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A COUPLING METHOD OF HOMOTOPY PERTURBATION 
AND LAPLACE TRANSFORMATION FOR FRACTIONAL 

MODELS 

Yasir KHAN1, Naeem FARAZ2, Sunil KUMAR3, Ahmet YILDIRIM4 

                  This paper suggests a novel coupling method of homotopy 
perturbation and Laplace transformation for fractional models. This method is 
based on He’s homotopy perturbation, Laplace transformation and the modified 
Riemann-Liouville derivative. However, all the previous works avoid the term of 
fractional order initial conditions and handle them as a restricted variation. In 
order to overcome this shortcoming, a fractional Laplace homotopy perturbation 
transform method (FLHPTM) is proposed with modified Riemann-Liouville 
derivative. The results from introducing a modified Riemann-Liouville derivative, 
fractional order initial conditions and Laplace transform in the cases studied show 
the high accuracy, simplicity and efficiency of the approach. 

Keywords: Laplace transform; modified Riemann-Liouville derivative; homotopy 
perturbation method 

1. Introduction 

There is a long-standing interest in extending the classical calculus to non-
integer orders [1-4] because the applications of fractional calculus (integrals and 
derivatives of any real or complex order) have attracted a great deal of attention in 
recent years. For example, fractional differential equations are increasingly used 
to model many problems in biology, chemistry, economic, engineering, physics 
and other areas of applications. The fractional differential equations have become 
a useful tool for describing nonlinear phenomena of science and engineering 
models. Several authors including Beyer and Kempfle [5], Schneider and Wyss 
[6], Mainardi [7], Huang and Liu [8], He [9, 10], Faraz et al. [11] discussed some 
methods and solutions of fractional differential equations. However, applications 
of this linear inhomogeneous Klein-Gordon equation are pointed out in [12, 13]. 

No analytical method was available before 1998 for such equations even 
for linear fractional differential equations. In 1998, the variational iteration 
method was first proposed to solve fractional differential equations with greatest 
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success, see Ref. [10]. Following the above idea, Khan et al. [14], Odibat and 
Momani [15], Das [16] and Faraz et al. [17] applied the variational iteration 
method to more complex fractional differential equations, showing effectiveness 
and accuracy of the used method. In previous papers [18–23] many authors have 
already established as well as successfully exhibited the applicability of Adomian 
decomposition method to obtain the solutions of different types of fractional 
differential equations. Momani [24], Ganji [25] and Yildirim [26] applied the 
homotopy perturbation method (HPM) to fractional differential equations and 
revealed that HPM is an alternative analytical method for solving fractional 
differential equations. 

The purpose of this paper is to introduce a new method for fractional 
differential equations. Our aim is to extend the application of the proposed 
method to obtain the analytical solutions to Klein–Gordon fractional partial 
differential equation. In this study, He’s homotopy perturbation method [27, 28] is 
implemented. We have introduced fractional order initial conditions. Point to be 
noted that for fractional differential equations one should use fractional Taylor 
series. To make the calculation easy and simple, first time we have used Laplace 
transform to solve the systems of equations after applying the homotopy 
perturbation instead of applying homotopy inverse operator. Through Laplace 
transform of fractional order term, it is easy to judge that one must use fractional 
order initial conditions. By introducing the Laplace transform, calculations 
become simple and easy to understand as compared to applying the homotopy 
inverse operator. It is easy to judge, by applying the Laplace transformation that it 
is essential to use fractional order initial condition to analyze any physical 
phenomena, which has been expressed in terms of fractional differential 
equations. The elegance of this article can be attributed to its endeavor in finding 
the solution in a simple way by considering only FLHPTM. Klein–Gordon 
fractional partial differential equation is solved which show that only a few 
iterations are needed to obtain accurate approximate solutions. 

2. Fractional calculus 

We give some basic definitions and properties of the fractional calculus 
theory which are used further in this paper. 

 Definition 2.1.  Let : ,f R R→  ( )x f x→ , denote a continuous (but not 
necessarily differentiable) function, and let 0h >  denote a constant discretization 
span. Define the forward operator ( )FW h  (the symbol: = means that the left side 
by the right one) [29] 

                          ( ). ( ) : ( );FW h f x f x h= +                                                           (1) 
Then the fractional difference of order , ,0 1,Rα α α∈ < ≤  of ( )f x  is 

defined by the expression [29] 



A coupling method of homotopy perturbation and Laplace transformation […] models          59 

0

. ( ) : ( 1) . ( )

( ) [ ( ) ],k
k

k

f x FW f x

C f x k h

α α

α α
∞

=

Δ = −

= − + −∑
                                     (2) 

and its fractional derivative is the limit [29] 
 

                           ( )

0

[ ( ) (0)]( ) lim .
h

f x ff x
h

α
α

α↓

Δ −
=                                                   (3) 

This definition is close to the standard definition of derivative (calculus for 
beginners), and as a direct result, the thα −  derivative of a constant is zero. 

