ON ROUGH \((m, n)\) BI-\(\Gamma\)-HYPERIDEALS IN \(\Gamma\)-SEMIHYPERGROUPS

Naveed Yaqoob\(^1\), Muhammad Aslam\(^1\), Bijan Davvaz\(^2\), Arsham Borumand Saeid\(^3\)

In this paper, we introduced the concept of \((m, n)\) bi-\(\Gamma\)-hyperideals and rough \((m, n)\) bi-\(\Gamma\)-hyperideals in \(\Gamma\)-semihypergroups and some properties of \((m, n)\) bi-\(\Gamma\)-hyperideals in \(\Gamma\)-semihypergroups are presented.

Keywords: \(\Gamma\)-semihypergroups, Rough sets, Rough \((m, n)\) bi-\(\Gamma\)-hyperideals.

1. Introduction

The notion of \((m, n)\)-ideals of semigroups was introduced by Lajos [13, 14]. Later \((m, n)\) quasi-ideals and \((m, n)\) bi-ideals and generalized \((m, n)\) bi-ideals were studied in various algebraic structures.

The notion of a rough set was originally proposed by Pawlak [16] as a formal tool for modeling and processing incomplete information in information systems. Some authors have studied the algebraic properties of rough sets. Kuroki, in [12], introduced the notion of a rough ideal in a semigroup. Anvariyeh et al. [3], introduced Pawlak's approximations in \(\Gamma\)-semihypergroups. Abdullah et al. [1], introduced the notion of \(M\)-hypersystem and \(N\)-hypersystem in \(\Gamma\)-semihypergroups and Aslam et al. [6], studied rough \(M\)-hypersystems and fuzzy \(M\)-hypersystems in \(\Gamma\)-semihypergroups, also see [4, 5, 19]. Yaqoob et al. [18], Applied rough set theory to \(\Gamma\)-hyperideals in left almost \(\Gamma\)-semihypergroups.

The algebraic hyperstructure notion was introduced in 1934 by a French mathematician Marty [15], at the 8th Congress of Scandinavian Mathematicians. He published some notes on hypergroups, using them in different contexts: algebraic functions, rational fractions, non commutative groups.

In 1986, Sen and Saha [17], defined the notion of a \(\Gamma\)-semigroup as a generalization of a semigroup. One can see that \(\Gamma\)-semigroups are generalizations of semigroups. Many classical notions of semigroups have been extended to \(\Gamma\)-semigroups and a lot of results on \(\Gamma\)-semigroups are published by a lot of mathematicians, for instance, Chattopadhyay [7], Chinram and Jirojkul [8], Chinram and Siammai [9], Hila [11]. Then, in [2, 10], Davvaz et al. introduced the notion of \(\Gamma\)-semihypergroup

\(^1\)Corresponding author: Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan., E-mail: nayaqoob@ymail.com

\(^2\)Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan.

\(^3\)Department of Mathematics, Yazd University, Yazd, Iran.

\(^4\)Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
as a generalization of a semigroup, a generalization of a semihypergroup and a generalization of a Γ-semigroup. They presented many interesting examples and obtained a several characterizations of Γ-semihypergroups.

In this paper, we have introduced the notion of (m, n) bi-Γ-hyperideals and we have applied the concept of rough set theory to (m, n) bi-Γ-hyperideals, which is a generalization of (m, n) bi-Γ-hyperideals of Γ-semihypergroups.

2. Preliminaries

In this section, we recall certain definitions and results needed for our purpose.

Definition 2.1. A map $\circ : S \times S \to P^*(S)$ is called hyperoperation or join operation on the set S, where S is a non-empty set and $P^*(S)$ denotes the set of all non-empty subsets of S. A hypergroupoid is a set S with together a (binary) hyperoperation. A hypergroupoid (S, \circ), which is associative, that is $x \circ (y \circ z) = (x \circ y) \circ z$, $\forall x, y, z \in S$, is called a semihypergroup.

Let A and B be two non-empty subsets of S. Then, we define

$$A \Gamma B = \bigcup_{\gamma \in \Gamma} A \gamma B = \bigcup \{a \gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma\}.$$

Let (S, \circ) be a semihypergroup and let $\Gamma = \{\circ\}$. Then, S is a Γ-semihypergroup. So, every semihypergroup is Γ-semihypergroup.

Let S be a Γ-semihypergroup and $\gamma \in \Gamma$. A non-empty subset A of S is called a sub Γ-semihypergroup of S if $x \gamma y \subseteq A$ for every $x, y \in A$. A Γ-semihypergroup S is called commutative if for all $x, y \in S$ and $\gamma \in \Gamma$, we have $x \gamma y = y \gamma x$.

Example 2.1. [2] Let $S = [0, 1]$ and $\Gamma = \mathbb{N}$. For every $x, y \in S$ and $\gamma \in \Gamma$, we define $\gamma : S \times S \to S$ by $x \gamma y = \left[0, \frac{x + y}{\gamma}\right]$. Then, γ is hyperoperation. For every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, we have $(x \alpha y) \beta z = \left[0, \frac{\alpha x + \beta y}{\alpha \beta}\right] = x \alpha (y \beta z)$. This means that S is a Γ-semihypergroup.

Example 2.2. [2] Let (S, \circ) be a semihypergroup and Γ be a non-empty subset of S. We define $x \gamma y = x \circ y$ for every $x, y \in S$ and $\gamma \in \Gamma$. Then, S is a Γ-semihypergroup.

