BRINGING TOGETHER DUAL-GENERALIZED COMPLEX NUMBERS AND DUAL QUATERNIONS VIA FIBONACCI AND LUCAS NUMBERS

Nurten GÜRSES ${ }^{1}$

Abstract

In this study, the main target is to construct a bridge between dual quaternions and dual-generalized complex numbers via Fibonacci and Lucas numbers for $\mathfrak{p} \in \mathbb{R}$. For this purpose, the algebraic structures and the well-known recurrence relations are investigated. Different matrix representations are improved, and examples are presented.

Keywords: Dual quaternion, Dual-generalized complex number, Fibonacci number, Lucas number.

MSC2000: 11B39, 98B76, 11R52, 15B33.

1. Introduction

Dual quaternions, as an extension of real quaternions ([17]), are expressed as $Q=$ $a+b e_{1}+c e_{2}+d e_{3}(a, b, c, d \in \mathbb{R})$ with quaternionic units $\left\{e_{1}, e_{2}, e_{3}\right\}$ which satisfy the conditions ([25]):

$$
e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=0, e_{1} e_{2}=-e_{2} e_{1}=e_{2} e_{3}=-e_{3} e_{2}=e_{3} e_{1}=-e_{1} e_{3}=0
$$

In addition, as an extension of Hamilton's idea ([20]), nth Fibonacci and Lucas quaternions are introduced in [15, 19, 21, 22]. In [33], nth dual Fibonacci and Lucas quaternions are studied, while, complex and dual numbers with the Fibonacci quaternion coefficients are defined in [16, 27].

In other respects, generalized complex ($\mathcal{G C}$) numbers have the form [5, 18]:

$$
\mathbb{C}_{\mathfrak{p}}=\left\{z_{1}=x_{1}+x_{2} J \mid x_{1}, x_{2} \in \mathbb{R}, J^{2}=\mathfrak{p},-\infty<\mathfrak{p}<\infty\right\}
$$

which is referred to as a \mathfrak{p}-complex plane. $\mathbb{C}_{\mathfrak{p}}$ (vector space over \mathbb{R}) is an elliptic, parabolic and hyperbolic complex number system for $\mathfrak{p}<0, \mathfrak{p}=0$, and $\mathfrak{p}>0$, respectively. The set of complex numbers [32], hyperbolic numbers [$7,11,30$] and dual numbers [28,31] are obtained for specific values
of $\mathfrak{p}=-1, \mathfrak{p}=0$, and $\mathfrak{p}=1$, respectively. For constructing new systems, many pieces of research have been conducted using these numbers as coefficients, $[1-3,6,8-10,12,23,24,26$, 29]. So, the set of dual-generalized complex numbers is defined in [14] as:

$$
\mathbb{D} \mathbb{C}_{\mathfrak{p}}=\left\{a=z_{1}+z_{2} \varepsilon \mid z_{1}=x_{1}+x_{2} J, z_{2}=x_{3}+x_{4} J \in \mathbb{C}_{\mathfrak{p}}, \varepsilon^{2}=0, \varepsilon \neq 0\right\}
$$

[^0]where J denotes the generalized complex unit $\left(J^{2}=\mathfrak{p}\right), \varepsilon$ represents the pure dual unit, and $J \varepsilon=\varepsilon J$ represents the generalized complex-dual unit. $\mathbb{D C}_{\mathfrak{p}}{ }^{1}$ is analogous to the dual-complex numbers for $\mathfrak{p}=-1[6,26]$, the dual-hyperbolic numbers for $\mathfrak{p}=1$ [1], and the hyper-dual numbers for $\mathfrak{p}=0[9,10]$. In [13], the $n t h$ dual-generalized complex Fibonacci/Lucas numbers are defined as:
\[

$$
\begin{align*}
& \widetilde{\mathcal{F}}_{n}=F_{n}+F_{n+1} J+F_{n+2} \varepsilon+F_{n+3} J \varepsilon, \tag{1}\\
& \widetilde{\mathcal{L}}_{n}=L_{n}+L_{n+1} J+L_{n+2} \varepsilon+L_{n+3} J \varepsilon \tag{2}
\end{align*}
$$
\]

and the recurrence relationships between of them are introduced.
This paper concerns dual quaternions with dual-generalized complex (DGE) Fibonacci and Lucas numbers for $\mathfrak{p} \in \mathbb{R}$. Algebraic structures in the form of, Binet's formulas, and D'Ocagne's, Catalan's and Cassini's identities are taken into account. Moreover, different matrix representations are examined and examples are given to enhance intelligibility. The outstanding part of this paper is that for
$\star \mathfrak{p}=-1$, dual-complex $\star \mathfrak{p}=0$, hyper-dual $\star \mathfrak{p}=1$, dual-hyperbolic Fibonacci and Lucas numbers-based dual quaternions can be obtained.

2. Dual-Generalized Complex Fibonacci and Lucas Numbers- Based Dual Quaternions

Definition 2.1. The DGE numbers with dual Fibonacci and Lucas quaternion coefficients are defined, respectively, as follows:

$$
\begin{aligned}
\widetilde{\mathbb{Q}}_{n} & =Q_{n}+Q_{n+1} J+Q_{n+2} \varepsilon+Q_{n+3} J \varepsilon \\
\widetilde{\mathcal{K}}_{n} & =K_{n}+K_{n+1} J+K_{n+2} \varepsilon+K_{n+3} J \varepsilon,
\end{aligned}
$$

where $Q_{n}=F_{n}+F_{n+1} e_{1}+F_{n+2} e_{2}+F_{n+3} e_{3}$ is the nth dual Fibonacci quaternion, $K_{n}=L_{n}+$ $L_{n+1} e_{1}+L_{n+2} e_{2}+L_{n+3} e_{3}$ is the nth dual Lucas quaternion, $F_{n}=F_{n+1}-F_{n-1}$ is the nth Fibonacci number, and $L_{n}=L_{n+1}-L_{n-1}$ is the nth Lucas number ($n \geq 1, F_{0}=0, F_{1}=1, L_{0}=2, L_{1}=1$). The base elements $\{1, J, \varepsilon, J \varepsilon\}$ and the quaternionic units $\left\{e_{1}, e_{2}, e_{3}\right\}$ satisfy the conditions given in Table 1.

Table 1. Multiplication scheme

Δ	1	J	ε	$J \varepsilon$	e_{1}	e_{2}	e_{3}
1	1	J	ε	$J \varepsilon$	e_{1}	e_{2}	e_{3}
J	J	\mathfrak{p}	$J \varepsilon$	$\mathfrak{p} \varepsilon$	$J e_{1}$	$J e_{2}$	$J e_{3}$
ε	ε	$J \varepsilon$	0	0	εe_{1}	εe_{2}	εe_{3}
$J \varepsilon$	$J \varepsilon$	$\mathfrak{p} \varepsilon$	0	0	$J \varepsilon e_{1}$	$J \varepsilon e_{2}$	$J \varepsilon e_{3}$
e_{1}	e_{1}	$J e_{1}$	εe_{1}	$\bar{J} \varepsilon e_{1}$	0	0	0
e_{2}	e_{2}	$J e_{2}$	εe_{2}	$J \varepsilon e_{2}$	0	0	0
e_{3}	e_{3}	$J e_{3}$	εe_{3}	$J \varepsilon e_{3}$	0	0	0

[^1]Table 2. Structures for $\widetilde{\mathbb{Q}}_{n}$ as a $\mathcal{D G E}$ number

Addition	$\begin{aligned} \widetilde{\Omega}_{n} \pm \widetilde{\Omega}_{m}= & \left(Q_{n} \pm Q_{m}\right)+\left(Q_{n+1} \pm Q_{m+1}\right) J \\ & +\left(Q_{n+2} \pm Q_{m+2}\right) \varepsilon+\left(Q_{n+3} \pm Q_{m+3}\right) J \varepsilon \end{aligned}$
Multiplication	$\begin{aligned} \widetilde{\mathbb{Q}}_{n} \widetilde{\mathscr{Q}}_{m}= & \left(Q_{n} Q_{m}+\mathfrak{p} Q_{n+1} Q_{m+1}\right)+\left(Q_{n} Q_{m+1}+Q_{n+1} Q_{m}\right) J \\ & +\left(Q_{n} Q_{m+2}+\mathfrak{p} Q_{n+1} Q_{m+3}+Q_{n+2} Q_{m}+\mathfrak{p} Q_{n+3} Q_{m+1}\right) \varepsilon \\ & +\left(Q_{n} Q_{m+3}+Q_{n+1} Q_{m+2}+Q_{n+2} Q_{m+1}+Q_{n+3} Q_{m}\right) J \varepsilon \end{aligned}$
Equality	$\widetilde{\Omega}_{n}=\widetilde{\Omega}_{m} \Leftrightarrow Q_{n}=Q_{m} \wedge Q_{n+1}=Q_{m+1} \wedge Q_{n+2}=Q_{m+2} \wedge Q_{n+3}=Q_{m+3}$
Conjugates	$\mathcal{G C}$ $\widetilde{\mathscr{Q}}_{n}^{\dagger 1}=Q_{n}-Q_{n+1} J+Q_{n+2} \varepsilon-Q_{n+3} J \varepsilon$ Dual $\widetilde{Q}_{n}^{\dagger_{2}}=Q_{n}+Q_{n+1} J-Q_{n+2} \varepsilon-Q_{n+3} J \varepsilon$ Coupled $\widetilde{\Omega}_{n}^{\dagger_{3}}=Q_{n}-Q_{n+1} J-Q_{n+2} \varepsilon+Q_{n+3} J \varepsilon$ DGE $\widetilde{\Omega}_{n}^{\dagger_{4}}=\left(Q_{n}-Q_{n+1} J\right)\left(1-\frac{Q_{n+2}+Q_{n+3} J}{Q_{n+} Q_{n+1}^{J}} \varepsilon\right)$ Anti-dual $\widetilde{\mathrm{Q}}_{n}^{\dagger_{5}}=Q_{n+2}+Q_{n+3} J-Q_{n} \varepsilon-Q_{n+1} J \varepsilon$
Modules	

