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ITERATED F -CONTRACTIONS IN b-METRIC SPACES
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The aim of this paper is to introduce the classes of iterated F -contraction 
and fundamentally F -contractive type mappings in a b-metric space and obtain some 
fixed point existence results for these mappings, with some examples in support of the 
results.

Keywords: b-metric space, iterated contraction, iterated F -contraction, fundamentally 
F -contractive type mappings.

MSC2020: 47H10, 54H25.

1. Introduction

The study of fixed point theory has led to numerous generalizations of the underlying
space with a view to generalize or extend existing fixed point results (one may refer to [2],
[5], [7], [17] and the references therein). One such generalization of the metric space in the
Banach fixed point theory is a b-metric space. The notion of b-metric was first introduced
by Bakhtin [2] in 1989 and formally defined by Czerwik [5] in 1993. Since then, numerous
research have been done on b-metric fixed point theory (one may refer to [1] [4], [8], [9], [10],
[11], [16] and the references therein).

The notion of iterated contraction was first introduced in 1970 by Ortega and Rhein-
boldt [14], where the same is defined for self mappings on Rn. As mentioned in their book,
an iterated contraction need not be continuous nor its fixed point be unique. Nevertheless,
iterated contractions turn out to be quite useful in considering certain iterative processes.
Recently, Ghoncheh and Razani [7] introduced the class of fundamentally nonexpansive map-
pings in a metric space.

In 2012, Wardowski [17] introduced the class of F -contraction mappings (which is
a generalization of contraction mappings) and derived some fixed point results with ap-
plications. Based on the definition of F -contraction mappings, in [8], the authors defined
F -contrctive type mappings and Kannan F -contrctive type mappings in a b-metric space
and derived some fixed point results.

Iterated F -contraction mappings and fundamental F -contractive type mappings are
defined on b-metric spaces. Some of their properties are discussed and fixed point existence
results are also obtained in this paper.

2. Preliminaries

In this section, some basic definitions and results required for our subsequent discus-
sion are briefly stated, starting with the definition of a b-metric space.

Definition 2.1. [5] Let X be a non empty set and s ≥ 1 be a given real number. A function
d : X ×X −→ [0,∞) is called b-metric if it satisfies the following properties.

(1) d(x, y) = 0 if and only if x = y;
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(2) d(x, y) = d(y, x); and
(3) d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X.

The triplet (X, d, s) is called a b-metric space with coefficient s.

A b-metric can be discontinuous unlike a metric. One may refer to Example 2.6 of
[13]. Many examples of b-metric spaces are found in the literature. One may refer to [3]
and [15] for some classical examples. Nonetheless, the following is an example of a b-metric
space.

Example 2.1. Let X =
{
x1, x2, x3, x4

}
and define a function d : X × X −→ [0,∞) as

follows.

d(xi, xi) = 0 for i = 1, 2, 3, 4;

d(x1, x2) = d(x2, x1) = 2; d(x2, x3) = d(x3, x2) =
1

4
;

d(x1, x3) = d(x3, x1) =
3

2
; d(x1, x4) = d(x4, x1) = 2;

d(x2, x4) = d(x4, x2) = d(x3, x4) = d(x4, x3) =
5

2
.

Then d is a b-metric on X with coefficient s = 3
2 and (X, d, s) is a b-metric space.

The following lemma is useful in overcoming some of the problems due to the possible
discontinuity of the b-metric d in showing the existence of fixed points.

Lemma 2.1. [12] Let (X, d) be a b-metric space with coefficient s ≥ 1 and {xn} be a
convergent sequence in X with limn→∞ xn = x. Then for all y ∈ X

s−1d(x, y) ≤ lim
n→∞

inf d(xn, y) ≤ lim
n→∞

sup d(xn, y) ≤ sd(x, y).

From the above lemma, it follows that if {xn} is a sequence in X with limn→∞ xn = z
for some z ∈ X, then

lim
n→∞

d(xn, z) = 0.