Proposition. Refer to the function of Definition 2.1. Then its fractional 
derivative or orderα , α 0,< is defined by the expression [29] 
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and 
                                      ( )( )( ) ( )( ) ( ) , 1, 1.

nnf x f x n n nα α α−= ≤ < + ≥                     (6) 
Remark the difference between Eq. (4) and (5). The second one involves 

the constant (0)f whilst the first one does not. We shall refer to this fractional 
derivative as to the modified Riemann Liouville derivative. With this definition, 
the Laplace’s transform {.}L of the fractional derivative is [29] 
                                   { } { }( ) 1( ) ( ) (0),0 1.L f x s L f x s fα α α α−= − < <                   (7)  

Definition 2.2. (Principle of Derivative Increasing Orders). The fractional 
derivative of fractional order Dα θ+ expressed in terms of Dα and Dθ is defined by 
the equality [29] 
                                           ( )max( , ) min( , )( ) : ( ) .D f x D D f xα θ α θ α θ+ =                          (8) 

On doing so, we merely follow the practical rule in accordance of which 
we increase the derivation order rather than the opposite. Or again, we start from 
the lower order derivative to define the larger order one. 
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On the decomposition of fractional derivatives 
Let α be such that 0 3 1.α< < There are two different ways to obtain 

3 ( ).D f xα One can calculate ( )D D D f xα α α to obtain Laplace’s transform [29] 
                { } 3 3 1 2 1 ( ) 1 (2 )( ) ( ) (0) (0) (0)L D D D f x s f s s f s f s fα α α α α α α α α− − −= − − −   (9) 

Proposition. Assume that the continuous function : ,f R R→ ( )x f x→  
has a fractional derivative of order kα , for any positive integer k  and any 

,0 1;α α< ≤  then the following equality holds, which is [29] 

                        
0

( ) ( ),0 1.
!

k
k

k

hf x h f x
k

α
α α

α

∞

=

+ = < ≤∑     0 1α< ≤                          (10) 

On making the substitution h x→ and 0x →  we obtain the fractional Mc-
Laurin series [29] 
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3. Fractional Laplace homotopy perturbation transform method 

                In order to elucidate the solution procedure of the fractional 
Laplace homotopy perturbation transform method, we consider the following 
fractional differential equation: 

( , ) [ ] ( , ) ( , ),    0, ,   0 1nD u x t R x u x t q x t t x nα α= + > ∈ < ≤                 (12) 

Where
n

n
nD

t

α
α

α

∂
=
∂

, [ ]R x is a linear operator in x , ( )f x  and ( , )q x t  are 

continuous functions. Using the HPM [27, 28] as introduced by He, we can 
construct a homotopy for Eq. (12) as follows: 
(1 ) ( , ) [ ( , ) [ ] ( , ) ( , )] 0,n np D u x t p D u x t R x u x t q x tα α− + − − =                                 (13) 
or 

              ( , ) [ [ ] ( , ) ( , )],nD u x t p R x u x t q x tα = +                                                   (14) 
where [0,1]p∈  is an embedding parameter. If 0p = , Eq. (13) and Eq. 

(14) become 
                        ( , ) 0,nD u x tα =                                                                                (15) 

And when 1p = , both Eq. (13) and Eq. (14) turn out to be the original 
fractional differential equation (12). 

The homotopy perturbation method [27, 28] admits a solution in the form 
                     0 1 2

0 1 2 ...u p u p u p u= + + +                                                (16) 
Setting 1p =  results in the solution of Eq. (16); we get   

                       0 1 2 ...u u u u= + + +                                                         (17) 
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From the Eq. (16), one can realize that the problems can be solved by 
using the homotopy perturbation method (HPM). Thus, He [27] proposed the 
following conditions for the convergence of the homotopy perturbation method: 

The second derivative of nonlinear term with respect to u  must be small, 
because the parameter p  may be relatively large, i.e. 1p → . 

2) The norm of -1L dNonlinear term du must be smaller than one, in order 
that the series converges. 