Remark 2.1. Every $\widetilde{\mathbb{Q}}_{n}$ and $\widetilde{\mathcal{K}}_{n}$ can also be rewritten as, respectively:

$$
\begin{aligned}
\widetilde{\mathfrak{Q}}_{n} & =\widetilde{\mathcal{F}}_{n}+\widetilde{\mathcal{F}}_{n+1} e_{1}+\widetilde{\mathcal{F}}_{n+2} e_{2}+\widetilde{\mathcal{F}}_{n+3} e_{3}, \\
\widetilde{\mathcal{K}}_{n} & =\widetilde{\mathcal{L}}_{n}+\widetilde{\mathcal{L}}_{n+1} e_{1}+\widetilde{\mathcal{L}}_{n+2} e_{2}+\widetilde{\mathcal{L}}_{n+3} e_{3},
\end{aligned}
$$

where $\widetilde{\mathcal{F}}_{n}$ is nth $\mathcal{D G E}$ Fibonacci number and $\widetilde{\mathcal{L}}_{n}$ is nth DGE Lucas number given in Eqs. (1) and (2), respectively ([13]). It is obvious that, there is no difference between $\mathcal{D G C}$ numbers with dual Fibonacci/Lucas quaternions (Table 2) and dual quaternion with $\mathcal{D G C}$ Fibonacci/Lucas numbers (Table 3). The analog of Table 2 and Table 3 can given similarly for Lucas numbers.

Theorem 2.1. Let $\widetilde{Q}_{n} \in \mathbb{Q D} \mathbb{C}_{\mathfrak{p}}$ and $\widetilde{\mathcal{K}}_{n} \in \mathbb{K D D} \mathbb{C}_{\mathfrak{p}}$. The following additional recurrence relationships then hold for $n, r \geq 0$:

1. $\widetilde{Q}_{n}+\widetilde{Q}_{n+1}=\widetilde{Q}_{n+2}$,
2. $\widetilde{\mathcal{Q}}_{n+r}+\widetilde{\mathcal{Q}}_{n-r}=\left\{\begin{array}{cl}L_{r} \widetilde{\widetilde{Q}}_{n}, & r=2 k \\ F_{r} \widetilde{\mathcal{K}}_{n}, & r=2 k+1,\end{array}\right.$
3. $\widetilde{\Omega}_{n+r}-\widetilde{Q}_{n-r}= \begin{cases}F_{r} \widetilde{\mathcal{K}}_{n}, & r=2 k \\ L_{r} \widetilde{Q}_{n}, & r=2 k+1,\end{cases}$
4. $\widetilde{\mathcal{Q}}_{n}-\widetilde{\mathscr{Q}}_{n+1} e_{1}-\widetilde{\mathcal{Q}}_{n+2} e_{2}-\widetilde{\mathcal{Q}}_{n+3} e_{3}=\widetilde{\mathcal{F}}_{n}$,
5. $\widetilde{\mathcal{K}}_{n}+\widetilde{\mathcal{K}}_{n+1}=\widetilde{\mathcal{K}}_{n+2}$,

[^2]\[

$$
\begin{aligned}
& \mathbb{F}=\left\{F_{n} \mid F_{n} \text { is nth Fibonacci number }\right\} \\
& \mathbb{L}=\left\{L_{n} \mid L_{n} \text { is } n \text {th Lucas number }\right\} \\
& \mathbb{C}_{\mathfrak{p}} \mathbb{F}=\left\{F_{n}+F_{n+1} J \mid F_{n} \in \mathbb{F}\right\} \\
& \mathbb{C}_{\mathfrak{p}} \mathbb{L}=\left\{L_{n}+L_{n+1} J \mid L_{n} \in \mathbb{L}\right\} \\
& \mathbb{D} \mathbb{C}_{\mathfrak{p}} \mathbb{F}=\left\{\widetilde{\mathcal{F}}_{n}=F_{n}+F_{n+1} J+F_{n+2} \varepsilon+F_{n+3} J \varepsilon \mid F_{n} \in \mathbb{F}\right\} \\
& \mathbb{D C} \mathbb{C}_{\mathfrak{p}} \mathbb{L}=\left\{\tilde{\mathcal{L}}_{n}=L_{n}+L_{n+1} J+L_{n+2} \varepsilon+L_{n+3} J \varepsilon \mid L_{n} \in \mathbb{L}\right\} \\
& \mathrm{Q}=\left\{Q_{n}=F_{n}+F_{n+1} e_{1}+F_{n+2} e_{2}+F_{n+3} e_{3} \mid F_{n} \in \mathbb{F}\right\} \\
& \mathbb{K}=\left\{K_{n}=L_{n}+L_{n+1} e_{1}+L_{n+2} e_{2}+L_{n+3} e_{3} \mid L_{n} \in \mathbb{L}\right\} \\
& \mathbb{C}_{p} \mathbb{Q}=\left\{Q_{n}+Q_{n+1} J \mid Q_{n} \in \mathbb{Q}\right\} \\
& \mathbb{C}_{\mathfrak{p}} \mathbb{K}=\left\{K_{n}+K_{n+1} J \mid K_{n} \in \mathbb{K}\right\} \\
& \mathbb{D C}_{\mathfrak{p}} \mathbb{Q}=\left\{\tilde{\Omega}_{n}=Q_{n}+Q_{n+1} J+Q_{n+2} \varepsilon+Q_{n+3} J \varepsilon \mid Q_{n} \in \mathbb{Q}\right\} \\
& \mathbb{D C}_{\mathfrak{p}} \mathbb{K}=\left\{\widetilde{\mathcal{K}}_{n}=K_{n}+K_{n+1} J+K_{n+2} \varepsilon+K_{n+3} J \varepsilon \mid K_{n} \in \mathbb{K}\right\} \\
& \mathbb{Q D C} \mathbb{C}_{\mathfrak{p}}=\left\{\widetilde{\mathcal{Q}}_{n}=\widetilde{\mathcal{F}}_{n}+\widetilde{\mathcal{F}}_{n+1} e_{1}+\widetilde{\mathcal{F}}_{n+2 e_{2}}+\widetilde{\mathcal{F}}_{n+3} e_{3} \mid \widetilde{\mathscr{F}}_{n} \in \mathbb{D} \mathbb{C}_{p} \mathbb{F}\right\} \\
& \operatorname{KDCP}_{\mathfrak{p}}=\left\{\tilde{\mathcal{K}}_{n}=\widetilde{\mathfrak{L}}_{n}+\widetilde{\mathfrak{L}}_{n+1} e_{1}+\widetilde{\mathfrak{L}}_{n+2} e_{2}+\widetilde{\mathfrak{L}}_{n+3} e_{3} \mid \widetilde{\mathcal{L}}_{n} \in \mathbb{D} \mathbb{C}_{\mathfrak{p}} \mathbb{L}\right\}
\end{aligned}
$$
\]

TABLE 3. Structures for $\widetilde{\mathcal{Q}}_{n}$ as a dual quaternion

Scalar and Vector parts $S_{\widetilde{Q}_{n}}=\widetilde{\mathcal{F}}_{n}, V_{\widetilde{Q}}^{n}$ $=\widetilde{\mathcal{F}}_{n+1} e_{1}+\widetilde{\mathcal{F}}_{n+2} e_{2}+\widetilde{\mathcal{F}}_{n+3} e_{3}$					
Conjugate	$\widetilde{\widetilde{\Omega}}_{n}=\widetilde{\mathcal{F}}_{n}-\widetilde{\mathcal{F}}_{n+1} e_{1}-\widetilde{\mathcal{F}}_{n+2} e_{2}-\widetilde{\mathcal{F}}_{n+3} e_{3}=S_{\widetilde{\Omega}_{n}}-V_{\widetilde{\Omega}}{ }_{n}$				
Addition, Subtraction	$\widetilde{\mathrm{Q}}_{n} \pm \widetilde{\mathrm{Q}}_{m}=\left(S_{\widetilde{\mathrm{Q}}_{n}} \pm S_{\widetilde{\mathrm{Q}}_{m}}\right)+\left(V_{\widetilde{\mathrm{Q}}_{n}} \pm V_{\widetilde{\Omega}_{m}}\right)$				
Multiplication					
Equality	$\widetilde{\widetilde{Q}}_{n}=\widetilde{\widetilde{Q}}_{m} \Leftrightarrow S_{\widetilde{\Omega}_{n}}=S_{\widetilde{\Omega}_{m}} \wedge V_{\widetilde{\Omega}_{n}}=V_{\widetilde{\Omega}_{m}}$				
Module	$\left\\|\widetilde{\mathscr{Q}}_{n} \widetilde{\widetilde{Q}}_{n}\right\\|^{2}=\widetilde{\mathcal{F}}_{n}^{2}$				
Inverse	$\widetilde{\mathcal{Q}}_{n}^{-1}=\frac{\widetilde{\widetilde{\Omega}}_{n}}{\left\\|\widetilde{\widetilde{\Omega}}_{n}\right\\|^{2}}$, for $\left\\|\widetilde{\mathscr{Q}}_{n} \widetilde{\widetilde{\Omega}}_{n}\right\\|^{2} \neq 0$				

6. $\widetilde{\mathcal{K}}_{n+r}+\widetilde{\mathcal{K}}_{n-r}=\left\{\begin{aligned} L_{r} \widetilde{\mathcal{K}}_{n}, & r=2 k \\ 5 F_{r} \widetilde{\mathbb{Q}}_{n}, & r=2 k+1,\end{aligned}\right.$
7. $\widetilde{\mathcal{K}}_{n+r}-\widetilde{\mathcal{K}}_{n-r}=\left\{\begin{aligned} 5 F_{r} \widetilde{\mathcal{Q}}_{n}, & r=2 k \\ L_{r} \widetilde{\mathcal{K}}_{n}, & r=2 k+1,\end{aligned}\right.$
8. $\widetilde{\mathcal{K}}_{n}-\widetilde{\mathcal{K}}_{n+1} e_{1}-\widetilde{\mathcal{K}}_{n+2} e_{2}-\widetilde{\mathcal{K}}_{n+3} e_{3}=\widetilde{\mathcal{L}}_{n}$.

