FIXED POINT RESULTS FOR NONLINEAR CONTRACTIONS WITH GENERALIZED Ω-DISTANCE MAPPINGS

by Issam Abu-Irwaq¹, Wasfi Shatanawi², Anwar Bataihah³ and Inam Nuseir⁴

Khojasteh et al. [F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat 29:6 (2015)] defined a new class of mappings namely simulation functions in which they used it to unify several fixed point results in the literature. In this paper we introduce the notion of $(\Omega, \phi, \mathcal{Z})$-contraction with respect to z through generalized Ω-distance mappings which introduced by Abodayeh et al. [K. Abodayeh, A. Bataihah and W. Shatanawi, Generalized Ω-distance mappings and some fixed point theorems, U.P.B. Sci. Bull. Series A, Vol. 79, Iss.2, 2017] and we prove some fixed point results. Also, we give an example to support our main result.

Keywords: fixed point, simulation mappings, G-metric spaces, generalized Omega-distance

1. Introduction

The fixed point theory considered as a main tool in pure and applied mathematics since it gives a solution for the equation $f(x) = x$ for a self mapping f under some considerations. In fact the fixed point theory has been studied in various directions for instance see [12]–[34]. The concept of b-metric spaces was introduced by Bakhtin [3] which has became well known by Czerwik [4]. In 2014 Aghanjani et al. [2] introduced the concept of G_b-metric spaces (or generalized b-metric spaces) using the concepts of G-metric spaces and b-metric spaces and studied some fixed point results, for more fixed point results on G_b-metric spaces we refer the reader to see [5, 6].

2. Preliminaries

The concept of G_b-metric spaces is defined as follows:

Definition 2.1. [2] Let X be a nonempty set and $s \geq 1$ be a given real number. Suppose that a mapping $G : X \times X \times X \rightarrow \mathbb{R}^+$ be a function satisfies:

(G_b1) $G(x, y, z) = 0$ if $x = y = z$;

(G_b2) $G(x, x, y) > 0$ for all $x, y \in X$, with $x \neq y$;

(G_b3) $G(x, y, y) \leq G(x, y, z)$ for all $x, y, z \in X$, with $y \neq z$;

(G_b4) $G(x, y, z) = G(p[x, y, z])$, where p is a permutation of x, y, z (symmetry);

(G_b5) $G(x, y, z) \leq s[G(x, a, a) + G(a, y, z)] \forall x, y, z, a \in X$ (rectangle inequality).

Then the function G is called generalized b metric and the pair (X, G) is called a generalized b metric space or G_b-metric space.

¹Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan, e-mail: imabuirwaq@just.edu.jo

²Department of General Sciences, Prince Sultan University, Riyadh, Saudi Arabia and Department of Mathematics, Faculty of Science, Hashimite University, P.O. Box 150459, Zarqa, Jordan e-mail: ushatanawi@psu.edu.sa and swasfi@hu.edu.jo

³Department of Mathematics, Faculty of Science, The University of Jordan, Amman, Jordan anwerbataihah@gmail.com

⁴Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan, e-mail: immuseir@just.edu.jo
Aghanjani et al. [2] remarked that the class of G_b-metric spaces is larger than that of G-metric spaces. The following example shows that G_b-metric on X need not be G-metric on X.

Example 2.1. [2] Let (X,G) be a G-metric space and $p > 1$. Define $G_\epsilon : X \times X \times X \rightarrow \mathbb{R}^+$ by $G_\epsilon(x,y,z) = G(x,y,z)^p$. Then G_ϵ is G_b-metric on X with $s = 2^{p-1}$.

Now, we present some definitions and propositions in G_b-metric space.

Definition 2.2. [2] Let X be a G_b-metric space. A sequence (x_n) in X is said to be

1. G_b-convergent to $x \in X$ if for any $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that $G(x_n,x_m) < \epsilon \ \forall n,m \geq k$.
2. G_b-Cauchy if for any $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that $G(x_n,x_{m,i}) < \epsilon \ \forall n,m,l \geq k$.

Proposition 2.1. [2] Let X be a G_b-metric space. Then the following are equivalent:

1. The sequence (x_n) is G_b-convergent to x.
2. $G(x_n,x) \rightarrow 0$ as $n \rightarrow \infty$.
3. $G(x_n,x,x) \rightarrow 0$ as $n \rightarrow \infty$.