Definition 2.2. [2] A non-empty subset A of a Γ-semihypergroup S is a right (left) Γ-hyperideal of S if $A \Gamma S \subseteq A$ ($S \Gamma A \subseteq A$), and is a Γ-hyperideal of S if it is both a right and a left Γ-hyperideal.

Definition 2.3. [2] A sub Γ-semihypergroup B of a Γ-semihypergroup S is called a bi-Γ-hyperideal of S if $B \Gamma S \Gamma B \subseteq B$.

A bi-Γ-hyperideal B of a Γ-semihypergroup S is proper if $B \neq S$.

Lemma 2.1. In a Γ-semihypergroup S, $(A \Gamma B)^m = A^m \Gamma B^m$ holds if $A \Gamma B = B \Gamma A$ for all $A, B \in S$ and m is a positive integer.

Proof. We prove the result $(A \Gamma B)^m = A^m \Gamma B^m$ by induction on m. For $m = 1$, $A \Gamma B = A \Gamma B$, which is true. For $m = 2$, $(A \Gamma B)^2 = (A \Gamma B)(A \Gamma B) = A \Gamma (B \Gamma A) \Gamma B = A \Gamma B \Gamma (A \Gamma B) = A \Gamma B \Gamma (B \Gamma A) = A \Gamma B \Gamma B = A \Gamma B$.

This proves the result for $m = 2$. For $m > 2$, we can write

$$(A \Gamma B)^m = (A \Gamma B)^{m-1} \Gamma B = (A \Gamma B)^{m-1} \Gamma (A \Gamma B).$$

Using the induction hypothesis, we have

$$(A \Gamma B)^m = (A \Gamma B)^{m-1} \Gamma (A \Gamma B) = A \Gamma (B \Gamma A) \Gamma (A \Gamma B) = A \Gamma B \Gamma (A \Gamma B) = A \Gamma B \Gamma (B \Gamma A) = A \Gamma B.$$

This completes the proof.
\(A^2 \Gamma B^2 \). Suppose that the result is true for \(m = k \). That is, \((A \Gamma B)^k = A^k \Gamma B^k \). Now for \(m = k + 1 \), we have
\[
(A \Gamma B)^{k+1} = (A \Gamma B)^k \Gamma (A \Gamma B) = (A^k \Gamma B^k) \Gamma (A \Gamma B) = A^k \Gamma (B^k \Gamma A) \Gamma B = (A^k \Gamma A) \Gamma (B^k \Gamma B) = A^{k+1} \Gamma B^{k+1}.
\]
Thus, the result is true for \(m = k + 1 \). By induction hypothesis the result \((A \Gamma B)^m = A^m \Gamma B^m\) is true for all positive integers \(m \).

3. \((m, n)\) Bi-\(\Gamma\)-hyperideals in \(\Gamma\)-semihypergroups

From [14], a subsemigroup \(A \) of a semigroup \(S \) is called an \((m, n)\)-ideal of \(S \) if \(A^m S A^n \subseteq A \).

A subset \(A \) of a \(\Gamma\)-semihypergroup \(S \) is called an \((m, 0)\) \(\Gamma\)-hyperideal \(((0, n)\) \(\Gamma\)-hyperideal) if \(A^m \Gamma S \subseteq A \) \((\Gamma A^n \subseteq A)\). A sub \(\Gamma\)-semihypergroup \(A \) of a \(\Gamma\)-semihypergroup \(S \) is called \((m, n)\) bi-\(\Gamma\)-hyperideal of \(S \), if \(A \) satisfies the condition
\[
A^m \Gamma S \Gamma A^n \subseteq A,
\]
where \(m, n \) are non-negative integers \((A^m \) is suppressed if \(m = 0 \). Here if \(m = n = 1 \) then \(A \) is called bi-\(\Gamma\)-hyperideal of \(S \). By a proper \((m, n)\) bi-\(\Gamma\)-hyperideal we mean an \((m, n)\) bi-\(\Gamma\)-hyperideal, which is a proper subset of \(S \).

Example 3.1. Let \((S, \circ) \) be a semihypergroup and \(\Gamma \) be a non-empty subset of \(S \). Define a mapping \(S \times \Gamma \times S \to \mathcal{P}(S) \) by \(x \gamma y = x \circ y \) for every \(x, y \in S \) and \(\gamma \in \Gamma \). By Example 2.2, we know that \(S \) is a \(\Gamma\)-semihypergroup. Let \(B \) be an \((m, n)\) bi-\(\Gamma\)-ideal of the \(\Gamma\)-semihypergroup \(S \). Then, \(B^m \circ S \circ B^n \subseteq B \). So, \(B^m \Gamma S \Gamma B^n = B^m \circ S \circ B^n \subseteq B \). Hence, \(B \) is an \((m, n)\) bi-\(\Gamma\)-hyperideal of \(S \).