Proof. The proof is conducted by the following relationships ([13]):

$$
\begin{aligned}
& \widetilde{\mathcal{F}}_{n}+\widetilde{\mathcal{F}}_{n+1}=\widetilde{\mathcal{F}}_{n+2}, \\
& \widetilde{\mathfrak{L}}_{n}+\widetilde{\mathfrak{L}}_{n+1}=\widetilde{\mathfrak{L}}_{n+2}, \\
& \widetilde{\mathcal{F}}_{n+r}+\widetilde{\mathcal{F}}_{n-r}=\left\{\begin{array}{ll}
L_{r} \widetilde{\mathcal{F}}_{n}, & r=2 k \\
F_{r} \widetilde{\mathcal{L}}_{n}, & r=2 k+1,
\end{array} \quad \tilde{\mathcal{L}}_{n+r}+\widetilde{\mathcal{L}}_{n-r}=\left\{\begin{aligned}
L_{r} \widetilde{\mathcal{L}}_{n}, & r=2 k \\
5 F_{r} \widetilde{\mathcal{F}}_{n}, & r=2 k+1,
\end{aligned}\right.\right. \\
& \widetilde{\mathcal{F}}_{n+r}-\widetilde{\mathcal{F}}_{n-r}=\left\{\begin{array}{ll}
F_{r} \widetilde{\mathcal{L}}_{n}, & r=2 k \\
L_{r} \widetilde{\mathcal{F}}_{n}, & r=2 k+1,
\end{array} \quad \widetilde{\mathcal{L}}_{n+r}-\widetilde{\mathcal{L}}_{n-r}=\left\{\begin{aligned}
5 F_{r} \widetilde{\mathcal{F}}_{n}, & r=2 k \\
L_{r} \widetilde{\mathcal{L}}_{n}, & r=2 k+1 .
\end{aligned}\right.\right.
\end{aligned}
$$

Theorem 2.2. Let $\widetilde{\Omega}_{n} \in \mathbb{Q D} \mathbb{C}_{\mathfrak{p}}, \widetilde{\mathcal{K}}_{n} \in \mathbb{K}^{D} \mathbb{C}_{\mathfrak{p}}$, $\overline{\widetilde{Q}}_{n}$ be a conjugate of $\widetilde{\mathbb{Q}}_{n}, \overline{\widetilde{\mathcal{K}}}_{n}$ be a conjugate of $\widetilde{\mathcal{K}}_{n}, \widetilde{\mathcal{F}}_{n} \in \mathbb{D} \mathbb{C}_{\mathfrak{p}} \mathbb{F}$ and $\widetilde{\mathcal{L}}_{n} \in \mathbb{D} \mathbb{C}_{\mathfrak{p}} \mathbb{L}$. The following additional recurrence relationships then hold for $n \geq 0$:

1. $\widetilde{\mathrm{Q}}_{n}+\overline{\widetilde{Q}}_{n}=2 \widetilde{\mathcal{F}}_{n}$,
2. $\widetilde{\mathbb{Q}}_{n} \overline{\widetilde{Q}}_{n}=\widetilde{\mathcal{F}}_{n}^{2}$,
3. $\widetilde{\Omega}_{n} \overline{\widetilde{Q}}_{n}+\widetilde{\mathcal{Q}}_{n+1} \overline{\widetilde{Q}}_{n+1}=\widetilde{\mathcal{F}}_{2 n+1}+\mathfrak{p} F_{2 n+3}+F_{2 n+2} J+\left(F_{2 n+3}+2 \mathfrak{p} F_{2 n+5}\right) \varepsilon+3 F_{2 n+4} J \varepsilon$,
4. $\widetilde{\mathbb{Q}}_{n}^{2}=2 \widetilde{\mathcal{F}}_{n} \widetilde{\mathscr{Q}}_{n}-\widetilde{\mathcal{F}}_{n}^{2}$,
5. $\widetilde{\mathcal{K}}_{n}+\overline{\mathscr{\mathcal { K }}}_{n}=2 \widetilde{\mathcal{L}}_{n}$,
6. $\widetilde{\mathcal{K}}_{n} \overline{\mathcal{K}}_{n}=\widetilde{\mathcal{L}}_{n}^{2}$,
7. $\widetilde{\mathcal{K}}_{n} \overline{\widetilde{\mathcal{K}}}_{n}+\widetilde{\mathcal{K}}_{n+1} \overline{\widetilde{\mathcal{K}}}_{n+1}=\widetilde{\mathcal{L}}_{2 n+1}+\mathfrak{p} L_{2 n+3}+L_{2 n+2} J+\left(L_{2 n+3}+2 \mathfrak{p} L_{2 n+5}\right) \varepsilon+3 L_{2 n+4} J \varepsilon$,
8. $\widetilde{\mathcal{K}}_{n}^{2}=2 \widetilde{\mathcal{L}}_{n} \widetilde{\mathcal{K}}_{n}-\widetilde{\mathcal{L}}_{n}^{2}$.

Proof. The proof is clear by considering the following relationships ([13]):

$$
\begin{aligned}
& \widetilde{\mathcal{F}}_{n}^{2}+\widetilde{\mathcal{F}}_{n+1}^{2}=\widetilde{\mathcal{F}}_{2 n+1}+\mathfrak{p} F_{2 n+3}+F_{2 n+2} J+\left(F_{2 n+3}+2 \mathfrak{p} F_{2 n+5}\right) \varepsilon+3 F_{2 n+4} J \varepsilon, \\
& \widetilde{\mathcal{L}}_{n}^{2}+\widetilde{\mathcal{L}}_{n+1}^{2}=\widetilde{\mathcal{L}}_{2 n+1}+\mathfrak{p} L_{2 n+3}+L_{2 n+2} J+\left(L_{2 n+3}+2 \mathfrak{p} L_{2 n+5}\right) \varepsilon+3 L_{2 n+4} J \varepsilon,
\end{aligned}
$$

Theorem 2.3. Let $\widetilde{Q}_{n}, \widetilde{Q}_{m} \in \mathbb{Q D} \mathbb{C}_{\mathfrak{p}}$ and $\widetilde{\mathcal{K}}_{n}, \widetilde{\mathcal{K}}_{m} \in \mathbb{K D C} \mathbb{C}_{\mathfrak{p}}$. The following multiplication recurrence relationships then hold for $n, m, r \geq 0$:

$$
\begin{align*}
& \text { 1. } \quad \widetilde{\mathscr{Q}}_{m} \widetilde{\Omega}_{n}-\widetilde{\Omega}_{m+r} \widetilde{\Omega}_{n-r}=(-1)^{n-r} F_{m-n+r} F_{r}[(1-\mathfrak{p})+J+3(1-\mathfrak{p}) \varepsilon+3 J \varepsilon] \tag{3}\\
& {\left[1+e_{1}+3 e_{2}+4 e_{3}\right],} \\
& \text { 2. } \quad \widetilde{\mathcal{Q}}_{n} \widetilde{\mathcal{Q}}_{m}+\widetilde{\mathrm{Q}}_{n+1} \widetilde{\mathrm{Q}}_{m+1}=\widetilde{\mathcal{Q}}_{n+m+1}+\mathfrak{p} Q_{n+m+3}+Q_{n+m+2} J \\
& +\left(Q_{n+m+3}+2 \mathfrak{p} Q_{n+m+5}\right) \varepsilon+3 Q_{n+m+4} J \varepsilon \\
& +V_{\widetilde{\Omega}_{n+m+1}}+\mathfrak{p} V_{Q_{n+m+3}}+V_{Q_{n+m+2}} J \tag{4}\\
& +\left(V_{Q_{n+m+3}}+2 \mathfrak{p} V_{Q_{n+m+5}}\right) \varepsilon+3 V_{Q_{n+m+4}} J \varepsilon, \\
& \text { 3. } \widetilde{\mathrm{Q}}_{n}^{2}+\widetilde{\mathrm{Q}}_{n+1}^{2}=\widetilde{\mathrm{Q}}_{2 n+1}+\mathfrak{p} Q_{2 n+3}+Q_{2 n+2} J+\left(Q_{2 n+3}+2 \mathfrak{p} Q_{2 n+5}\right) \varepsilon \\
& +3 Q_{2 n+4} J \varepsilon+V_{\widetilde{\Omega}_{2 n+1}}+\mathfrak{p} V_{Q_{2 n+3}}+V_{Q_{2 n+2}} J \tag{5}\\
& +\left(V_{Q_{2 n+3}}+2 \mathfrak{p} V_{Q_{2 n+5}}\right) \varepsilon+3 V_{Q_{2 n+4}} J \varepsilon, \\
& \text { 4. } \quad \widetilde{\mathcal{K}}_{m} \widetilde{\mathcal{K}}_{n}-\widetilde{\mathcal{K}}_{m+r} \widetilde{\mathcal{K}}_{n-r}=5(-1)^{n-r+1} F_{m-n+r} F_{r}[(1-\mathfrak{p})+J+3(1-\mathfrak{p}) \varepsilon+3 J \varepsilon] \tag{6}\\
& {\left[1+e_{1}+3 e_{2}+4 e_{3}\right],} \\
& \text { 5. } \quad \widetilde{\mathcal{K}}_{n} \widetilde{\mathcal{K}}_{m}+\widetilde{\mathcal{K}}_{n+1} \widetilde{\mathcal{K}}_{m+1}=5\left[\widetilde{\mathcal{Q}}_{n+m+1}+\mathfrak{p} Q_{n+m+3}+Q_{n+m+2} J\right. \\
& \left.+\left(Q_{n+m+3}+2 \mathfrak{p} Q_{n+m+5}\right) \varepsilon+3 Q_{n+m+4} J \varepsilon\right] \\
& +5\left[V_{\widetilde{\Omega}_{n+m+1}}+\mathfrak{p} V_{Q_{n+m+3}}+V_{Q_{n+m+2}} J\right. \tag{7}\\
& \left.+\left(V_{Q_{n+m+3}}+2 \mathfrak{p} V_{Q_{n+m+5}}\right) \varepsilon+3 V_{Q_{n+m+4}} J \varepsilon\right], \\
& \text { 6. } \quad \widetilde{\mathcal{K}}_{n}^{2}+\widetilde{\mathcal{K}}_{n+1}^{2}=5\left[\widetilde{\mathcal{Q}}_{2 n+1}+\mathfrak{p} Q_{2 n+3}+Q_{2 n+2} J\right. \\
& \left.+\left(Q_{2 n+3}+2 \mathfrak{p} Q_{2 n+5}\right) \varepsilon+3 Q_{2 n+4} J \varepsilon\right] \\
& +5\left[V_{\widetilde{\Omega}_{2 n+1}}+\mathfrak{p} V_{Q_{2 n+3}}+V_{Q_{2 n+2}} J\right. \tag{8}\\
& \left.+\left(V_{Q_{2 n+3}}+2 \mathfrak{p} V_{Q_{2 n+5}}\right) \varepsilon+3 V_{Q_{2 n+4}} J \varepsilon\right] .
\end{align*}
$$