Proposition 2.2. [2] Let X be a G_b-metric space. The sequence (x_n) is G_b-Cauchy iff for any $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that $G(x_n,x_{m,i}) < \epsilon \ \forall n,m \geq k$.

Definition 2.3. [2] A G_b-metric space X is called G_b-complete if every G_b-Cauchy sequence is G_b-convergent in X.

Very recently, Abodayeh et al. [1] defined the concept of generalized Ω_b-distance mappings (or Ω_b-distance) related to G_b-metric spaces and proved some fixed point theorems (see also [19]).

The notion of a generalized Ω_b-distance mapping is given by:

Definition 2.4. [1] Let X be a G_b-metric space. Then a mapping $\Omega : X \times X \times X \rightarrow [0,\infty)$ is called a generalized Ω_b-distance mapping or an Ω_b-distance mapping on X if the following conditions are satisfied:

1. $\Omega(x,y,z) \leq s \cdot [\Omega(x,a,a) + \Omega(a,y,z)] \forall x,y,z,a \in X$ and $s \geq 1$.
2. For any $x,y \in X$, $\Omega(x,y,.)$ is continuous.
3. For every $\epsilon > 0$, there is a $\delta > 0$ such that $\Omega(x,a,a) \leq \delta$ and $\Omega(a,y,z) \leq \delta$ imply $G_b(x,y,z) \leq \epsilon$.

Example 2.2. [1] Let $X = \mathbb{R}$. Consider the G_b-metric $G : X \times X \times X \rightarrow [0,\infty)$ defined by $G(x,y,z) = (|x-y| + |y-z| + |x-z|)^2 \forall x,y,z \in \mathbb{R}$. Define $\Omega(x,y,.) : X \times X \times X \rightarrow [0,\infty)$ by $\Omega(x,y,z) = (|x-y| + |y-z|)^2 \forall x,y,z \in \mathbb{R}$. Then Ω is a generalized Ω_b-distance mapping with $s = 2$.

Definition 2.5. [1] Let (X,G) be a G_b-metric space and Ω_b be an Ω_b-distance mapping on X. Then we say that X is Ω_b-bounded if there exists $M > 0$ such that $\Omega_b(x,y,z) \leq M$ for all $x,y,z \in X$.

Lemma 2.1. [1] Let X be a G_b-metric space and Ω_b be a generalized Ω_b-distance mapping on X. Let (x_n), (y_n) be sequences in X and let (α_n), (β_n) be sequences in $[0,\infty)$ converging to zero and let $x,y,z \in X$. Then we have the following:

1. If $\Omega_b(x_n,x_n,x_0) \leq \alpha_n$ and $\Omega_b(x_n,y_n,z) \leq \beta_n$ for any $n \in \mathbb{N}$, then $G(y_n,z) \rightarrow 0$ and hence $y_n \rightarrow z$.
2. If $\Omega_b(x_n,x_0,x_n) \leq \alpha_n$ and $\Omega_b(x_n,y,z) \leq \beta_n$ for $n \in \mathbb{N}$, then $G(y,y,z) \leq \epsilon$ and hence $y = z$.
3. If $\Omega_b(x_n,x_0,x_n) \leq \alpha_n$ for any $n,m,l \in \mathbb{N}$ with $n \leq m \leq l$, then (x_n) is a G_b-Cauchy sequence.
4. If $\Omega_b(x_n,a,a) \leq \alpha_n$ for any $n \in \mathbb{N}$, then (x_n) is a G_b-Cauchy sequence.

Khojasteh et al. [8] in 2015 introduced the concept of simulation mappings in which they used it to unify several fixed point results in the literature.

Definition 2.6. [8] Let $\zeta : [0,\infty) \times [0,\infty) \rightarrow \mathbb{R}$ be a function. Then ζ is called a simulation function if it satisfies the following conditions:

1. $\zeta(0,0) = 0$.

Let \(\zeta(t,s) < s - t \) for all \(s, t > 0 \).

(3) If \((t_n, s_n) \) are sequences in \([0, \infty)\) such that \(\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 0 \), then \(\limsup_{n \to \infty} \zeta(t_n, s_n) < 0 \).

The set of all simulation functions are denoted by \(\mathcal{Z} \).

Now, we give some examples of simulation functions. In the following \(\zeta \) is defined from \([0, \infty) \times [0, \infty)\) to \(\mathbb{R} \).