Example 3.2. Let \(S = [0, 1] \) and \(\Gamma = \mathbb{N} \). Then, \(S \) together with the hyperoperation \(x \gamma y = \left[0, \frac{x+y}{2} \right] \) is a \(\Gamma\)-semihypergroup. Let \(t \in [0, 1] \) and set \(T = [0, t] \). Then, clearly it can be seen that \(T \) is a sub \(\Gamma\)-semihypergroup of \(S \). Since \(T^m \Gamma S = [0, t^m] \subseteq [0, t] = T \), \(S T^m = [0, t^m] \subseteq [0, t] = T \), so \(T \) is an \((m, 0)\) \(\Gamma\)-hyperideal \(((0, n)\) \(\Gamma\)-hyperideal) of \(S \). Since \(T^m \Gamma S T^m = [0, t^m + t] \subseteq [0, t] = T \), then \(T \) is an \((m, n)\) bi-\(\Gamma\)-hyperideal of \(\Gamma\)-semi hypergroup \(S \).

Example 3.3. Let \(S = [-1, 0] \) and \(\Gamma = \{-1, -2, -3, \cdots \} \). Define the hyperoperation \(x \gamma y = \left[\frac{x+y}{2}, 0 \right] \) for all \(x, y \in S \) and \(\gamma \in \Gamma \). Then, clearly \(S \) is a \(\Gamma\)-semihypergroup. Let \(\lambda \in [-1, 0] \) and the set \(B = [\lambda, 0] \). Then, clearly \(B \) is a sub \(\Gamma\)-semi hypergroup of \(S \). Since \(B^m \Gamma S = [\lambda, 2^m, 0] \subseteq [\lambda, 0] = B \), \(S \Gamma B^n = [\lambda, 2^n, 0] \subseteq [\lambda, 0] = B \), so \(B \) is an \((m, 0)\) \(\Gamma\)-hyperideal \(((0, n)\) \(\Gamma\)-hyperideal) of \(S \). Since \(B^m \Gamma S \Gamma B^n = [\lambda, 2^{m+n}, 0] \subseteq [\lambda, 0] = B \), then \(B \) is an \((m, n)\) bi-\(\Gamma\)-hyperideal of \(\Gamma\)-semi hypergroup \(S \).

Proposition 3.1. Let \(S \) be a \(\Gamma\)-semi hypergroup, \(B \) be a sub \(\Gamma\)-semi hypergroup of \(S \) and let \(A \) be an \((m, n)\) bi-\(\Gamma\)-hyperideal of \(S \). Then, the intersection \(A \cap B \) is an \((m, n)\) bi-\(\Gamma\)-hyperideal of \(\Gamma\)-semi hypergroup \(B \).

Proof. The intersection \(A \cap B \) evidently is a sub \(\Gamma\)-semi hypergroup of \(S \). We show that \(A \cap B \) is an \((m, n)\) bi-\(\Gamma\)-hyperideal of \(B \), for this
\[
(A \cap B)^m \Gamma B \Gamma (A \cap B)^n \subseteq A^m \Gamma S \Gamma A^n \subseteq A, \tag{1}
\]
because of A is an (m, n) bi-Γ-hyperideal of S. Secondly

$$(A \cap B)^n \Gamma B \Gamma (A \cap B)^n \subseteq B^n \Gamma B \Gamma B^n \subseteq B.$$ \hfill (2)

Therefore, (1) and (2) imply that $(A \cap B)^m \Gamma B \Gamma (A \cap B)^n \subseteq A \cap B$, that is, the intersection $A \cap B$ is an (m, n) bi-Γ-hyperideal of B.

Theorem 3.1. Suppose that $\{A_i : i \in I\}$ be a family of (m, n) bi-Γ-hyperideals of a Γ-semihypergroup S. Then, the intersection $\bigcap_{i \in I} A_i \neq \emptyset$ is an (m, n) bi-Γ-hyperideal of S.

Proof. Let $\{A_i : i \in I\}$ be a family of (m, n) bi-Γ-hyperideals in a Γ-semihypergroup S. We know that the intersection of sub Γ-semihypergroups is a sub Γ-semihypergroup. Let $B = \bigcap_{i \in I} A_i$. Now we have to show that $B = \bigcap_{i \in I} A_i$ is an (m, n) bi-Γ-hyperideal of S. Here we need only to show that $B^n \Gamma S B^n \subseteq B$. Let $x \in B^n \Gamma S B^n$. Then, $x = a_1^m a_2^m \alpha S \beta a_2^m$ for some $a_1^m, a_2^m \subseteq B$, $\alpha, \beta \in \Gamma$. Thus, for any arbitrary $i \in I$ as $a_1^m, a_2^m \subseteq B_i$. So, $x \in B_i^n \Gamma S B_i^n$. Since B_i is an (m, n) bi-Γ-hyperideal so $B_i^n \Gamma S B_i^n \subseteq B_i$ and therefore $x \in B_i$. Since i was chosen arbitrarily so $x \in B_i$ for all $i \in I$ and hence $x \in B$. So, $B^n \Gamma S B^n \subseteq B$ and hence $B = \bigcap_{i \in I} A_i$ is an (m, n) bi-Γ-hyperideal of S. \hfill \square

It is obvious that the intersection of two or more $(m, 0)$ Γ-hyperideals $((0, n)$ Γ-hyperideals) is an $(m, 0)$ Γ-hyperideal $((0, n)$ Γ-hyperideal). Similarly, the union of two or more $(m, 0)$ Γ-hyperideals $((0, n)$ Γ-hyperideals) is an $(m, 0)$ Γ-hyperideal

$((0, n)$ Γ-hyperideal).

Theorem 3.2. Let S be a Γ-semihypergroup. If A is an $(m, 0)$ Γ-hyperideal and also $(0, n)$ Γ-hyperideal of S, then A is an (m, n) bi-Γ-hyperideal of S.