The following is the definition of iterated contraction in a metric space setting.

Definition 2.2. [6] Let (X, d) be a b-metric space. A self mapping T : X −→ X is said
to an iterated contraction if there exists α ∈ [0, 1) such that for every x ∈ X,

d(T 2x, Tx) ≤ αd(Tx, x).

This definition naturally extends to a b-metric space (X, d, s) with the relation

sd(T 2x, Tx) ≤ αd(Tx, x).

An iterated contraction need not have a fixed point, as shown in the following example.

Example 2.2. Consider the b-metric space (X, d, s) with X = [0, 1] and the b-metric d
given by d(x, y) = |x− y|2 for all x, y ∈ X. Let T : X −→ X be defined by

Tx =

{
1, x = 0
1
2x

2, x ∈ (0, 1]

Then

d(Tx, T 2x) =

∣∣∣∣x22 − x4

8

∣∣∣∣2 =
1

4

∣∣∣∣∣x2 −
(
x2

2

)2
∣∣∣∣∣
2

= α

∣∣∣∣x− x2

2

∣∣∣∣2 ≤ αd(x, Tx)

since α = 1
4

(
x+ x2/2

)2
< 1 and thus T is an iterated contraction with discontinuity at

x = 0, which is fixed point free.
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The b-metric space in the above example is compact. However, for continuous iterated
contractions, with the help of Lemma 2.1, the existence of a fixed point in a complete b-metric
space can be established following the usual proofs of Banach Contraction principle.

Theorem 2.1. Let (X, d, s) be a complete b-metric space and T : X −→ X be a continuous
mapping such that for all x, y ∈ X,

sd(T 2x, Tx) ≤ αd(Tx, x)

for some α ∈ [0, 1). Then the sequence {Tnx} converge to a fixed point of T for each x ∈ X.

The following lemma is useful in the proof of the existence of fixed point for iterated
F -contraction mappings in a complete b-metric space.

Lemma 2.2. [10] Let (X, d) be a b-metric space with coefficient s ≥ 1 and T : X −→ X be
a self mapping. If {xn} is a sequence in X with xn+1 = Txn, satisfying

d(xn, xn+1) ≤ kd(xn−1, xn)

for all n = 0, 1, 2, . . . with k ∈ [0, 1). Then {xn} is a Cauchy sequence.

3. Iterated F -contraction mappings

The following is a fixed point existence result for iterated contraction mappings which
generalizes a result (Theorem 5.1) given in [6]. One may also refer to Corollary 3.2 below
for a generalization of the theorem to a b-metric space.

Theorem 3.1. Let X be a compact b-metric space with the b-metric being continuous and
T : X −→ X be a continuous mapping such that there exist a positive real number α < 1
satisfying

f
(
d(T 2x, Tx)

)
≤ αf

(
d(Tx, x)

)
(1)

for every x ∈ X and for any continuous function f : (0,∞) −→ (0,∞). Then T has a fixed
point.

Proof. Because of the continuity of T , the real valued function N : X −→ (0,∞) defined
by N(x) = f

(
d(x, Tx)

)
for all x ∈ X, is continuous. Since X is compact, N attains its

minimum at, say, x0 ∈ X. Then Tx0 = x0.

For, if x0 6= Tx0 then (1) implies

N(Tx0) = f
(
d(Tx0, T

2x0)
)
< f

(
d(x0, Tx0)

)
= N(x0),

which contradicts the fact that x0 is a minimum point of N . �

The above result have interesting consequences. For instance, if f(x) = 1
x , then we

have the following corollary.

Corollary 3.1. Let X be a compact b-metric space (the b-metric being continuous) and
T : X −→ X be a continuous mapping such that there exist a positive real number β > 1
satisfying

βd(Tx, x) ≤ d(T 2x, Tx) (2)

for every x ∈ X. Then T has a fixed point.

Trivial examples of functions satisfying the relation (2) are the constant functions and
the function T : X −→ X defined by Tx = x for all x ∈ X.