Example 2.3. [8] Let \(h_1, h_2 : [0, \infty) \to [0, \infty) \) be two continuous functions such that \(h_1(t) = h_2(t) = 0 \) if and only if \(t = 0 \) and \(h_2(t) < t < h_1(t) \) for all \(t \in [0, \infty) \) and define \(\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R} \) by \(\zeta(t,s) = h_2(s) - h_1(t) \) for all \(t, s \in [0, \infty) \). Then \(\zeta \) is a simulation function.

Example 2.4. [8] Let \(g : [0, \infty) \to [0, \infty) \) be a continuous function such that \(g(t) = 0 \) if and only if \(t=0 \) and define \(\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R} \) by \(\zeta(t,s) = s - g(s) - t \) for all \(t, s \in [0, \infty) \). Then \(\zeta \) is a simulation function.

Example 2.5. [11] Let \(\eta : [0, \infty) \to [0, \infty) \) be an upper semi continuous function such that \(\eta(t) < t \forall t > 0 \) and \(\eta(0) = 0 \) and define \(\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R} \) by \(\zeta(t,s) = \eta(s) - t \) for all \(t, s \in [0, \infty) \). Then \(\zeta \) is a simulation function.

Example 2.6. [11] Let \(\gamma : [0, \infty) \to [0, \infty) \) be a function such that \(\int_0^\infty \gamma(u) du \) exists \(\forall t > 0 \) and define \(\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R} \) by \(\zeta(t,s) = s - \int_0^s \gamma(u) du \) for all \(t, s \in [0, \infty) \). Then \(\zeta \) is a simulation function.

For more work on simulation functions in fixed point theory, we refer the reader to [9]-[11] and references therein.

3. Main Result

In our main result, we use a contraction condition equipped with c-comparison functions with base \(s \) which introduced by Shatanawi [7].

Definition 3.1. [7] Let \(s \) be a constant with \(s \geq 1 \). A function \(\phi : [0, +\infty) \to [0, +\infty) \) is called a c-comparison function with base \(s \) if \(\phi \) satisfies the following:

(i) \(\phi \) is monotone nondecreasing.

(ii) \(\sum_{n=0}^{\infty} s^n \phi^k(st) \) converges for all \(t \geq 0 \).

Remark 3.1. [7] If \(\phi \) is a c-comparison function with base \(s \), then \(\phi(t) < t \) for all \(t > 0 \).

The following example inspired from [7].

Example 3.1. Let \(s \geq 1 \). Define \(\phi_1, \phi_2 : [0, \infty) \to [0, \infty) \) by \(\phi_1(t) = kt \) where \(0 \leq k < \frac{1}{s} \) and \(\phi_2(t) = \frac{1}{a+s} \) where \(a > 0 \). Then \(\phi_1 \) and \(\phi_2 \) are c-comparison functions with base \(s \).

Now, we introduce the following definition

Definition 3.2. Let \((X, G)\) be a \(G_0 \)-metric space equipped with a generalized \(\Omega \)-distance mapping \(\Omega \) with base \(s \geq 1 \) and \(\zeta \in \mathcal{Z} \). A self mapping \(T : X \to X \) is said to be \((\Omega, \phi, \mathcal{Z})\)-c-contraction with respect to \(\zeta \) if there is a c-comparison function \(\phi \) with base \(s \) such that \(T \) satisfies the following condition:

\[
\zeta(s \Omega(Tx, T^2x, Ty), \phi s \Omega(x, Tx, y)) \geq 0 \quad \forall x, y \in X. \tag{1}
\]

Lemma 3.1. Let \((X, G)\) be a \(G_0 \)-metric space equipped with a generalized \(\Omega \)-distance mapping \(\Omega \) with base \(s \geq 1 \). Let \(\zeta \in \mathcal{Z} \) and \(\phi \) be a c-comparison function with base \(s \). Suppose that \(T : X \to X \) is \((\Omega, \phi, \mathcal{Z})\)-c-contraction with respect to \(\zeta \). If \(T \) has a fixed point (say) \(u \in X \), then it is unique.