Proof. Write the following relationships for Fibonacci/Lucas numbers ([4]):

$$
\begin{align*}
& F_{n+r}+F_{n-r}= \begin{cases}L_{r} F_{n}, & r=2 k \\
F_{r} L_{n}, & r=2 k+1\end{cases} \tag{9}\\
& F_{n+r}-F_{n-r}= \begin{cases}L_{r} F_{n}, & r=2 k+1 \\
F_{r} L_{n}, & r=2 k\end{cases} \tag{10}
\end{align*}
$$

and for $\mathcal{D G E}$ Fibonacci/Lucas numbers ([13]):

$$
\begin{align*}
& \widetilde{\mathcal{F}}_{m} \widetilde{\mathcal{F}}_{n}-\widetilde{\mathcal{F}}_{m+r} \widetilde{\mathcal{F}}_{n-r}=(-1)^{n-r} F_{m-n+r} F_{r}[(1-\mathfrak{p})+J+3(1-\mathfrak{p}) \varepsilon+3 J \varepsilon] \tag{11}\\
& \widetilde{\mathcal{F}}_{n} \widetilde{\mathcal{F}}_{m}+\widetilde{\mathscr{F}}_{n+1} \widetilde{\mathcal{F}}_{m+1}=\widetilde{\mathscr{F}}_{n+m+1}+\mathfrak{p} F_{n+m+3}+F_{n+m+2} J \tag{12}\\
&+\left(F_{n+m+3}+2 \mathfrak{p} F_{n+m+5}\right) \varepsilon+3 F_{n+m+4} J \varepsilon, \\
& \widetilde{\mathcal{L}}_{m} \widetilde{\mathcal{L}}_{n}-\widetilde{\mathcal{L}}_{m+r} \widetilde{\mathcal{L}}_{n-r}=5(-1)^{n-r+1} F_{m-n+r} F_{r}[(1-\mathfrak{p})+J+3(1-\mathfrak{p}) \varepsilon+3 J \varepsilon], \tag{13}\\
& \widetilde{\mathcal{L}}_{n} \widetilde{\mathcal{L}}_{m}+\widetilde{\mathcal{L}}_{n+1} \widetilde{\mathcal{L}}_{m+1} \quad=5\left[\widetilde{\mathscr{F}}_{n+m+1}+\mathfrak{p} F_{n+m+3}+F_{n+m+2} J\right. \tag{14}\\
&\left.+\left(F_{n+m+3}+2 \mathfrak{p} F_{n+m+5}\right) \varepsilon+3 F_{n+m+4} J \varepsilon\right]
\end{align*}
$$

The proof of the first relationship starts with multiplication (see Table 3):

$$
\begin{aligned}
& \widetilde{\mathcal{Q}}_{m} \widetilde{\mathcal{Q}}_{n}-\widetilde{\mathcal{Q}}_{m+r} \widetilde{\mathcal{Q}}_{n-r}=\left(\widetilde{\mathcal{F}}_{m} \widetilde{\mathcal{F}}_{n}-\widetilde{\mathcal{F}}_{m+r} \widetilde{\mathcal{F}}_{n-r}\right) \\
& \left.\begin{array}{l}
+\left[\left(\widetilde{\mathcal{F}}_{m} \widetilde{\mathcal{F}}_{n+1}-\widetilde{\mathcal{F}}_{m+r} \widetilde{\mathcal{F}}_{n-r+1}\right)+\left(\widetilde{\mathcal{F}}_{m+1} \widetilde{\mathcal{F}}_{n}-\widetilde{\mathcal{F}}_{m+r+1} \widetilde{\mathcal{F}}_{n-r}\right)\right] \\
+\left(\begin{array}{l}
\widetilde{\mathcal{F}}_{m} \widetilde{\mathcal{F}}_{n+2}-\widetilde{\mathcal{F}}_{m+r} \widetilde{\mathcal{F}}_{n-r+2}
\end{array}\right)+\left(\widetilde{\mathcal{F}}_{m+2} \widetilde{\mathcal{F}}_{n}-\widetilde{\mathscr{F}}_{m+r+2} \widetilde{\mathcal{F}}_{n-r}\right) \\
+\left(\widetilde{\mathcal{F}}_{m} \widetilde{\mathcal{F}}_{n+3}-\widetilde{\mathcal{F}}_{m+r} \widetilde{\mathcal{F}}_{n-r+3}\right)+\left(\widetilde{\mathcal{F}}_{m+3} \widetilde{\mathcal{F}}_{n}-\widetilde{\mathcal{F}}_{m+r+3} \widetilde{\mathcal{F}}_{n-r}\right)
\end{array}\right\}=\begin{array}{l}
e_{2} \\
e_{3} .
\end{array}
\end{aligned}
$$

From Eqs. (9), (10), and (11), the proof is straightforward. The proof of the second and third relationships are completed by using Eq. (12) and writing $m \rightarrow n$ in Eq. (4), respectively. The other parts can be proved similarly.

Theorem 2.4. Let $\widetilde{\mathbb{Q}}_{-n}$ and $\widetilde{\mathcal{K}}_{-n}$ be negaDGE dual Fibonacci and Lucas quaternions, respectively. Then, the following identities can be given for $n \geqslant 0$:

- $\widetilde{\mathcal{Q}}_{-n}=(-1)^{n+1} \widetilde{\Omega}_{n}+(-1)^{n} \widetilde{\mathcal{L}}_{n}\left(e_{1}+e_{2}+2 e_{3}\right)+(-1)^{n+1} K_{n}(J+\varepsilon+2 J \varepsilon) e_{3}$,
- $\widetilde{\mathcal{K}}_{-n}=(-1)^{n} \widetilde{\mathcal{K}}_{n}+5(-1)^{n-1} \widetilde{\mathcal{F}}_{n}\left(e_{1}+e_{2}+2 e_{3}\right)+5(-1)^{n} K_{n}(J+\varepsilon+2 J \varepsilon) e_{3}$.

Proof. The proof is clear with the help of the following identities ([13]):

$$
\begin{aligned}
& \widetilde{\mathcal{F}}_{-n}=(-1)^{n+1} \widetilde{\mathscr{F}}_{n}+(-1)^{n} L_{n}(J+\varepsilon+2 J \varepsilon), \\
& \widetilde{\mathcal{L}}_{-n}=(-1)^{n} \widetilde{\mathcal{L}}_{n}+5(-1)^{n-1} L_{n}(J+\varepsilon+2 J \varepsilon) .
\end{aligned}
$$

Theorem 2.5. (Binet's Formula) Let $\widetilde{\mathcal{Q}}_{n} \in \mathbb{D} \mathbb{C}_{\mathfrak{p}} \mathbb{Q}$ and $\widetilde{\mathcal{K}}_{n} \in \mathbb{D} \mathbb{C}_{\mathfrak{p}} \mathbb{K}$. Then, for $n \geq 1$, the following Binet formulas can be given:

$$
\widetilde{Q}_{n}=\frac{\tilde{\alpha}^{*} \alpha^{n}-\tilde{\beta}^{*} \beta^{n}}{\alpha-\beta} \text { and } \widetilde{\mathcal{K}}_{n}=\tilde{\alpha}^{*} \alpha^{n}+\tilde{\beta}^{*} \beta^{n}
$$

where $\alpha^{*}=1+\alpha J+\alpha^{2} \varepsilon+\alpha^{3} J \varepsilon, \quad \tilde{\alpha}^{*} \quad=\quad \alpha^{*}\left(1+\alpha e_{1}+\alpha^{2} e_{2}+\alpha^{3} e_{3}\right)$, $\beta^{*}=1+\beta J+\beta^{2} \varepsilon+\beta^{3} J \varepsilon$ and $\tilde{\beta}^{*}=\beta^{*}\left(1+\beta e_{1}+\beta^{2} e_{2}+\beta^{3} e_{3}\right)$.
Proof. The proof is completed by considering the Binet formulas given in [13]:

$$
\widetilde{\mathcal{F}}_{n}=\frac{\alpha^{*} \alpha^{n}-\beta^{*} \beta^{n}}{\alpha-\beta} \text { and } \widetilde{\mathcal{L}}_{n}=\alpha^{*} \alpha^{n}+\beta^{*} \beta^{n}
$$