Proof. Suppose that A is an $(m, 0)$ Γ-hyperideal and also $(0, n)$ Γ-hyperideal of S. Then,

$$A^m \Gamma S A^n \subseteq A \Gamma A^n \subseteq S A^n \subseteq A,$$

which implies that A is an (m, n) bi-Γ-hyperideal of S. \hfill \square

Theorem 3.3. Let m, n be arbitrary positive integers. Let S be a Γ-semihypergroup, B be an (m, n) bi-Γ-hyperideal of S and A be a sub Γ-semihypergroup of S. Suppose that $A \Gamma B = B \Gamma A$. Then,

1. $B \Gamma A$ is an (m, n) bi-Γ-hyperideal of S.
2. $A \Gamma B$ is an (m, n) bi-Γ-hyperideal of S.

Proof. (1) The suppositions of the theorem imply that

$$(B \Gamma A) \Gamma (B \Gamma A) = (B \Gamma A \Gamma B) \Gamma A = B \Gamma A.$$\hfill \hfill (1)

This shows that $B \Gamma A$ is a sub Γ-semihypergroup of S. On the other hand, as B is an (m, n) bi-Γ-hyperideal of S, so

$$(B \Gamma A)^\kappa S \Gamma (B \Gamma A)^n = (B^n \Gamma A^n \Gamma S B^n) \Gamma A^n \subseteq B \Gamma A^n \subseteq B \Gamma A.$$\hfill \hfill (2)

Hence, the product $B \Gamma A$ is an (m, n) bi-Γ-hyperideal of S. (2) The proof is similar to (1). \hfill \square
Let S be a Γ-semihypergroup and for a positive integer n, B_1, B_2, \cdots, B_n be (m, n) bi-Γ-hyperideals of S. Then, $B_1 \Gamma B_2 \Gamma \cdots \Gamma B_n$ is an (m, n) bi-Γ-hyperideal of S.

Proof. We prove the theorem by induction. By Theorem 3.3, $B_1 \Gamma B_2$ is an (m, n) bi-Γ-hyperideal of S. Next, for $k \leq n$, suppose that $B_1 \Gamma B_2 \Gamma \cdots \Gamma B_k$ is an (m, n) bi-Γ-hyperideal of S. Then, $B_1 \Gamma B_2 \Gamma \cdots \Gamma B_k \Gamma B_{k+1} = (B_1 \Gamma B_2 \Gamma \cdots \Gamma B_k) \Gamma B_{k+1}$ is an (m, n) bi-Γ-hyperideal of S by Theorem 3.3. \qed

Theorem 3.5. Let S be a Γ-semihypergroup, A be an (m, n) bi-Γ-hyperideal of S, and B be an (m, n) bi-Γ-hyperideal of the Γ-semihypergroup A such that $B^2 = B \Gamma B = B$. Then, B is an (m, n) bi-Γ-hyperideal of S.

Proof. It is trivial that B is a sub Γ-semihypergroup of S. Secondly, since $A^m \Gamma S T A^n \subseteq A$ and $B^n \Gamma A \Gamma B^n \subseteq B$, we have $B^m \Gamma S T B^n = B^m \Gamma (B^n \Gamma S T B^n) \Gamma B^n \subseteq B^m \Gamma (A^m \Gamma S T A^n) \Gamma B^n \subseteq B^m \Gamma A \Gamma B^n \subseteq B$. Therefore, B is an (m, n) bi-Γ-hyperideal of S. \qed

4. Lower and Upper Approximations in Γ-semihypergroups

In what follows, let S denote a Γ-semihypergroup unless otherwise specified.

Definition 4.1. Let S be a Γ-semihypergroup. An equivalence relation ρ on S is called regular on S if $(a, b) \in \rho$ implies $(a\gamma x, b\gamma x) \in \rho$ and $(x\gamma a, x\gamma b) \in \rho$, for all $x \in S$ and $\gamma \in \Gamma$.

If ρ is a regular relation on S, then, for every $x \in S$, $[x]_{\rho}$ stands for the class of x with the represent ρ. A regular relation ρ on S is called complete if $[a]_{\rho} \cap [b]_{\rho} = [a\gamma b]_{\rho}$ for all $a, b \in S$ and $\gamma \in \Gamma$. In addition, ρ on S is called congruence if, for every $(a, b) \in S$ and $\gamma \in \Gamma$, we have $c \in [a]_{\rho} \cap [b]_{\rho} \Rightarrow [c]_{\rho} \subseteq [a\gamma b]_{\rho}$.

Let A be a non-empty subset of a Γ-semihypergroup S and ρ be a regular relation on S. Then, the sets

$$ \text{Apr}_{\rho}(A) = \left\{ x \in S : [x]_{\rho} \subseteq A \right\} \quad \text{and} \quad \text{Apr}_{\rho}^{-1}(A) = \left\{ x \in S : [x]_{\rho} \cap A \neq \emptyset \right\} $$

are called ρ-lower and ρ-upper approximations of A, respectively. For a non-empty subset A of S, $\text{Apr}_{\rho}(A) = (\text{Apr}_{\rho}^{-1}(A), \text{Apr}_{\rho}^{-1}(A))$ is called a rough set with respect to ρ if $\text{Apr}_{\rho}(A) \neq \emptyset$.