Proof. First we show that for all \(w \in X \) if \(f w = w \), then \(\Omega(w, w, w) = 0 \). Assume that \(\Omega(w, w, w) > 0 \). From (1) and (\(\zeta_2 \)), we have
0 \leq \zeta(s\Omega(Tw, T^2w, Tw), \phi s\Omega(w, Tw, w)) \\
= \zeta(s\Omega(w, w, w), \phi s\Omega(w, w, w)) \\
< \phi s\Omega(w, w, w) - s\Omega(w, w, w), \\
< s\Omega(w, w, w) - s\Omega(w, w, w), \\
= 0,

a contradiction. Hence \(\Omega(w, w, w) = 0 \).

Now, assume that there is \(v \in X \) such that \(Tv = v \) and \(\Omega(u, v, v) > 0 \). Since \(T \) is \((\Omega, \phi, \mathcal{Z}) \)-contraction with respect to \(\zeta \), then by substituting \(x = u \) and \(y = v \) in (1) and taking into account (\(\zeta \)), we have

\[
0 \leq \zeta(s\Omega(Tu, T^2u, Tu), \phi s\Omega(u, Tu, v)) \\
= \zeta(s\Omega(u, u, v), \phi s\Omega(u, u, v)) \\
< \phi s\Omega(u, u, v) - s\Omega(u, u, v) \\
< s\Omega(u, u, v) - s\Omega(u, u, v) = 0,
\]

a contradiction. Hence \(\Omega(u, v, v) = 0 \). Thus by the definition of \(\Omega \) we have \(G(u, v, v) = 0 \) and so \(u = v \).

Theorem 3.1. \((X, G)\) be a \(G_{\Omega, s}\)-metric space equipped with a generalized \(\Omega \)-distance mapping \(\Omega \) with base \(s \geq 1 \) such that \(X \) is \(\Omega \)-bounded and \(\zeta \in \mathcal{Z} \). Suppose that there is a \(c \)-comparison function \(\phi \) with base \(s \) such that the mapping \(T : X \rightarrow X \) is \((\Omega, \phi, \mathcal{Z})_s \)-contraction with respect to \(\zeta \) that satisfies the following condition

\[
\forall u \in X \ if \ Tu \neq u, \ then \ \inf\{\Omega(x, Tx, u) : x \in X\} > 0. \quad (2)
\]

Then \(T \) has a unique fixed point in \(X \).

Proof. Let \(x_0 \in X \) be arbitrary and define the sequence \((x_n) \) in \(X \) inductively by \(x_n = Tx_{n-1} \) \(n \in \mathbb{N} \).

Let \(p \geq 0 \) be a nonnegative integer. Then by (1), we have for all \(n \in \mathbb{N} \)

\[
0 \leq \zeta(s\Omega(x_{n-1}, T^2x_{n-1}, T_{x_{n+p-1}}), \phi s\Omega(x_{n-1}, T_{x_{n-1}}, x_{n+p-1})), \\
= \zeta(s\Omega(x_{n-1}, x_{n+1}, x_{n+p}), \phi s\Omega(x_{n-1}, x_{n+p}), \\
< \phi s\Omega(x_{n-1}, x_{n+1}, x_{n+p}) - s\Omega(x_{n-1}, x_{n+1}, x_{n+p}).
\]

Thus,

\[
s\Omega(x_{n-1}, x_{n+1}, x_{n+p}) < \phi s\Omega(x_{n-1}, x_{n+p}). \quad (3)
\]

Also, by (1) we have

\[
0 \leq \zeta(s\Omega(x_{n-2}, T^2x_{n-2}, T_{x_{n+p-2}}), \phi s\Omega(x_{n-2}, T_{x_{n-2}}, x_{n+p-2})), \\
= \zeta(s\Omega(x_{n-2}, x_{n+1}, x_{n+p-1}), \phi s\Omega(x_{n-2}, x_{n+1}, x_{n+p-1})), \\
< \phi s\Omega(x_{n-2}, x_{n+1}, x_{n+p-1}) - s\Omega(x_{n-2}, x_{n+1}, x_{n+p-1}).
\]

Therefore,

\[
s\Omega(x_{n-2}, x_{n+1}, x_{n+p-1}) < \phi s\Omega(x_{n-2}, x_{n+p-2}). \quad (4)
\]

Since \(\phi \) is nondecreasing, then \(\phi s\Omega(x_{n-1}, x_{n+p-1}) < \phi^2 s\Omega(x_{n-2}, x_{n-1}, x_{n+p-2}) \). Hence, (3) becomes

\[
s\Omega(x_{n-1}, x_{n+p-1}) < \phi^2 s\Omega(x_{n-2}, x_{n-1}, x_{n+p-2}). \quad (5)
\]