Theorem 2.6. (D'Ocagne's Identity) Let $\widetilde{\mathcal{Q}}_{n}, \widetilde{\widetilde{Q}}_{m} \quad \in \quad \mathbb{Q} \mathbb{D} \mathbb{C}_{\mathfrak{p}}$ and $\widetilde{\mathcal{K}}_{n}, \widetilde{\mathcal{K}}_{m} \in \mathbb{K I D C}_{\mathfrak{p}}$. Then, for $n, m \geq 0$, the D'Ocagne's identities can be given as follows:

- $\widetilde{\mathfrak{Q}}_{m} \widetilde{\Omega}_{n+1}-\widetilde{\Omega}_{m+1} \widetilde{\mathrm{Q}}_{n}=(-1)^{n} F_{m-n}[(1-\mathfrak{p})+J+3(1-\mathfrak{p}) \varepsilon+3 J \varepsilon]\left[1+e_{1}+3 e_{2}+4 e_{3}\right]$,
- $\widetilde{\mathcal{K}}_{m} \widetilde{\mathcal{K}}_{n+1}-\widetilde{\mathcal{K}}_{m+1} \widetilde{\mathcal{K}}_{n}=5(-1)^{n+1} F_{m-n}[(1-\mathfrak{p})+J+3(1-\mathfrak{p}) \varepsilon+3 J \varepsilon]\left[1+e_{1}+3 e_{2}+4 e_{3}\right]$.

Proof. It is clear by taking $n \rightarrow n+1, r \rightarrow 1$ in Eqs. (3) and (6).
Theorem 2.7. (Catalan's Identity) Let $\widetilde{Q}_{n} \in \mathbb{Q D C}_{\mathfrak{p}}$ and $\widetilde{\mathcal{K}}_{n} \in \mathbb{K D C P}_{\mathfrak{p}}$. Then, the Catalan's identities can be given such that:

- $\widetilde{\Omega}_{n}^{2}-\widetilde{\Omega}_{n+r} \widetilde{\Omega}_{n-r}=(-1)^{n-r} F_{r}^{2}[(1-\mathfrak{p})+J+3(1-\mathfrak{p}) \varepsilon+3 J \varepsilon]\left[1+e_{1}+3 e_{2}+4 e_{3}\right]$,
- $\widetilde{\mathcal{K}}_{n}^{2}-\widetilde{\mathcal{K}}_{n+r} \widetilde{\mathcal{K}}_{n-r}=5(-1)^{n-r+1} F_{r}^{2}[(1-\mathfrak{p})+J+3(1-\mathfrak{p}) \varepsilon+3 J \varepsilon]\left[1+e_{1}+3 e_{2}+4 e_{3}\right]$.

Proof. By taking $m \rightarrow n$ in Eqs. (3) and (6), the proof is clear.
Theorem 2.8. (Cassini's Identity) Let $\widetilde{Q}_{n} \in \mathbb{Q D}_{\mathfrak{p}}$ and $\widetilde{\mathcal{K}}_{n} \in \mathbb{K D D}_{\mathfrak{p}}$. Then, the Cassini's identities of these dual quaternions are as follows:

- $\widetilde{\Omega}_{n}^{2}-\widetilde{\Omega}_{n+1} \widetilde{\Omega}_{n-1}=(-1)^{n-1}[(1-\mathfrak{p})+J+3(1-\mathfrak{p}) \varepsilon+3 J \varepsilon]\left[1+e_{1}+3 e_{2}+4 e_{3}\right]$,
- $\widetilde{\mathcal{K}}_{n}^{2}-\widetilde{\mathcal{K}}_{n+1} \widetilde{\mathcal{K}}_{n-1}=5(-1)^{n}[(1-\mathfrak{p})+J+3(1-\mathfrak{p}) \varepsilon+3 J \varepsilon]\left[1+e_{1}+3 e_{2}+4 e_{3}\right]$.

Proof. By taking $r=1$ in Theorem 2.7, the proof is obvious.
Example 2.1. Find the following identities:
D'Ocagne's identities for $m=3, n=1$ and $\mathfrak{p}=-\frac{1}{3}$:

- $\widetilde{\mathcal{Q}}_{3} \widetilde{\mathcal{Q}}_{2}-\widetilde{\mathcal{Q}}_{4} \widetilde{\mathfrak{Q}}_{1}=-\left(\frac{4}{3}+J+4 \varepsilon+3 J \varepsilon\right)\left(1+e_{1}+3 e_{2}+4 e_{3}\right)$,
- $\widetilde{\mathcal{K}}_{3} \widetilde{\mathcal{K}}_{2}-\widetilde{\mathcal{K}}_{4} \widetilde{\mathcal{K}}_{1}=5\left(\frac{4}{3}+J+4 \varepsilon+3 J \varepsilon\right)\left(1+e_{1}+3 e_{2}+4 e_{3}\right)$.

Catalan's identities for $n=2, r=2$ and $\mathfrak{p}=0$:

- $\widetilde{\mathbb{Q}}_{2}^{2}-\widetilde{\mathscr{Q}}_{4} \widetilde{\mathscr{Q}}_{0}=(1+J+3 \varepsilon+3 J \varepsilon)\left(1+e_{1}+3 e_{2}+4 e_{3}\right)$,
- $\widetilde{\mathcal{K}}_{2}^{2}-\widetilde{\mathcal{K}}_{4} \widetilde{\mathcal{K}}_{0}=-5(1+J+3 \varepsilon+3 J \varepsilon)\left(1+e_{1}+3 e_{2}+4 e_{3}\right)$.

Cassini's identities for $n=2$ and $\mathfrak{p}=\frac{1}{5}$:

- $\widetilde{\mathbb{Q}}_{2}^{2}-\widetilde{\Omega}_{3} \widetilde{\mathcal{Q}}_{1}=-\left(\frac{4}{5}+J+\frac{12}{5} \varepsilon+3 J \varepsilon\right)\left(1+e_{1}+3 e_{2}+4 e_{3}\right)$,
- $\widetilde{\mathcal{K}}_{2}^{2}-\widetilde{\mathcal{K}}_{3} \widetilde{\mathcal{K}}_{1}=5\left(\frac{4}{5}+J+\frac{12}{5} \varepsilon+3 J \varepsilon\right)\left(1+e_{1}+3 e_{2}+4 e_{3}\right)$.

2.1. Examination of matrix representations

Theorem 2.9. Every $\widetilde{Q}_{n}=Q_{n}+Q_{n+1} J+Q_{n+2} \varepsilon+Q_{n+3} J \varepsilon$ can be represented by the following 2×2 matrix 2 :

$$
x_{\widetilde{\mathbb{Q}}_{n}}=\left[\begin{array}{cc}
Q_{n}+Q_{n+1} J & 0 \\
Q_{n+2}+Q_{n+3} J & Q_{n}+Q_{n+1} J
\end{array}\right] .
$$

Remark 2.2. X is a linear transformation between $\mathbb{D}_{\mathfrak{p}} \mathbb{Q}$ and the matrices

$$
\left\{\left.\left[\begin{array}{cc}
Q_{n}+Q_{n+1} J & 0 \\
Q_{n+2}+Q_{n+3} J & Q_{n}+Q_{n+1} J
\end{array}\right] \right\rvert\, Q_{n}, Q_{n+1}, Q_{n+2}, Q_{n+3} \in \mathbb{Q}\right\} .
$$

The columns of the matrix $\mathcal{X}_{\widetilde{\Omega}_{n}}$ are represented by the coefficients of the elements $\left\{\widetilde{\mathbb{Q}}_{n}, \widetilde{Q}_{n} \varepsilon\right\}$, considering the basis $\{1, \varepsilon\}$. Hence, $\mathbb{D C}_{\mathfrak{p}} \mathbb{Q}$ is the subset of $\mathcal{M}_{2}\left(\mathbb{C}_{\mathfrak{p}} \mathbb{Q}\right)$.
Theorem 2.10. Every $\widetilde{Q}_{n}=Q_{n}+Q_{n+1} J+Q_{n+2} \varepsilon+Q_{n+3} J \varepsilon$ can be represented by a matrix ${ }^{3}$ in $\mathcal{M}_{4}(\mathbb{Q})$:

$$
\mathcal{A}_{\tilde{Q}_{n}}=\left[\begin{array}{cccc}
Q_{n} & \mathfrak{p} Q_{n+1} & 0 & 0 \\
Q_{n+1} & Q_{n} & 0 & 0 \\
Q_{n+2} & \mathfrak{p} Q_{n+3} & Q_{n} & \mathfrak{p} Q_{n+1} \\
Q_{n+3} & Q_{n+2} & Q_{n+1} & Q_{n}
\end{array}\right]
$$