Theorem 4.1. \cite{3} Let ρ be a regular relation on a Γ-semihypergroup S and let A and B be non-empty subsets of S. Then,

1. $\text{Apr}_{\rho}(A) \Gamma \text{Apr}_{\rho}(B) \subseteq \text{Apr}_{\rho}(A \Gamma B)$;

2. If ρ is complete, then $\text{Apr}_{\rho}(A) \Gamma \text{Apr}_{\rho}(B) \subseteq \text{Apr}_{\rho}(A \Gamma B)$.

Theorem 4.2. \cite{3} Let ρ be a regular relation on a Γ-semihypergroup S. Then,

1. Every sub Γ-semihypergroup of S is a ρ-upper rough sub Γ-semihypergroup of S.

2. Every right (left) Γ-hyperideal of S is a ρ-upper rough right (left) Γ-hyperideal of S.

Theorem 4.3. [3] Let $\emptyset \neq A \subseteq S$ and let ρ be a complete regular relation on S such that the ρ-lower approximation of A is non-empty. Then,

(1) If A is a sub Γ-semihypergroup of S, then A is a ρ-lower rough sub Γ-semihypergroup of S.

(2) If A is a right (left) Γ-hyperideal of S, then A is a ρ-lower rough right (left) Γ-hyperideal of S.

A subset A of a Γ-semihypergroup S is called a ρ-upper [\rho-lower] rough bi-Γ-hyperideal of S if $\overline{\text{Apr}}_{\rho}(A)[\underline{\text{Apr}}_{\rho}(A)]$ is a bi-Γ-hyperideal of S.

Theorem 4.4. [3] Let ρ be a regular relation on S and A be a bi-Γ-hyperideal of S. Then,

(1) A is a ρ-upper rough bi-Γ-hyperideal of S.

(2) If ρ is complete such that the ρ-lower approximation of A is non-empty, then A is a ρ-lower rough bi-Γ-hyperideal of S.

Lemma 4.1. Let ρ be a regular relation on a Γ-semihypergroup S. Then, for a non-empty subset A of S

(1) $(\overline{\text{Apr}}_{\rho}(A))^n \subseteq \overline{\text{Apr}}_{\rho}(A^n)$ for all $n \in \mathbb{N}$.

(2) If ρ is complete, then $(\overline{\text{Apr}}_{\rho}(A))^n \subseteq \overline{\text{Apr}}_{\rho}(A^n)$ for all $n \in \mathbb{N}$.

Proof. (1) Let A be a non-empty subset of S, then for $n = 2$, and by Theorem 4.1(1), we get

$$(\overline{\text{Apr}}_{\rho}(A))^2 = \overline{\text{Apr}}_{\rho}(A)\overline{\text{Apr}}_{\rho}(A) \subseteq \overline{\text{Apr}}_{\rho}(A\Gamma A) = \overline{\text{Apr}}_{\rho}(A^2).$$

Now for $n = 3$, we get

$$(\overline{\text{Apr}}_{\rho}(A))^3 = \overline{\text{Apr}}_{\rho}(A)(\overline{\text{Apr}}_{\rho}(A))^2 \subseteq \overline{\text{Apr}}_{\rho}(A)\overline{\text{Apr}}_{\rho}(A^2) \subseteq \overline{\text{Apr}}_{\rho}(A\Gamma A^2) = \overline{\text{Apr}}_{\rho}(A^3).$$

Suppose that the result is true for $n = k - 1$, such that $(\overline{\text{Apr}}_{\rho}(A))^{k-1} \subseteq \overline{\text{Apr}}_{\rho}(A^{k-1})$, then for $n = k$, we get

$$(\overline{\text{Apr}}_{\rho}(A))^k = \overline{\text{Apr}}_{\rho}(A)(\overline{\text{Apr}}_{\rho}(A))^{k-1} \subseteq \overline{\text{Apr}}_{\rho}(A)\overline{\text{Apr}}_{\rho}(A^{k-1}) \subseteq \overline{\text{Apr}}_{\rho}(A\Gamma A^{k-1}) = \overline{\text{Apr}}_{\rho}(A^k).$$

Hence, this shows that $(\overline{\text{Apr}}_{\rho}(A))^n \subseteq \overline{\text{Apr}}_{\rho}(A^n)$ is true for all $n \in \mathbb{N}$. By using Theorem 4.1(2), the proof of (2) can be seen in a similar way. This completes the proof. \qed

5. Rough (m, n) Bi-Γ-hyperideals in Γ-semihypergroups

Let ρ be a regular relation on a Γ-semihypergroup S. A subset A of S is called a ρ-upper rough $(m, 0)$ Γ-hyperideal $((0, n)$ Γ-hyperideal) of S if $\overline{\text{Apr}}_{\rho}(A)$ is an $(m, 0)$ Γ-hyperideal $((0, n)$ Γ-hyperideal) of S. Similarly, a subset A of a Γ-semihypergroup S is called a ρ-lower rough $(m, 0)$ Γ-hyperideal $((0, n)$ Γ-hyperideal) of S if $\underline{\text{Apr}}_{\rho}(A)$ is an $(m, 0)$ Γ-hyperideal $((0, n)$ Γ-hyperideal) of S.