If we apply the previous steps repeatedly, we get \(s\Omega(x_{n}, x_{n+p}) \leq \phi^n s\Omega(x_0, x_1, x_p) \). Since \(X \) is \(\Omega \)-bounded, there is \(M \geq 0 \), such that \(\Omega(x, y, z) \leq M, \forall x, y, z \in X \). Thus

\[
s\Omega(x_n, x_{n+p}) \leq \phi^n (sM). \quad (6)
\]

Now, by using the definition of \(\Omega \) and (6), we have for all \(l \geq m \geq n \)
\[
\Omega(x_n, x_m, x_l) \leq s \Omega(x_n, x_{n+1}, x_{n+1}) + s^2 \Omega(x_{n+1}, x_{n+2}, x_{n+2}) + \cdots \\
+ s^{m-n-1} \Omega(x_{m-1}, x_{m-1}, x_{m-1}) + s^{m-n} \Omega(x_{m-1}, x_m, x_l) \\
\leq \phi^n(sM) + s^{\phi_{n+1}}(sM) + \cdots + s^{m-n-2} \phi^{m-1}(sM) + s^{m-n-2} \phi^{m-1}(sM) \\
\leq \phi^n(sM) + s^{\phi_{n+1}}(sM) + \cdots \\
= s^n \sum_{k=n}^{\infty} s^k \phi^k(sM).
\]

Since \(\phi \) is a \(c \)-comparison function with base \(s \), then \(\sum_{k=n}^{\infty} s^k \phi^k(sM) : n \in \mathbb{N} \) converges to 0. Thus for any \(\varepsilon > 0 \), there is \(N \in \mathbb{N} \) such that \(\sum_{k=n}^{\infty} s^k \phi^k(M) \leq \varepsilon \) \(\forall \ n \geq N. \)

Hence for \(l \geq m \geq n \geq N \), we have

\[
\Omega(x_n, x_m, x_l) \leq s^{-n} \sum_{k=n}^{\infty} s^k \phi^k(M) \leq \varepsilon \ \forall \ n \geq N.
\]

By Lemma 2.1, \((x_n)\) is a \(G_p\)-Cauchy sequence. Therefore there is \(u \in X \) such that \(\lim_{n \to \infty} x_n = u. \)

Consider \(\delta > 0 \). Then there exists \(r_0 \in \mathbb{N} \) such that \(\Omega(x_n, x_m, x_l) \leq \delta \ \forall n, m, l \geq r_0. \)

Therefore, \(\lim_{l \to \infty} \Omega(x_n, x_m, x_l) \leq \lim_{l \to \infty} \delta = \delta. \ \forall n, m \geq r_0. \)

By the lower semi continuity of \(\Omega \), we have \(\Omega(x_{n}, x_{m}, u) \leq \liminf_{p \to \infty} \Omega(x_{n}, x_{m}, x_{p}) \leq \delta \ \forall n, m \geq r_0. \)

Consider \(m = n + 1. \) Then \(\Omega(x_n, x_{n+1}, u) \leq \liminf_{p \to \infty} \Omega(x_{n}, x_{n+1}, x_{p}) \leq \delta \ \forall n \geq r_0. \)

If \(Tu \neq u \), then (2) implies that

\[
0 < \inf\{\Omega(x, Tx, u) : x \in X\} \\
\leq \inf\{\Omega(x_n, x_{n+1}, u) : n \geq r_0\} \\
\leq \delta,
\]

for each \(\delta > 0 \) which is a contradiction. Therefore \(Tu = u. \) The uniqueness follows from Lemma 3.1.

\[\Box \]

Example 3.2. Let \(X = [0, 1] \) and let \(G : X \times X \times X \to [0, \infty), \) \(\Omega : X \times X \times X \to [0, \infty), \) \(T : X \to X \) and \(\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R} \) be defined as follow:

\[
G(x, y, z) = (|x - y| + |y - z| + |x - z|)^2, \quad \Omega(x, y, z) = (|x - y| + |y - z|)^2, \quad T = ax, \quad \zeta(u, v) = bv - u \quad \text{and} \quad \phi(t) = ct \text{ where } a, b \in [0, 1), \ c \in [0, \frac{1}{2}) \text{ and } a^2 \leq b c. \quad \text{Then}
\]