Example 3.1. Consider the b-metric space (X, d), where X = {1, 2, 3, 4} and d : X −→
[0,∞) is defined by

d(x, y) =

{
0, if x = y

x+ y, if x 6= y
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Then (X, d) is a compact b-metric space, and the metric d is also continuous. Consider
the function T : X −→ X defined by Tn = n + 1 for all n = 1, 2, 3 and T4 = 4. Then one
can easily check that for β = 8

7 ,

βd(Tn, n) ≤ d(T 2n, Tn)

for all n ∈ X and hence by Corollary 3.1, T has a fixed point which by inspection is n = 4.

Based on the definition of F -contraction, we define iterated F -contraction mappings
and prove a fixed point result in a complete b-metric space.

Definition 3.1. Let F : (0,∞) −→ R be a mapping satisfying the following conditions.

(F1) F is strictly increasing;
(F2) For each sequence {αn}n∈N of positive numbers limn→∞ αn = 0 if and only if

limn→∞ F (αn) = −∞;
(F3) There exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.
(F4) Let s ≥ 1 be a real number. For each sequence {αn}n∈N of positive numbers such

that τ + F (sαn) ≤ F (αn−1) for all n ∈ N and some τ > 0, then

τ + F (snαn) ≤ F
(
sn−1αn−1

)
for all n ∈ N

For a b-metric space (X, d, s), a mapping T : X −→ X is said to be an iterated
F -contraction if there exists τ > 0 such that d(Tx, x) > 0 implies

τ + F
(
sd(T 2x, Tx)

)
≤ F (d(Tx, x)) for all x ∈ X.

Some examples of functions satisfying conditions F1 – F4 are F1(x) = log x, F2(x) =
x+ log x, F3 = log(x+ x2), etc (one may refer to [4, 12]).

We note here that F -contraction mapping is an iterated F -contraction mapping.
Moreover, an iterated contraction is also an iterated F -contraction. This can be seen by
putting F (x) = log x in the definition of iterated F -contraction. However, since every F -
contraction is a continuous mapping (refer to [17]) and an iterated F -contraction need not
be continuous, it follows that an iterated F -contraction need not be an F -contraction.

Further, it may be noted that F -contractive type mappings are iterated F -contraction.
This can be easily seen by replacing x by Tx and y by x in the definition of F -contractive
type mappings ([8], Definition 1.6). It is also easily seen that an iterated contraction is
necessarily an iterated F -contraction.

Theorem 3.2. Let X be a complete b-metric space with coefficient s ≥ 1 and T : X −→ X
be a continuous mapping such that there exist a positive real number τ satisfying

τ + F
(
sd(T 2x, Tx)

)
≤ F

(
d(Tx, x)

)
(3)

for every x ∈ X. Then T has a fixed point.

Proof. For an arbitrary (but fixed) point x0 ∈ X, one can construct a sequence {xn} in X
with xn+1 = Txn, n = 0, 1, 2, . . . Let µn = d(xn, xn+1), n = 0, 1, 2, . . .

Without loss of generality, assume that µn > 0 for all n = 0, 1, 2, . . . By (3), the
following holds for all n ∈ N:

F (sµn) ≤ F (µn−1)− τ,
and by condition (F4), we have

F (snµn) ≤ F (sn−1µn−1)− τ,

which by induction yields

F (snµn) ≤ F (sn−1µn−1)− τ ≤ F (sn−2µn−2)− 2τ ≤ · · · ≤ F (µ0)− nτ. (4)
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In the limit as n→∞, we get

lim
n→∞

F (snµn) = −∞ so that lim
n→∞

snµn = 0.

By condition (F3), there exists k ∈ (0, 1) such that limn→∞(snµn)kF (snµn) = 0.

Multiplying (4) by (snµn)k, we get

0 ≤ (snµn)kF (snµn) + n(snµn)kτ ≤ (snµn)kF (µ0).

Taking the limit as n→∞, we get limn→∞ n(snµn)k = 0.