The columns of the matrix $\mathcal{A}_{\widetilde{\Omega}_{n}}$ are represented by the coefficients of the elements $\left\{\widetilde{\mathscr{Q}}_{n}, \widetilde{\mathscr{Q}}_{n} J, \widetilde{\mathscr{Q}}_{n} \varepsilon, \widetilde{\mathscr{Q}}_{n} J \varepsilon\right\}$, considering the basis $\{1, J, \varepsilon, J \varepsilon\}$. Moreover, $\mathbb{D} \mathbb{C}_{\mathfrak{p}} \mathbb{Q}$ is the subset of $\mathcal{M}_{4}(\mathbb{Q})$.
Theorem 2.11. Every $\quad \widetilde{\mathbb{Q}}_{n}=\widetilde{\mathcal{F}}_{n}+\widetilde{\mathcal{F}}_{n+1} e_{1}+\widetilde{\mathcal{F}}_{n+2} e_{2}+\widetilde{\mathcal{F}}_{n+3} e_{3} \quad$ can also be represented by a matrix in $\mathcal{M}_{4}\left(\mathbb{D} \mathbb{C}_{\mathfrak{p}} \mathbb{F}\right)$.
Proof. Define the linear transformation $f_{\widetilde{\Omega}_{n}}\left(\widetilde{\mathbb{Q}}_{m}\right)=\widetilde{\mathbb{Q}}_{n} \widetilde{\mathrm{Q}}_{m}$ for every $\widetilde{\mathcal{Q}}_{n} \in \mathbb{Q D} \mathbb{C}_{\mathfrak{p}}$ and calculate the image of the elements $\left\{1, e_{1}, e_{2}, e_{3}\right\}$ as follows:

$$
\begin{aligned}
& f_{\widetilde{\Omega}_{n}}(1)=\widetilde{\Omega}_{n}=\widetilde{\mathscr{F}}_{n}+\widetilde{\mathcal{F}}_{n+1} e_{1}+\widetilde{\mathcal{F}}_{n+2} e_{2}+\widetilde{\mathcal{F}}_{n+3} e_{3}, \\
& f_{\widetilde{\mathfrak{Q}}_{n}}\left(e_{1}\right)=\widetilde{\widetilde{\mathcal{Q}}}_{n} e_{1}=\widetilde{\mathscr{F}}_{n} e_{1}, \\
& f_{\widetilde{\Omega}_{n}}\left(e_{2}\right)=\widetilde{\widetilde{Q}}_{n} e_{2}=\widetilde{\mathcal{F}}_{n} e_{2}, \\
& f_{\widetilde{\Omega}_{n}}\left(e_{3}\right)=\widetilde{\Omega}_{n} e_{3}=\widetilde{\mathcal{F}}_{n} e_{3} .
\end{aligned}
$$

Therefore, the matrix of f with respect to the basis $\left\{1, e_{1}, e_{2}, e_{3}\right\}$ is as follows:

$$
\mathcal{B}_{\tilde{\mathfrak{Q}}_{n}}=\left[\begin{array}{cccc}
\widetilde{\mathcal{F}}_{n} & 0 & 0 & 0 \\
\widetilde{\mathscr{F}}_{n+1} & \widetilde{\mathscr{F}}_{n} & 0 & 0 \\
\widetilde{\mathfrak{F}}_{n+2} & 0 & \widetilde{\mathfrak{F}}_{n} & 0 \\
\widetilde{\mathscr{F}}_{n+3} & 0 & 0 & \widetilde{\mathfrak{F}}_{n}
\end{array}\right]
$$

The set of $\mathbb{Q D C}_{\mathfrak{p}}$ is the subset of $\mathcal{M}_{4}\left(\mathbb{D} \mathbb{C}_{\mathfrak{p}} \mathbb{F}\right)$.
Corollary 2.1. In particular, consider the following statements:

[^3]- $\mathcal{A}_{\widetilde{\Omega}_{n}}$ is also in the form $\mathcal{A}_{\widetilde{\Omega}_{n}}=Q_{n} I_{4}+Q_{n+1} \mathcal{J}+Q_{n+2} \mathcal{E}+Q_{n+3} \mathcal{J} \mathcal{E}$, where

$$
J \leftrightarrow \mathcal{J}=\left[\begin{array}{cccc}
0 & \mathfrak{p} & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathfrak{p} \\
0 & 0 & 1 & 0
\end{array}\right], \varepsilon \leftrightarrow \mathcal{E}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], J \varepsilon \leftrightarrow \mathcal{J} \mathcal{E}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \mathfrak{p} & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

- $\mathcal{B}_{\widetilde{\Omega}_{n}}$ is also in the form $\mathcal{B}_{\widetilde{\Omega}_{n}}=\widetilde{\mathcal{F}}_{n}+\widetilde{\mathcal{F}}_{n+1} E_{1}+\widetilde{\mathscr{F}}_{n+2} E_{2}+\widetilde{\mathcal{F}}_{n+3} E_{3}$, where

$$
e_{1} \leftrightarrow E_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], e_{2} \leftrightarrow E_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], e_{3} \leftrightarrow E_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Remark 2.3. With respect to the basis $\left\{1, e_{1}, e_{2}, e_{3}\right\}$, the column matrix representation of $\widetilde{Q}_{m}=\widetilde{\mathcal{F}}_{m}+\widetilde{\mathcal{F}}_{m+1} e_{1}+\widetilde{\mathcal{F}}_{m+2} e_{2}+\widetilde{\mathcal{F}}_{m+3} e_{3}$ is given by:

$$
\widetilde{\mathfrak{Q}}_{m}=\left[\begin{array}{cccc}
\widetilde{\mathcal{F}}_{m} & \widetilde{\mathcal{F}}_{m+1} & \widetilde{\mathcal{F}}_{m+2} & \widetilde{\mathcal{F}}_{m+3}
\end{array}\right]^{T} .
$$

By using $\mathcal{B}_{\widetilde{\Omega}_{n}}$, the product of $\widetilde{\Omega}_{n}, \widetilde{\Omega}_{m} \in \mathbb{Q D} \mathbb{C}_{\mathfrak{p}}$ can also be expressed by:

$$
\widetilde{\Omega}_{n} \widetilde{\mathscr{Q}}_{m}=\left[\begin{array}{cccc}
\widetilde{\mathcal{F}}_{n} & 0 & 0 & 0 \\
\widetilde{\mathscr{F}}_{n+1} & \widetilde{\mathcal{F}}_{n} & 0 & 0 \\
\widetilde{\mathcal{F}}_{n+2} & 0 & \widetilde{\mathcal{F}}_{n} & 0 \\
\widetilde{\mathcal{F}}_{n+3} & 0 & 0 & \widetilde{\mathcal{F}}_{n}
\end{array}\right]\left[\begin{array}{c}
\widetilde{\mathcal{F}}_{m} \\
\widetilde{\mathcal{F}}_{m+1} \\
\widetilde{\mathcal{F}}_{m+2} \\
\widetilde{\mathcal{F}}_{m+3}
\end{array}\right]=\widetilde{\Omega}_{m} \widetilde{\Omega}_{n} .
$$

Similarly, by using $\widetilde{\mathscr{Q}}_{m}=\left[\begin{array}{lllll}Q_{m} & Q_{m+1} & Q_{m+2} & Q_{m+3}\end{array}\right]^{T}$ and $\mathcal{A}_{\widetilde{\Omega}_{n}}$, we have:

$$
\widetilde{Q}_{n} \widetilde{\mathscr{Q}}_{m}=\left[\begin{array}{cccc}
Q_{n} & \mathfrak{p} Q_{n+1} & 0 & 0 \\
Q_{n+1} & Q_{n} & 0 & 0 \\
Q_{n+2} & \mathfrak{p} Q_{n+3} & Q_{n} & \mathfrak{p} Q_{n+1} \\
Q_{n+3} & Q_{n+2} & Q_{n+1} & Q_{n}
\end{array}\right]\left[\begin{array}{c}
Q_{m} \\
Q_{m+1} \\
Q_{m+2} \\
Q_{m+3}
\end{array}\right]
$$

Theorem 2.12. Let $\widetilde{\mathcal{Q}}_{n}=\widetilde{\mathcal{F}}_{n}+\widetilde{\mathcal{F}}_{n+1} e_{1}+\widetilde{\mathcal{F}}_{n+2} e_{2}+\widetilde{\mathcal{F}}_{n+3} e_{3} \in \mathbb{Q D} \mathbb{C}_{\mathfrak{p}}$ and $\overline{\widetilde{\Omega}}_{n}$ be the quaternion conjugate of $\widetilde{\mathbb{Q}}_{n}$. Then, we have

$$
\sigma \mathcal{A}_{\widetilde{\mathfrak{Q}}_{n}} \sigma=\mathcal{A}_{\overline{\widetilde{Q}}_{n}}, \quad \text { where } \sigma=\operatorname{diag}(1,-1,-1,-1) .
$$

Theorem 2.13. For any $\widetilde{Q}_{n}, \widetilde{Q}_{m}$ and $\lambda \in \mathbb{R}$, the following properties hold:

- $X_{\lambda \widetilde{\mathfrak{Q}}_{n}}=\lambda X_{\widetilde{\Omega}_{n}}$,
- $\operatorname{det}\left(X_{\widetilde{Q}_{n}}\right)=\left(Q_{n}+Q_{n+1} J\right)^{2}$,
- $\mathcal{A}_{\lambda \widetilde{\Omega}_{n}}=\lambda \mathcal{A}_{\widetilde{\Omega}_{n}}$,
- $\operatorname{det}\left(\mathcal{A}_{\widetilde{\mathfrak{Q}}_{n}}\right)=\left(Q_{n}^{2}-\mathfrak{p} Q_{n+1}^{2}\right)^{2}=\left\|\widetilde{\mathfrak{Q}}_{n}\right\|_{\dagger_{4}}^{4}$,
- $\mathcal{B}_{\lambda \widetilde{\Omega}_{n}}=\lambda \mathcal{B}_{\widetilde{\Omega}_{n}}$,
- $\operatorname{det}\left(\mathcal{B}_{\widetilde{\mathfrak{Q}}_{n}}\right)=\widetilde{\mathscr{F}}_{n}^{4}=\left\|\widetilde{\mathfrak{Q}}_{n}\right\|^{4}$.
- $X_{\widetilde{\mathfrak{Q}}_{n} \widetilde{\Omega}_{m}}=X_{\widetilde{\Omega}_{n}} X_{\widetilde{\Omega}_{m}}$,

Theorem 2.14. Let $\widetilde{Q}_{n} \in \mathbb{Q D} \mathbb{C}_{\mathfrak{p}}$ and $\widetilde{\mathrm{Q}}_{n}^{-1}$ be the inverse of \widetilde{Q}_{n}. Then, we have:

$$
\mathcal{B}_{\widetilde{\mathfrak{Q}}_{n}^{-1}}=\frac{1}{\sqrt{\operatorname{det} \mathcal{B}_{\widetilde{\Omega}_{n}}}} \mathcal{B}_{\widetilde{\mathbb{Q}}_{n}} .
$$

Proof. The proof strongly depends on the inverse of $\widetilde{\Omega}_{n}$ and its matrix representation.

