajectory error 

and the radial and tangential trajectory errors (separations). Fig 7.1.2 presents an 

enlarged view of the trajectories. 

F(𝑓1, 𝑓2) and its approximation𝐹̃(𝑓1, 𝑓2) look alike (red = high values, green = low 

values), that the approximation error is reasonably low after only 20 approximation 

iterations for  𝐹~ and that a particular trajectory of the mimetic system, based on 

randomly generated initial conditions, is as well a reasonably good approximation 

of the real trajectory after 100 integration iterations. 

 
Fig 7.1.1 Convergence of the approximating method to the approximated model, including 

trajectories (F in brown, 𝐹̃ in light blue, 20 approximation iterations). 
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Fig 7.1.2 The enlarged trajectories presented in Fig 7.1.1 (brown – real system, blue – 

approximating system). 

Fig 7.1.1 also shows F(𝑓1, 𝑓2) and its approximation 𝐹̃(𝑓1, 𝑓2) look alike (red = high 

values, green = low values), and therefore the approximation error is reasonably low 

after only 20 approximation iterations for  𝐹̃ and that a particular trajectory of the 

mimetic system, based on randomly generated initial conditions, is as well a 

reasonably good approximation of the real trajectory after 100 integration steps. 

 

 
Fig. 7.1.3 A second illustration of trajectory approximation for randomly generated F and initial 

conditions. For this second example, the trajectory error is 9% after 100 integration steps, (6.4% 

radial, 6.3% tangential separation errors). Overall cumulated (on the definition domain D) errors for 

𝒇̃𝟏 and 𝒇̃𝟐 in aproximating F(𝑓1, 𝑓2) are 22.13%, respectively 8.33%. 
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Fig. 7.1.4 Approximating F by 𝐹̃ distribution error for 500 randomly generated cases (horizontal 

axis is logarithmic) shows a reasonably low error after only 20 approximation iterations. 

Maximum error on this lot was 16.66%. The average error was 1.45%. 

 
  

 

Fig. 7.1.5 Approximating F by 𝐹̃ percentage of cases below a certain error for the above 

distribution of 500 cases. 87.6% of the cases have a relative error below 3.2% (after only 20 

approximation iterations). 95% of the cases had an error below 6.4%. 
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In evaluating the trajectory error (named ERRF/LTr), the considered the error is 

given by the ratio between  

• the distance between the real and approximated trajectory ofter 100 

integration steps and  

• the trajectory length.  

As the next page picture shows, based on the analysis of 300 cases, for a small 

number of cases the error was higher than 96% which corresponds to almost total 

unpredictability.  

However, a large percentage of the cases (64%) had an error less than 12% after 

100 integration steps of the trajectory, which (in our opinion) is remarcable.  

 

Fig. 7.1.6 Trajectory separation errors for 300 cases after 100 integration steps, based on a 20 

iterations approximation of the vector field of the dynamic system. 

64% of all the trajectories had an relative error (compared to the real trajectory) that was less 

than 12% after 100 integration steps. 
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7.2 Illustrating Lemma 2: monotonously decreasing the amplitude of the 

codomain of the Residual function by making a convenient choice of 𝒃𝒏, 𝒃𝒙
3 

 

 
Fig. 7.2.1 shows the effect of conveniently choosing b_n,b_x on the monotony of the amplitude of 

the codomain of the Residual function x∈D\EA 
Fig. 7.2.1 above (right side “1”) shows the approximation error of one of F’s 

components after n iterations when using relationships established in [1]. Based 

on Lemma 2, by using 3.3 and 3.4 (with modified values of b_n și b_x) the result 

is a monotonously decreasing error corresponding to a monotonously decreasing 

amplitude of the codomain of the residual function (right side “2”).  
 

8. Conclusions 
 

The first conclusion is that numerical simulations (500 and 300 randomly 

generated cases) support both  

• the convergence of the approximating method and mimetic model to the 

approximated model and 

• the monotonous decrease of the amplitude of the codomain of the Residual 

function by making a convenient choice of 𝒃𝒏, 𝒃𝒙. 

As part of this paper, a theoretical proof has been provided (numerically 

confirmed) that: 

• the codomain amplitude of the residual (still to be approximated) function 

monotonously decreases 

• the codomain allways includes the value ”0”.  

This means that the approximation error decreases to a limit value close to ”0”, 

which may or may not be ”0”.  

There has been also shown the relationship between  

• the approximation error of the model function F and  
                                                 
3 sufficiently large values, according to Lemma 2 
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• the error of the approximating trajectory of the system.  
Numerical simulations support as well as the idea that once the model function F 

is well approximated, the trajectories of the system and its approximating model 

are similar and show low errors even after 100 steps of integration of the 

differential equations that describe them.  

Applications studied by the authors (to be published) show that at least for 

lower frequency economic multidimensional economic signals (e.g. the moving 

average of the 30 exchange rates published by the National Bank of Romania) the 

increase/decrease predictions are surprisingly accurate by using a similar mimetic 

modeling approach. This could lead to the hypothesis that applications may include 

predictions regarding the macro-economic indicators (such as cash flows between 

the main economic nodes of an economic system – which reflect the average 

evolution of the companies in a node), even though external parameters such as 

political decisions, general trust in the economy, catastrophic events, etc could 

change in an unpredictible way the evolution (unless a model of these external 

factors influence is also developed). Technical applications studied by the authors 

included as well industrial climate evolution predictions (Pressure, Temperature 

and Humidity for sensitive areas of a pharmaceutical plant). The almost 43200 

trajectory steps analyzed could be fully mimetically modeled within a 51-

dimensional space (16 history points + the present point)*3. The particularity of 

this system was that it behaved as if there were a number of hidden parameters that 

changed its behavior in different passages through a given point (PTH had a two 

decimal digits precision).  

The above two categories of applications (predictions for lower frequency 

economic signals and predictions for systems that seem to have hidden parameters) 

are open ways to further research.  
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