(1) \((X, G) \) is a complete \(G_p\)-metric space and \(\Omega \) is a generalized \(\Omega \)-distance on \(X \) with base \(s = 2, \)

(2) \(\zeta \in \mathscr{L}, \) \(\phi \) is a \(c \)-comparison function with base \(s = 2, \)

(3) \(T \) is \((\Omega, \phi, \mathscr{L})_c \)-contraction with respect to \(\zeta, \)

(4) for every \(u \in X \) if \(Tu \neq u, \) then \(\inf\{\Omega(x, Tx, u) : x \in X\} > 0. \)

Proof. We shall prove (3) and (4).

To prove that \(T \) is \((\Omega, \phi, \mathscr{L})_c \)-contraction with respect to \(\zeta \), let \(x, y \in X. \) Then

\[
\zeta(s\Omega(Tx, T^2x, Ty), \phi \Omega(x, Tx, y)) \\
= \zeta(2\Omega(Tx, T^2x, Ty), 2\Omega(x, Tx, y)) \\
= 2bc(|x - ax| + |y - y|)^2 - 2(|ax - a^2x| + |ax - ay|)^2 \\
= 2bc((1 - a)|x| + |y - y|)^2 - 2a^2((1 - a)|x| + |y - y|)^2 \\
= 2(bc - a^2)(|x| + |y - y|) \\
\geq 0.
\]

To prove (4), given \(u \in X \) such that \(Tu \neq u. \) Then \(u \neq 0. \) Therefore
Let base s. Assume that there is an upper semi continuous function \(g \) following condition:
\[
\inf\{ \Omega(x, T^2x, Ty) : x, y, z \in X \} = \inf\{ \Omega(x, ax, u) : x \in X \} = \inf\{ |x - ax| + |x - u| : x \in X \} = \inf\{ |(1 - a)x| + |x - u| : x \in X \} = (1 - a)u > 0.
\]

Thus all hypotheses of Theorem 3.1 hold true. Hence \(T \) has a unique fixed point in \(X \). Here the unique fixed point of \(T \) is 0.

Now, we utilized our main result to derive the following results. To facilitate our work, we let \(\mathcal{H} = \{ h : [0, \infty) \rightarrow [0, \infty) : h \text{ is a continuous function} \} \) with \(h^{-1}(\{0\}) = \{0\} \).

Corollary 3.1. Let \((X, G) \) be a complete \(G_s \)-metric space and \(\Omega \) be a generalized \(\Omega \)-distance mapping on \(X \) with base \(s \geq 1 \). Let \(T : X \rightarrow X \) be a self mapping and \(\phi \) be a \(c \)-comparison function with base \(s \). Assume that there are \(h_1, h_2 \in \mathcal{H} \) where \(h_2(t) < t \leq h_1(t) \forall t > 0 \) such that \(T \) satisfies the following condition:
\[
h_1s\Omega(Tx, T^2x, Ty) \leq h_2s\Omega(x, Tx, y) \forall x, y, z \in X.
\]
Also, suppose that for all \(u \in X \) if \(Tu \neq u \), then \(\inf\{ \Omega(x, Tx, u) : x \in X \} > 0 \).
Then \(T \) has a unique fixed point in \(X \).

Proof. Define \(\xi : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R} \) by \(\xi(u, v) = h_2(v) - h_1(u) \). Clearly \(\xi \in \mathcal{Z} \) and \(T \) is \((\Omega, \phi, \mathcal{Z}) \) contraction with respect to \(\xi \). Hence the result follows from Theorem 3.1.

By choosing \(h_1(t) = t \) and \(h_2(t) = \lambda t \) where \(0 \leq \lambda < 1 \) in Corollary 3.1 we have the following:

Corollary 3.2. Let \((X, G) \) be a complete \(G_s \)-metric space and \(\Omega \) be a generalized \(\Omega \)-distance mapping on \(X \) with base \(s \geq 1 \). Let \(T : X \rightarrow X \) be a self mapping and \(\phi \) be a \(c \)-comparison function with base \(s \). Assume that there is \(\lambda \in [0, 1) \) such that \(T \) satisfies the following condition:
\[
\Omega(Tx, T^2x, Ty) \leq \frac{\lambda}{3} \phi s\Omega(x, Tx, y) \forall x, y, z \in X.
\]
Also, suppose that for all \(u \in X \) if \(Tu \neq u \), then \(\inf\{ \Omega(x, Tx, u) : x \in X \} > 0 \).
Then \(T \) has a unique fixed point in \(X \).