Definition 2.2. Let $\widetilde{\mathcal{Q}}_{n}=Q_{n}+Q_{n+1} J+Q_{n+2} \varepsilon+Q_{n+3} J \varepsilon \in \mathbb{D}_{\mathfrak{p}} \mathbb{Q}$. The vector representation of $\widetilde{\mathrm{Q}}_{n}$ is defined as

$$
\overrightarrow{\widetilde{Q}}_{n}=\left[\begin{array}{llll}
\vec{Q}_{n} & \vec{Q}_{n+1} & \vec{Q}_{n+2} & \vec{Q}_{n+3}
\end{array}\right]^{T}=\left[\begin{array}{c}
\vec{Q}_{n} \\
\vec{Q}_{n+1} \\
\vec{Q}_{n+2} \\
\vec{Q}_{n+3}
\end{array}\right] \in \mathcal{M}_{16 \times 1}(\mathbb{F})
$$

where $Q_{n}=F_{n}+F_{n+1} e_{1}+F_{n+2} e_{2}+F_{n+3} e_{3}$ is the nth dual Fibonacci quaternion and $\vec{Q}_{n}=\left(F_{n}, F_{n+1}, F_{n+2}, F_{n+3}\right)=\left[\begin{array}{lll}F_{n} & F_{n+1} & F_{n+2} \\ F_{n+3}\end{array}\right]^{T}$ is the nth Fibonacci vector (matrix).

Theorem 2.15. Let $\widetilde{\mathscr{Q}}_{n}=Q_{n}+Q_{n+1} J+Q_{n+2} \varepsilon+Q_{n+3} J \varepsilon \in \mathbb{D C}_{\mathfrak{p}} \mathbb{Q}$. Then,

- $\alpha \overrightarrow{\widetilde{Q}}_{n}=\overrightarrow{\widetilde{Q}}_{n}^{\dagger}$,
- $\beta \overrightarrow{\widetilde{Q}}_{n}=\overrightarrow{\widetilde{\Omega}}_{n}^{\dagger}$,
- $\gamma \overrightarrow{\widetilde{\Omega}}_{n}=\overrightarrow{\widetilde{\Omega}}_{n}^{\dagger}$,
where

$$
\left\{\begin{array}{l}
\alpha=\operatorname{diag}(1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1) \in \mathcal{M}_{16}(\mathbb{R}), \\
\beta=\operatorname{diag}(1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1) \in \mathcal{M}_{16}(\mathbb{R}), \\
\gamma=\operatorname{diag}(1,1,1,1,-1,-1,-1-1,-1,-1,-1,-1,1,1,1,1) \in \mathcal{M}_{16}(\mathbb{R}) .
\end{array}\right.
$$

Theorem 2.16. Let $\widetilde{\mathcal{Q}}_{n}=\widetilde{\mathcal{F}}_{n}+\widetilde{\mathcal{F}}_{n+1} e_{1}+\widetilde{\mathcal{F}}_{n+2} e_{2}+\widetilde{\mathcal{F}}_{n+3} e_{3}$. Then, the matrix representations $\mathcal{C}_{\widetilde{\Omega}_{n}}$ with respect to the basis $\left\{1, \varepsilon, e_{1}, \varepsilon e_{1}, e_{2}, \varepsilon e_{2}, e_{3}, \varepsilon e_{3}\right\}$ and $\mathcal{D}_{\widetilde{\Omega}_{n}}$ according to the base

$$
\left\{1, J, \varepsilon, J \varepsilon, e_{1}, J e_{1}, \varepsilon e_{1}, J \varepsilon e_{1}, e_{2}, J e_{2}, \varepsilon e_{2}, J \varepsilon e_{2}, e_{3}, J e_{3}, \varepsilon e_{3}, J \varepsilon e_{3}\right\}
$$

of $\widetilde{\mathcal{Q}}_{n}$, are as shown below. Moreover, it can be deduced that $\mathbb{Q D}_{\mathfrak{p}}$ is the subset of $\mathcal{M}_{8}\left(\mathbb{C}_{\mathfrak{p}} \mathbb{F}\right)$, and $\mathbb{Q D} \mathbb{C}_{\mathfrak{p}}$ is the subset of $\mathcal{M}_{16}(\mathbb{F})$.

$$
\text { Also, } \operatorname{det}\left(\mathcal{C}_{\widetilde{\mathfrak{Q}}_{n}}\right)=\left(F_{n}+F_{n+1} J\right)^{8} \text { and } \operatorname{det}\left(\mathcal{D}_{\widetilde{\mathfrak{Q}}_{n}}\right)=\left(F_{n}^{2}-\mathfrak{p} F_{n+1}^{2}\right)^{8}
$$

Remark 2.4. The matrix representations of $\mathcal{D G E}$ Lucas dual quaternion $\widetilde{\mathcal{K}}_{n}$ can be examined similarly. Moreover, the following statements are clear:

- $\mathbb{D}_{\mathfrak{p}} \mathbb{K}$ is the subset of $\mathcal{N}_{2}\left(\mathbb{C}_{\mathfrak{p}} \mathbb{K}\right)$ and $\mathcal{N}_{4}(\mathbb{K})$,
- $\mathbb{K X D}_{\mathfrak{p}}$ is the subset of $\mathcal{M}_{4}\left(\mathbb{D} \mathbb{C}_{\mathfrak{p}} \mathbb{L}\right)$,
- $\mathbb{K D D}_{\mathfrak{p}}$ is the subset of $\mathcal{M}_{8}\left(\mathbb{C}_{\mathfrak{p}} \mathbb{L}\right)$ and $\mathcal{M}_{16}(\mathbb{L})$.

Example 2.2. Consider

$$
\begin{aligned}
\widetilde{\mathfrak{Q}}_{2} & =\left(1+2 e_{1}+3 e_{2}+5 e_{3}\right)+\left(2+3 e_{1}+5 e_{2}+8 e_{3}\right) J \\
& +\left(3+5 e_{1}+8 e_{2}+13 e_{3}\right) \varepsilon+\left(5+8 e_{1}+13 e_{2}+21 e_{3}\right) J \varepsilon .
\end{aligned}
$$

Then, for $\mathfrak{p} \in \mathbb{R}$:

$$
\mathcal{D}_{\widetilde{\Omega}_{2}}=\left[\begin{array}{cccccccccccccccc}
1 & 2 \mathfrak{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 5 \mathfrak{p} & 1 & 2 \mathfrak{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 3 \mathfrak{p} & 0 & 0 & 1 & 2 \mathfrak{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 8 \mathfrak{p} & 2 & 3 \mathfrak{p} & 3 & 5 \mathfrak{p} & 1 & 2 \mathfrak{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
8 & 5 & 3 & 2 & 5 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 5 \mathfrak{p} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \mathfrak{p} & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 3 & 0 & 0 & 3 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
8 & 13 \mathfrak{p} & 3 & 5 \mathfrak{p} & 0 & 0 & 0 & 0 & 3 & 5 \mathfrak{p} & 1 & 2 \mathfrak{p} & 0 & 0 & 0 & 0 \\
13 & 8 & 5 & 3 & 0 & 0 & 0 & 0 & 5 & 3 & 2 & 1 & 0 & 0 & 0 & 0 \\
5 & 8 \mathfrak{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \mathfrak{p} & 0 & 0 \\
8 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\
13 & 21 \mathfrak{p} & 5 & 8 \mathfrak{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 5 \mathfrak{p} & 1 & 2 \mathfrak{p} \\
21 & 13 & 8 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 3 & 2 & 1
\end{array}\right] .
$$

For $\mathfrak{p}=1$, i.e. for Fibonacci and Lucas dual quaternions with dual-hyperbolic number coefficients, the following determinants are computed:

$$
\begin{aligned}
\operatorname{det}\left(\mathcal{X}_{\widetilde{\Omega}_{n}}\right) & =(2+2 J)+(8+8 J) e_{1}+(12+12 J) e_{2}+(20+20 J) e_{3}, \\
\operatorname{det}\left(\mathcal{A}_{\widetilde{\mathfrak{Q}}_{n}}\right) & =0, \\
\operatorname{det}\left(\mathcal{B}_{\widetilde{\Omega}_{n}}\right) & =41+40 J+436 \varepsilon+428 J \varepsilon, \\
\operatorname{det}\left(\mathcal{C}_{\widetilde{\Omega}_{n}}\right) & =3281+3280 J, \\
\operatorname{det}\left(\mathcal{D}_{\widetilde{\Omega}_{n}}\right) & =6561 .
\end{aligned}
$$

In the same vein, for $\mathfrak{p}=0$ and $\mathfrak{p}=-1$, the calculations are conducted for Fibonacci and Lucas dual quaternions with hyper-dual number coefficients and dual-complex number coefficients, respectively. Moreover for $\mathfrak{p} \in \mathbb{R}$, we have:

$$
\mathcal{B}_{\tilde{\mathrm{Q}}_{2}^{-1}}=\frac{1}{\sqrt{41+40 J+436 \varepsilon+428 J \varepsilon}} \mathcal{B}_{\overline{\tilde{Q}}_{2}}
$$

Finally, the vector representation of $\overrightarrow{\widetilde{\Omega}}_{n}^{\dagger_{1}}$ is

$$
\begin{array}{rl}
\overrightarrow{\widetilde{Q}}_{n}^{\dagger_{1}}=\alpha \overrightarrow{\widetilde{Q}}_{n} & =\left[\begin{array}{rrrr}
I_{4} & 0 & 0 & 0 \\
0 & -I_{4} & 0 & 0 \\
0 & 0 & I_{4} & 0 \\
0 & 0 & 0 & -I_{4}
\end{array}\right]\left[\begin{array}{cccc}
{\left[\begin{array}{llll}
1 & 2 & 3 & 5
\end{array}\right]^{T}} \\
{\left[\begin{array}{llll}
2 & 3 & 5 & 8
\end{array}\right]^{T}} \\
{\left[\begin{array}{llll}
3 & 5 & 8 & 13
\end{array}\right]^{T}} \\
{\left[\begin{array}{ccccc}
5 & 8 & 13 & 21
\end{array}\right]^{T}}
\end{array}\right] \\
& =\left[\begin{array}{lllllllll}
1 & 2 & 3 & 5 & 2 & 3 & 5 & 8 & 5
\end{array} 8\right. \\
8 & 13
\end{array} 5
$$

Conflict of interest: The author declare that there is no conflict of interest.
Acknowledgements: The author would like to thank the reviewers for their valuable comments and suggestions.