Invoking Eq. (16) in Eq. (14) and collecting the terms with the same 
powers of p , we can obtain a series of equations of the following form: 
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Taking Laplace transform of both sides of Eq. (18) gives: 
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1

1 0
2

2 1
3

3 2

: ( , ) ( ,0) ( ,0) ( ,0) ... ( ,0) 0,

: ( , ) ( , ) ( , ),

: ( , ) ( , ),

: ( , ) ( , ),

n n n n n

n

n

n

p s u x s s u x s u x s u x s u x

p s u x s Ru x s q x s

p s u x s Ru x s

p s u x s Ru x s

α α α α α α α α

α

α

α

− − − − − − −− − − − − =

= +

=

=

   (19) 

On solving Eq. (19) for 0 1 2 3, , , ...u u u u  respectively by using the fractional 
initial conditions, we can get following form:  
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   (20) 
Substituting successive iterations in Eq. (17) will give required result.  
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4. Application  

We consider the one-dimensional linear inhomogeneous fractional Klein-
Gordon equation 

                         

2
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In order to illustrate the efficiency of our method, we replace the fractional 
order α  ( 0 2α< ≤ ) by the order 2α (0 1)α< ≤  in Eq. (21). 
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By applying the aforesaid method, we have 
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In view of Eq. (9), Eq. (23) takes the form as follows 
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The inverse Laplace transform applied to Eq. (24) results in: 
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The most refined form of Eq. (25) is 
0
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In the same manner, the rest of the components can be obtained. 
Consequently, we obtain the following expansion: 

3 2 1 3 2 3 4 1 4 3 3 4 1 3 4 36 6( 6 ) 36 36 6 6( 6 )( , ) ...
(2 2) (2 4) (4 2) (4 4) (4 2) (4 4)
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(27) 

when 1α = , it is obvious that the “noise terms” appearing in ),( txu  are 
cancelled and finally  we obtain the solution for the classical Klein-Gordon 
equation as 
                                                                    3 3( , )u x t x t=                                                            (28) 

In order to corroborate the efficiency and accuracy of the method, we 
compare our approximate solutions of fractional differential equation (22) with 
the exact solutions. Fig. 1. (A) and Fig. 1. (B) show the numerical results of ( , )u x t  
at 1α =  and exact solution, respectively. It can be seen from the figures that a very 
good approximation is achieved with the exact solution by using only two terms 
of the FLHPTM series.   
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B.  
Fig.1: Comparison between approximate and exact solutions: (A) Approximate solution 

at 1,α =  (B) Exact solution 
 
We determine the absolute error function ( ),ne x t  between exact and 

approximate solutions with considering different number of components or terms 
of FLHPTM series. Figs. 2 (A)-(C) show the results of the absolute errors for the 
first-order, second-order and third-order terms of the FLHPTM series solution, 
respectively. The figures demonstrate the speed of convergence of the proposed 
method is very fast, and the accuracy of the method increases with increasing 
number of components of approximated solutions. 
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Fig.2: Absolute error functions at 0.2t = : (A) ( )1 ,e x t  (B) ( )2 ,e x t and (C) ( )3 , .e x t  
 

To demonstrate the influence of varying the order of the fractional 
derivative on the behaviour of solution, we take four different values of α  as  

0.15,α = 0.30α = , 0.45,α =  and 1.α =  The numerical solutions of ( , )u x t  are 
presented in Fig. 3 (A) and Fig. 3 (B) for 0.2t = and 0.5,t =  respectively.  
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Fig.3: Plot of numerical solution of Eq. (4.9) for different values  :α   (A) at 0.2t = ;  (B)            
at 0.5.t =  

 
It is evident that the solution continuously depends on the time fractional 

derivative. Moreover, the numerical results of ( , )u x t for various values of  α  are 
depicted through Figs. 4 (A)-(C). As seen from the figures, as the value of 
fractional order α decreases, the approximate solution dramatically increases.  
 



66                               Yasir Khan, Naeem Faraz, Sunil Kumar, Ahmet Yildirim 

0
0.05

0.1
0.15

0.2

-2

0

2

-5

0

5

t

x

u
(x

,t)

0
0.05

0.1
0.15

0.2

-2

0

2

-2

-1

0

1

2

t
x

u
(x

,t)

 
A.         B. 

0
0.05

0.1
0.15

0.2

-2

0

2

-1

-0.5

0

0.5

1

t
x

u
(x

,t)

 
 C.  

Fig.4:  Numerical solutions of Eq. (4.9) for different values  :α   (A) 0.15,α =  (B) 0.3,α = (C) 
0.45.α =  

6. Conclusions 

In this article, we proposed a fractional Laplace homotopy perturbation 
transform method (FLHPTM) for finding the solution of partial differential 
equations with fractional time derivative. The method is applied in a direct way 
without using linearization, discretization or restrictive assumptions. It may be 
concluded that the FLHPTM is very powerful and efficient in finding the 
analytical solutions for a wide class of initial value problems. The method gives 
more realistic series solutions that converge very rapidly in physical problems. It 
is worth mentioning that the method is capable of reducing the volume of the 
computational work as compare to the classical methods with high accuracy of the 
numerical result and will considerably benefit mathematicians and scientists 
working in the field of partial differential equations.  
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