Corollary 3.3. Let \((X, G) \) be a complete \(G_s \)-metric space and \(\Omega \) be a generalized \(\Omega \)-distance mapping on \(X \) with base \(s \geq 1 \). Let \(T : X \rightarrow X \) be a self mapping and \(\phi \) be a \(c \)-comparison function with base \(s \). Assume that there is \(g \in \mathcal{H} \) such that \(T \) satisfies the following condition:
\[
s\Omega(Tx, T^2x, Ty) \leq \phi s\Omega(x, Tx, y) - g\phi s\Omega(x, Tx, y) \forall x, y, z \in X.
\]
Also, suppose that for all \(u \in X \) if \(Tu \neq u \), then \(\inf\{ \Omega(x, Tx, u) : x \in X \} > 0 \).
Then \(T \) has a unique fixed point in \(X \).

Proof. Define \(\xi : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R} \) by \(\xi(u, v) = v - g(v) - u \). Clearly \(\xi \in \mathcal{Z} \) and \(T \) is \((\Omega, \phi, \mathcal{Z}) \) contraction with respect to \(\xi \). Hence the result follows from Theorem 3.1.

Corollary 3.4. Let \((X, G) \) be a complete \(G_s \)-metric space and \(\Omega \) be a generalized \(\Omega \)-distance mapping on \(X \) with base \(s \geq 1 \). Let \(T : X \rightarrow X \) be a self mapping and \(\phi \) be a \(c \)-comparison function with base \(s \). Assume that there is an upper semi continuous function \(\eta \) such that \(T \) satisfies the following condition:
\[
s\Omega(Tx, T^2x, Ty) \leq \eta \phi s\Omega(x, Tx, y) \forall x, y, z \in X.
\]
Also, suppose that for all \(u \in X \) if \(Tu \neq u \), then \(\inf\{ \Omega(x, Tx, u) : x \in X \} > 0 \).
Then \(T \) has a unique fixed point in \(X \).
Proof. Define \(\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R} \) by \(\zeta(u, v) = \eta(v) - u \). Clearly \(\zeta \in \mathcal{Z} \) and \(T \) is \((\Omega, \phi, \mathcal{Z})\)-contraction with respect to \(\zeta \). Hence the result follows from Theorem 3.1.

Corollary 3.5. Let \((X, G)\) be a complete \(G_s\)-metric space and \(\Omega \) be a generalized \(\Omega\)-distance mapping on \(X\) with base \(s \geq 1\). Let \(T : X \rightarrow X \) be a self mapping and \(\phi \) be a \(c\)-comparison function with base \(s\). Assume that there is a function \(\gamma : [0, \infty) \rightarrow [0, \infty) \) where \(\int_0^x \gamma(t)dt \) exists and \(\int_0^x \gamma(t)dt > \varepsilon \) \(\forall \varepsilon > 0\) such that \(T \) satisfies the following condition:

\[
\int_0^{\Omega(Tx, T^2x)} \gamma(u)du \leq \phi s \Omega(x, Tx, y) \forall x, y \in X.
\]

Also, suppose that for all \(u \in X \) if \(Tu \neq u \), then \(\inf\{\Omega(x, Tx, u) : x \in X\} > 0 \). Then \(T \) has a unique fixed point in \(X \).

Proof. Define \(\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R} \) by \(\zeta(u, v) = v - \int_0^u \gamma(t)dt \). Clearly \(\zeta \in \mathcal{Z} \) (see Example 2.6) and \(T \) is \((\Omega, \phi, \mathcal{Z})\)-contraction with respect to \(\zeta \). Hence the result follows from Theorem 3.1.

4. Conclusion

In this paper, we introduced and studied some fixed point theorems in the setting of generalized \(\Omega\)-distance mappings [1] using contraction conditions depend on simulation functions [8] in which our work gives a more general cases in the study of fixed point theory. Also, an example is introduced to support our main result.

REFERENCES

13. L. Gholizadeh, A fixed point theorem in generalized ordered metric spaces with application, J. Nonlinear Sci. Appl. 6 (2013), 244-251