REFERENCES

[1] Akar, M., Yüce, S., Şahin, S.: On the Dual Hyperbolic Numbers and the Complex Hyperbolic Numbers. Journal of Computer Science and Computational Mathematics. 8(1), 1-6 (2018).
[2] Alfsmann, D.: On Families of 2N-dimensional Hypercomplex Algebras Suitable for Digital Signal Processing. in Proc. European Signal Processing Conf. (EUSIPCO), 2006, Florence, Italy.
[3] Apostolova, L. N., Krastev, K. I., Kiradjiev, B.: Hyperbolic double-complex numbers. AIP Conference Proceedings. 1184, 193 (2009) doi:10.1063/1.3271614.
[4] Bergum, G. E., Hoggat JR V.E.: Sums and Products for Recurring Sequences. The Fib. Quaterly. 11, 5-120 (1979).
[5] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.: The mathematics of Minkowski space-time and an introduction to commutative hypercomplex numbers. Birkh auser Verlag, Basel (2008).
[6] Cheng, H. H., Thompson, S.: Dual Polynomials and Complex Dual Numbers for Analysis of Spatial Mechanisms. Proc. of ASME 24th Biennial Mechanisms Conference, August pp. 19-22, (1996) Irvine, CA.
[7] Clifford, W. K.: Mathematical Papers. (ed. R. Tucker), Chelsea Pub. Co., Bronx, NY (1968).
[8] Cockle, J.: On a New Imaginary in Algebra. Philosophical magazine, London-Dublin-Edinburgh. 34(3), 37-47 (1849).
[9] Cohen, A., Shoham, M.: Principle of transference-An extension to hyper-dual numbers. Mechanism and Machine Theory. 125, 101-110 (2018).
[10] Fike, J. A., Alonso, J. J.: Automatic Differentiation through the use of Hyper-Dual Numbers for Second Derivatives. Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 87), 163-173, (2011).
[11] Fjelstad, P.: Extending Special Relativity via the Perplex Numbers. American Journal of Physics. 54(5), 416-422 (1986).
[12] Fjelstad, P., Gal Sorin G.: n-dimensional Hyperbolic Complex Numbers. Adv. Appl. Clifford Algebr. 8(1), 47-68 (1998).
[13] N. Gürses, G. Y. Şentürk, S. Yüce, A Comprehensive Survey of Dual-Generalized Complex Fibonacci and Lucas Numbers, Sigma Journal of Engineering and Natural Sciences, (in press), (2021).
[14] N. Gürses, G. Y. Şentürk, S. Yüce, A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers, Gazi University Journal of Science, 34(1), 180-194, (2021).
[15] Halici, S.: On Fibonacci Quaternions. Adv. Appl. Clifford Algebr. 22(2), 321-327, (2012).
[16] Halici, S.: On Complex Fibonacci Quaternions. Adv. Appl. Clifford Algebr. 23(1), 105-112, (2013).
[17] Hamilton, W. R.: On Quaternions; or on a New System of Imaginaries in Algebra. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science (3rd Series) (1844-1850).
[18] Harkin, A. A., Harkin, J. B.: Geometry of Generalized Complex Numbers. Mathematics Magazine. 77(2), 118-129 (2004).
[19] Horadam, A. F.: Quaternion Reccurence Relations. Ulam Quaterly. 2(2), 23-33, (1993).
[20] Horadam, A. F.: Complex Fibonacci Numbers and Fibonacci Quaternions. American Mathematical Monthly. 70(3), 289-291, (1963).
[21] Iyer, M. R.: Some Results on Fibonacci Quaternions. The Fib. Quaterly. 7(2), 201-210 (1969).
[22] Iyer, M. R.: A note on Fibonacci Quaternions. The Fib. Quaterly. 3, 225-229, (1969).
[23] Kantor, I., Solodovnikov, A.: Hypercomplex Numbers, Springer-Verlag, New York (1989).
[24] Majernik, V.: Multicomponent Number Systems. Acta Phys. Pol. A. 90, 491-498 (1996).
[25] Majernik, V.: Quaternion formulation of the Galilean space-time transformation. Acta Phy. Slovaca. 56(1), 9-14 (2006).
[26] Messelmi, F.: Dual-Complex Numbers and Their Holomorphic Functions. hal-01114178 (2015).
[27] Nurkan, S. K., Güven, İ. A.: Dual Fibonacci Quaternions. Adv. Appl. Clifford Algebr. 25(2), 403-414, (2015).
[28] Pennestrì, E., Stefanelli, R.: Linear algebra and numerical algorithms using dual numbers. Multibody System Dynamics. 18(3), 323-344 (2007).
[29] Rochon, D., Shapiro, M.: On Algebraic Properties of Bicomplex and Hyperbolic Numbers. Analele Universitatii din Oradea. Fascicola Matematica. 11, 71-110 (2004).
[30] Sobczyk, G.: The Hyperbolic Number Plane. The College Mathematics Journal. 26(4), 268-280 (1995).
[31] Study, E.: Geometrie der Dynamen. Leipzig (1903).
[32] Yaglom, I. M.: Complex Numbers in Geometry. Academic Press, New York, (1968).
[33] Yüce, S., Aydin, F. T.: A New Aspect of Dual Fibonacci Quaternions. Adv. Appl. Clifford Algebr. 26, 873-884, (2016).

[^0]: ${ }^{1}$ Yildiz Technical University, Faculty of Arts and Sciences, Department of Mathematics, 34220, Istanbul, Turkey, e-mail: nbayrak@yildiz.edu.tr, ORCID:0000-0001-8407-854X

[^1]: ${ }^{1} \mathbb{D} \mathbb{C}_{\mathfrak{p}}$ is a vector space over \mathbb{R}. For $a_{1}=z_{11}+z_{12} \varepsilon, a_{2}=z_{21}+z_{22} \varepsilon \in \mathbb{D} \mathbb{C}_{\mathfrak{p}}$ and $\lambda \in \mathbb{R}$, the operations are given as follows [14]:

 Equality: $\quad a_{1}=a_{2} \Leftrightarrow z_{11}+z_{12} \varepsilon=z_{21}+z_{22} \varepsilon \Leftrightarrow z_{11}=z_{21}, z_{12}=z_{22}$,
 Addition: $\quad a_{1} \oplus a_{2}=\left(z_{11}+z_{12} \varepsilon\right) \oplus\left(z_{21}+z_{22} \varepsilon\right)=\left(z_{11}+z_{21}\right)+\left(z_{12}+z_{22}\right) \varepsilon$,
 Scalar multiplication : $\quad \lambda \odot a_{1}=\lambda \odot\left(z_{11}+z_{12} \varepsilon\right)=\left(\lambda z_{11}\right)+\left(\lambda z_{12}\right) \varepsilon$,
 Multiplication : $\quad \begin{array}{rll}\lambda & a_{1} a_{2} & =\left(z_{11}+z_{12} \varepsilon\right)\left(z_{21}+z_{22} \varepsilon\right)=\left(z_{11} z_{21}\right)+\left(z_{11} z_{22}+z_{12} z_{21}\right) \varepsilon .\end{array}$

[^2]: Nomenclature
 Fibonacci numbers
 Lucas numbers
 $\mathcal{G e}$ Lucas numbers
 DGe Fibonacci numbers [13]
 DGe Lucas numbers [13]
 Fibonacci dual quaternions [33]
 Lucas dual quaternions [33]
 $\mathcal{G C}$ numbers with Fibonacci dual quaternion
 Ge numbers with Lucas dual quaternion
 DGe numbers with Fibonacci dual quaternion
 $\mathcal{D G E}$ numbers with Lucas dual quaternion
 Dual quaternions with $\mathcal{D G E}$ Fibonacci number
 Dual quaternions with $\mathcal{D G E}$ Lucas number

[^3]: ${ }^{2}$ The set of dual numbers is isomorphic to a subset of 2×2 real matrices, $\lambda(a+b \varepsilon)=\left[\begin{array}{ll}a & 0 \\ b & a\end{array}\right]$, where $z=a+b \varepsilon, \varepsilon^{2}=0, \varepsilon \neq 0,[32]$.
 ${ }^{3}$ The set of generalized complex numbers is isomorphic to a subset of 2×2 real matrices, $\lambda(a+b J)=$ $\left[\begin{array}{cc}a & \mathfrak{p} b \\ b & a\end{array}\right]$, where $z=a+b J, J^{2}=\mathfrak{p} \in \mathbb{R},[18]$.