Theorem 5.1. Let ρ be a regular relation on a Γ-semihypergroup S and A be an $(m, 0)$ Γ-hyperideal $((0, n)$ Γ-hyperideal) of S. Then,

(1) $\overline{\text{Apr}}_{\rho}(A)$ is an $(m, 0)$ Γ-hyperideal $((0, n)$ Γ-hyperideal) of S.

\[\text{Proof:} \]
(2) If \(\rho \) is complete, then \(\overline{\text{Apr}_\rho(A)} \) is, if it is non-empty, an \((m, 0)\) \(\Gamma \)-hyperideal of \(S \).

Proof. (1) Let \(A \) be an \((m, 0)\) \(\Gamma \)-hyperideal of \(S \), that is, \(A^m \Gamma S \subseteq A \). Note that \(\overline{\text{Apr}_\rho(S)} = S \). Then, by Theorem 4.1(1) and Lemma 4.1(1), we have

\[
(\overline{\text{Apr}_\rho(A)})^{m} \Gamma S = (\overline{\text{Apr}_\rho(A)})^{m} \Gamma \overline{\text{Apr}_\rho(S)} \subseteq \overline{\text{Apr}_\rho(A^m)} \Gamma \overline{\text{Apr}_\rho(S)} \subseteq \overline{\text{Apr}_\rho(A)}.
\]

This shows that \(\overline{\text{Apr}_\rho(A)} \) is an \((m, 0)\) \(\Gamma \)-hyperideal of \(S \), that is, \(A \) is a \(\rho \)-upper rough \((m, 0)\) \(\Gamma \)-hyperideal of \(S \). Similarly, we can show that the \(\rho \)-upper approximation of a \((0, n)\) \(\Gamma \)-hyperideal is a \((0, n)\) \(\Gamma \)-hyperideal of \(S \).

(2) Let \(A \) be an \((m, 0)\) \(\Gamma \)-hyperideal of \(S \), that is, \(A^m \Gamma S \subseteq A \). Note that \(\overline{\text{Apr}_\rho(S)} = S \). Then, by Theorem 4.1(2) and Lemma 4.1(2), we have

\[
(\text{Apr}_\rho(A))^{m} \Gamma S = (\text{Apr}_\rho(A))^{m} \Gamma \text{Apr}_\rho(S) \subseteq \text{Apr}_\rho(A^m) \Gamma \text{Apr}_\rho(S) \subseteq \text{Apr}_\rho(A).
\]

This shows that \(\text{Apr}_\rho(A) \) is an \((m, 0)\) \(\Gamma \)-hyperideal of \(S \), that is, \(A \) is a \(\rho \)-lower rough \((m, 0)\) \(\Gamma \)-hyperideal of \(S \). Similarly, we can show that the \(\rho \)-lower approximation of a \((0, n)\) \(\Gamma \)-hyperideal is a \((0, n)\) \(\Gamma \)-hyperideal of \(S \). This completes the proof. \(\square \)

A subset \(A \) of a \(\Gamma \)-semihypergroup \(S \) is called a \(\rho \)-upper [\(\rho \)-lower] rough \((m, n)\) bi-\(\Gamma \)-hyperideal of \(S \) if \(\overline{\text{Apr}_\rho(A)} \) [\(\text{Apr}_\rho(A) \)] is an \((m, n)\) bi-\(\Gamma \)-hyperideal of \(S \).

Theorem 5.2. Let \(\rho \) be a regular relation on a \(\Gamma \)-semihypergroup \(S \). If \(A \) is an \((m, n)\) bi-\(\Gamma \)-hyperideal of \(S \), then it is a \(\rho \)-upper rough \((m, n)\) bi-\(\Gamma \)-hyperideal of \(S \).

Proof. Let \(A \) be an \((m, n)\) bi-\(\Gamma \)-hyperideal of \(S \). Then, by Theorem 4.1(1) and Lemma 4.1(1), we have

\[
(\text{Apr}_\rho(A))^m \Gamma S \Gamma (\text{Apr}_\rho(A))^n = (\text{Apr}_\rho(A))^m \Gamma \text{Apr}_\rho(S) \Gamma (\text{Apr}_\rho(A))^n \subseteq \text{Apr}_\rho(A^m) \Gamma \text{Apr}_\rho(A^n) \subseteq \text{Apr}_\rho(A^m \Gamma S \Gamma A^n) \subseteq \text{Apr}_\rho(A).
\]

From this and Theorem 4.2(1), we obtain that \(\overline{\text{Apr}_\rho(A)} \) is an \((m, n)\) bi-\(\Gamma \)-hyperideal of \(S \), that is, \(A \) is a \(\rho \)-upper rough \((m, n)\) bi-\(\Gamma \)-hyperideal of \(S \). This completes the proof. \(\square \)

Theorem 5.3. Let \(\rho \) be a complete regular relation on a \(\Gamma \)-semihypergroup \(S \). If \(A \) is an \((m, n)\) bi-\(\Gamma \)-hyperideal of \(S \), then \(\overline{\text{Apr}_\rho(A)} \) is, if it is non-empty, an \((m, n)\) bi-\(\Gamma \)-hyperideal of \(S \).
Proof. Let \(A \) be an \((m, n)\) bi-\(\Gamma\)-hyperideal of \(S \). Then, by Theorem 4.1(2) and Lemma 4.1(2), we have

\[
(A_{\text{pr}}(A))^m \Gamma S \Gamma (A_{\text{pr}}(A))^n = \frac{(A_{\text{pr}}(A))^m \Gamma A_{\text{pr}}(S) \Gamma (A_{\text{pr}}(A))^n}{\frac{A_{\text{pr}}(A)^m \Gamma A_{\text{pr}}(S) \Gamma A_{\text{pr}}(A)^n}{A_{\text{pr}}(A)^m \Gamma S A^n}} \subseteq \frac{A_{\text{pr}}(A)^m \Gamma A_{\text{pr}}(S) \Gamma A_{\text{pr}}(A)^n}{A_{\text{pr}}(A)^m \Gamma S A^n} \subseteq A_{\text{pr}}(A).
\]