Following the proof of Theorem 3.2 in [12], it is seen that {xn} is a Cauchy sequence.
The completeness of X then ensures the existence of a limit point of {xn} in X, that is,
there exists z ∈ X such that limn→∞ xn = z.

Finally, Lemma 2.1 and the continuity of T implies

d(z, Tz) = lim
n→∞

d(xn, Txn) = lim
n→∞

d(xn, xn+1) = 0,

and the proof is complete. �

As a corollary to Theorem 3.2, we get a fixed point result for iterated contractions in
a complete b-metric space (X, d, s) with the b-metric d not necessarily continuous.

Corollary 3.2. Let (X, d, s) be a complete b-metric space and T : X −→ X be a continuous
mapping such that there exist a positive real number α < 1 satisfying

sd(T 2x, Tx) ≤ αd(Tx, x) (5)

for every x ∈ X and for any continuous function f : (0,∞) −→ (0,∞). Then T has a fixed
point.

Proof. The proof follows from Theorem 3.2 by noting that for F (x) = log x the relation (3)
reduces to

sd(T 2x, Tx)

d(Tx, x)
≤ e−τ or, d(T 2x, Tx) ≤ αd(Tx, x)

for some α < 1. �

4. Fundamentally F -contractive type mappings

Recently, Ghoncheh and Razani [7] introduced a class of mappings called fundamen-
tally nonexpansive mappings in a metric space which generalizes Suzuki mappings, where a
mapping T : X −→ X, X a metric space, is said to be fundamentally nonexpansive if

d(T 2x, Ty) ≤ d(Tx, y)

for all x, y ∈ X.

In a similar manner, fundamental contraction mappings may be defined and extended
to b-metric spaces.

Definition 4.1. Let (X, d, s) be a b-metric space. A mapping T : X −→ X is said to be
a fundamental contraction if there exists α < 1 such that

sd(T 2x, Ty) ≤ αd(Tx, y)

for all x, y ∈ X.

Similarly, a mapping T : X −→ X is said to be a fundamental F -contraction if there
exists a positive number τ such that d(Tx, y) 6= 0 implies

τ + F
(
sd(T 2x, Ty)

)
≤ F

(
d(Tx, y)

)
(6)

for all x, y ∈ X.
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We note here that a fundamental contraction is a fundamental F -contraction. Also, a
fundamental F -contraction is an iterated F -contraction. This follows from putting y = x in
(6). However, an iterated F -contraction need not be a fundamental F -contraction as shown
in the following example.

Example 4.1. Consider the function T as defined in Example 2.2 which is an iterated
F -contraction. Now, for x = 0 and y = 1

2 , we have

d

(
T 20, T

1

2

)
=

∣∣∣∣12 − 1

8

∣∣∣∣2 =
32

82
and d

(
T0,

1

2

)
=

∣∣∣∣12 − 1

8

∣∣∣∣2 = 0

so that τ+F
(
sd(T 2x, Ty)

)
6≤ F

(
d(Tx, y)

)
for all x, y ∈ X, and hence T is not a fundamental

F -contraction.

As stated above, a fundamental F -contraction is necessarily an iterated F -contraction
and therefore, the above fixed point results on iterated F - contractions holds true for this
class of mappings too.

Following the definition of F -contractive type mappings [8], we define the following
class of mappings.

Definition 4.2. For a b-metric space (X, d, s), a mapping T : X −→ X is said to
be fundamentally F -contractive type if there exists τ > 0 such that d(x, Tx)d(y, Ty) 6= 0
implies

τ + F
(
sd(T 2x, Ty)

)
≤ 1

2

{
F (d(Tx, y)) + F (d(y, Ty))

}
(7)

and d(x, Tx)d(y, Ty) = 0 implies

τ + F
(
sd(T 2x, Ty)

)
≤ 1

2

{
F (d(x, Ty)) + F (d(Tx, y))

}
(8)

for all x, y ∈ X.