From this and Theorem 4.3(1), we obtain that \(A_{\text{pr}}(A) \) is, if it is non-empty, an \((m, n)\) bi-\(\Gamma\)-hyperideal of \(S \): This completes the proof. \(\square \)

The following example shows that the converse of Theorem 5.2 and Theorem 5.3 does not hold.

Example 5.1. Let \(S = \{x, y, z\} \) and \(\Gamma = \{\beta, \gamma\} \) be the sets of binary hyperoperations defined below:

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(x)</td>
<td>({x, y})</td>
<td>(z)</td>
</tr>
<tr>
<td>(y)</td>
<td>({x, y})</td>
<td>(x, y)</td>
<td>(z)</td>
</tr>
<tr>
<td>(z)</td>
<td>(z)</td>
<td>(z)</td>
<td>(z)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>({x, y})</td>
<td>(x, y)</td>
<td>(z)</td>
</tr>
<tr>
<td>(y)</td>
<td>({x, y})</td>
<td>(y)</td>
<td>(z)</td>
</tr>
<tr>
<td>(z)</td>
<td>(z)</td>
<td>(z)</td>
<td>(z)</td>
</tr>
</tbody>
</table>

Clearly \(S \) is a \(\Gamma\)-semihypergroup. Let \(\rho \) be a complete regular relation on \(S \) such that the \(\rho \)-regular classes are the subsets \(\{x, y\}, \{z\} \). Now for \(A = \{x, z\} \subseteq S \), \(A_{\text{pr}}(A) = \{x, y, z\} \) and \(A_{\text{pr}}(A) = \{z\} \). It is clear that \(A_{\text{pr}}(A) \) and \(A_{\text{pr}}(A) \) are \((m, n)\) bi-\(\Gamma\)-hyperideals of \(S \), but \(A \) is not an \((m, n)\) bi-\(\Gamma\)-hyperideal of \(S \). Because \(A^m \Gamma S A^n = S \nsubseteq A \).

6. Rough \((m, n)\) Bi-\(\Gamma\)-hyperideals in the Quotient \(\Gamma\)-semihypergroups

Let \(\rho \) be a regular relation on a \(\Gamma\)-semihypergroup \(S \). We put \(\widehat{\Gamma} = \{ \gamma : \gamma \in \Gamma \} \). For every \([a]_\rho, [b]_\rho \in S/\rho\), we define \([a]_\rho \widehat{\gamma} [b]_\rho = \{[z]_\rho : z \in a \gamma b\}\).

Theorem 6.1. ([3, Theorem 4.1]) If \(S \) is a \(\Gamma\)-semihypergroup, then \(S/\rho \) is a \(\widehat{\Gamma}\)-semihypergroup.

Definition 6.1. Let \(\rho \) be a regular relation on a \(\Gamma\)-semihypergroup \(S \). The \(\rho\)-lower approximation and \(\rho\)-upper approximation of a non-empty subset \(A \) of \(S \) can be presented in an equivalent form as shown below:

\[
\text{Apr}_\rho(A) = \left\{ [x]_\rho \in S/\rho : [x]_\rho \subseteq A \right\} \quad \text{and} \quad \overline{\text{Apr}}_\rho(A) = \left\{ [x]_\rho \in S/\rho : [x]_\rho \cap A \neq \emptyset \right\},
\]

respectively.

Theorem 6.2. ([3, Theorems 4.3, 4.4]) Let \(\rho \) be a regular relation on a \(\Gamma\)-semihypergroup \(S \). If \(A \) is a sub \(\Gamma\)-semihypergroup of \(S \). Then,

1. \(\text{Apr}_\rho(A) \) is a sub \(\widehat{\Gamma}\)-semihypergroup of \(S/\rho \).
2. \(\overline{\text{Apr}}_\rho(A) \) is, if it is non-empty, a sub \(\Gamma\)-semihypergroup of \(S/\rho \).
Theorem 6.3. Let \(\rho \) be a regular relation on a \(\Gamma \)-semihypergroup \(S \). If \(A \) is an \((m, 0) \) \(\Gamma \)-hyperideal of \((0, n) \) \(\Gamma \)-hyperideal of \(S/\rho \). Then,

1. \(\overline{\text{Apr}_\rho(A)} \) is an \((m, 0) \) \(\hat{\Gamma} \)-hyperideal of \((0, n) \) \(\hat{\Gamma} \)-hyperideal of \(S/\rho \).
2. \(\text{Apr}_\rho(A) \) is, if it is non-empty, an \((m, 0) \) \(\hat{\Gamma} \)-hyperideal of \((0, n) \) \(\hat{\Gamma} \)-hyperideal of \(S/\rho \).

Proof. (1) Assume that \(A \) is a \((0, n) \) \(\Gamma \)-hyperideal of \(S \). Let \([x]_\rho \) and \([s]_\rho \) be any elements of \(\overline{\text{Apr}_\rho(A)} \) and \(S/\rho \), respectively. Then, \([x]_\rho \cap A \neq \emptyset \). Hence, \(x \in \overline{\text{Apr}_\rho(A)} \). Since \(A \) is a \((0, n) \) \(\Gamma \)-hyperideal of \(S \), by Theorem 10(1), \(\overline{\text{Apr}_\rho(A)} \) is a \((0, n) \) \(\Gamma \)-hyperideal of \(S \). So, for \(\gamma \in \Gamma \), we have \(s\gamma x^n \subseteq \overline{\text{Apr}_\rho(A)} \). Now, for every \(t \in s\gamma x^n \), we have \([t]_\rho \cap A \neq \emptyset \). On the other hand, from \(t \in s\gamma x^n \), we obtain \([t]_\rho \in [s]_\rho \gamma [x]_\rho^n \). Therefore, \([s]_\rho \gamma [x]_\rho^n \subseteq \overline{\text{Apr}_\rho(A)} \). This means that \(\overline{\text{Apr}_\rho(A)} \) is a \((0, n) \) \(\hat{\Gamma} \)-hyperideal of \(S/\rho \).

The other cases can be seen in a similar way. This completes the proof.

Theorem 6.4. Let \(\rho \) be a regular relation on a \(\Gamma \)-semihypergroup \(S \). If \(A \) is an \((m, n) \) bi-\(\Gamma \)-hyperideal of \(S \). Then,

1. \(\overline{\text{Apr}_\rho(A)} \) is an \((m, n) \) bi-\(\hat{\Gamma} \)-hyperideal of \(S/\rho \).
2. \(\text{Apr}_\rho(A) \) is, if it is non-empty, an \((m, n) \) bi-\(\hat{\Gamma} \)-hyperideal of \(S/\rho \).

Proof. (1) Let \([x]_\rho \) and \([y]_\rho \) be any elements of \(\overline{\text{Apr}_\rho(A)} \) and \([s]_\rho \) be any element of \(S/\rho \). Then,

\[
[x]_\rho \cap A \neq \emptyset \quad \text{and} \quad [y]_\rho \cap A \neq \emptyset.
\]

Hence, \(x \in \overline{\text{Apr}_\rho(A)} \) and \(y \in \overline{\text{Apr}_\rho(A)} \). By Theorem 11, \(\overline{\text{Apr}_\rho(A)} \) is an \((m, n) \) bi-\(\hat{\Gamma} \)-hyperideal of \(S \). So, for every \(\alpha, \beta \in \Gamma \), we have \(x^m \alpha s\beta y^n \subseteq \overline{\text{Apr}_\rho(A)} \). Now, for every \(t \in x^m \alpha s\beta y^n \), we obtain \([t]_\rho \in [x]_\rho^m \alpha s[\beta [y]_\rho^n] \). On the other hand, since \(t \in \overline{\text{Apr}_\rho(A)} \), we have \([t]_\rho \cap A \neq \emptyset \). Thus,

\[
[x]_\rho^m \alpha s[\beta [y]_\rho^n] \subseteq \overline{\text{Apr}_\rho(A)}.
\]

Therefore, \(\overline{\text{Apr}_\rho(A)} \) is an \((m, n) \) bi-\(\hat{\Gamma} \)-hyperideal of \(S/\rho \).

(2) Let \([x]_\rho \) and \([y]_\rho \) be any elements of \(\text{Apr}_\rho(A) \) and \([s]_\rho \) be any element of \(S/\rho \). Then,

\[
[x]_\rho \subseteq A \quad \text{and} \quad [y]_\rho \subseteq A.
\]

Hence, \(x \in \text{Apr}_\rho(A) \) and \(y \in \text{Apr}_\rho(A) \). By Theorem 12, \(\text{Apr}_\rho(A) \) is an \((m, n) \) bi-\(\hat{\Gamma} \)-hyperideal of \(S \). So, for every \(\alpha, \beta \in \Gamma \), we have \(x^m \alpha s\beta y^n \subseteq \text{Apr}_\rho(A) \). Then,
for every $t \in x^m a \alpha y^n$, we obtain $[t]_\rho \in [x]_\rho^m a \alpha [y]_\rho^n$. On the other hand, since $t \in \text{Apr}_\rho (A)$, we have $[t]_\rho \subseteq A$. So,

$$[x]_\rho^m a \alpha [y]_\rho^n \subseteq \text{Apr}_\rho (A).$$

Therefore, $\text{Apr}_\rho (A)$ is, if it is non-empty, an (m, n) bi-Γ-hyperideal of $S/_\rho$. This completes the proof.

7. Conclusion

The relations between rough sets and algebraic systems have been already considered by many mathematicians. In this paper, the properties of (m, n) bi-Γ-hyperideal in Γ-semihypergroup are investigated and hence the concept of rough set theory is applied to (m, n) bi-Γ-hyperideals.

Acknowledgements. The authors are highly grateful to referees for their valuable comments and suggestions which were helpful in improving this paper.

REFERENCES

[18] N. Yaqoob, Applications of rough sets to Γ-hyperideals in left almost Γ-semihypergroups, Accepted in Neural Comp. Applic., doi: 10.1007/s00521-012-0809-5.