We note here that on putting y = x in the above definition, we get the definition of
iterated F -contraction and thus the existence of a fixed point is ensured by Theorem 3.2.
The following is a unique fixed point existence result for a fundamentally F -contractive type
mapping in a complete b-metric space without assuming the continuity of the mapping.

Theorem 4.1. Let (X, d, s) be a complete b-metric space and T : X −→ X be a fundamen-
tally F -contractive type mapping. Then T have a unique fixed point.

Proof. For an arbitrary (but fixed) point x0 ∈ X, one can construct a sequence {xn} in X
with xn+1 = Txn, n = 0, 1, 2, . . . Let µn = d(xn, xn+1), n = 0, 1, 2, . . .

Without loss of generality, assume that µn > 0 for all n = 0, 1, 2, . . . By (7), putting
x = xn and y = xn+2 the following holds for all n ∈ N:

F (sµn+3) ≤ F (µn+2)− 2τ,

and by condition (F4), we have

F (snµn) ≤ F (sn−1µn−1)− 2τ,

which by induction yields

F (snµn) ≤ F (sn−1µn−1)− 2τ ≤ F (sn−2µn−2)− 4τ ≤ · · · ≤ F (µ0)− 2nτ.

As in the proof of Theorem 3.2, we see that {xn} is a Cauchy sequence. Since (X, d, s)
is a complete b-metric space, there exists z ∈ X such that limn→∞ xn = z.
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Now, from (7) the following holds for all n ∈ N.

F
(
d(xn+2, T z)

)
= F

(
d(T 2xn, T z)

)
≤ 1

2

{
F
(
d(Txn, z)

)
+ F

(
d(z, Tz)

)}
=

1

2

{
F
(
d(xn+1, z)

)
+ F

(
d(z, Tz)

)}
.

Now, by Lemma 2.1, limn→∞ d(xn+1, z) = 0 and limn→∞ d(xn+2, T z) = d(z, Tz).
Hence taking the limit as n→∞ in the above relation, we get

F
(
d(z, Tz)

)
= −∞ or, d(z, Tz) = 0,

showing that z is a fixed point of T .

Finally, if possible let w 6= z be another fixed point of T , then by (8) we get

τ + F
(
d(w, z)

)
≤ F

(
d(w, z)

)
implying τ ≤ 0, a contradiction and hence the fixed point is unique. This completes the
proof. �

Example 4.2. Consider the complete metric space (X, d) where X = [0, 1] ∪ [2,∞) and
d(x, y) = min{x+ y, 2} if x 6= y and d(x, y) = 0 if x = y, and the discontinuous function T
defined by

Tx =


1
2 , 0 ≤ x < 1

0, x = 1
1
2 −

1
x , x ≥ 2

as in Example 2.4 [8]. First we note that for the function F (x) = log x, conditions (7) and
(8) reduces respectively to

sd(T 2x, Ty) ≤ e−2τd(Tx, y)d(y, Ty) (9)

and

sd(T 2x, Ty) ≤ e−τH(x, y) (10)

where H(x, y) = max
{
d(x, y), d(x, Ty), d(Tx, y)

}
.

Now, for x, y ≥ 2 and x 6= y, d(x, Tx)d(y, Ty) 6= 0 and we have

d(T 2x, Ty) = d

(
1

2
,

1

2
− 1

y

)
= min

{
1− 1

y
, 2

}
= 1− 1

y
≤ 1

and

d(Tx, y)d(y, Ty) = d

(
1

2
− 1

x
, y

)
d

(
y,

1

2
− 1

y

)
= 4

so that (9) is satisfied for e−2τ = 1
4 or τ = log 2.

And, if 1
2 6= x ∈ [0, 1) and y ≥ 2, d(x, Tx)d(y, Ty) 6= 0 and we have

d(T 2x, Ty) = d

(
1

2
,

1

2
− 1

y

)
= min

{
1− 1

y
, 2

}
= 1− 1

y
≤ 1

and

d(Tx, y)d(y, Ty) = d

(
1

2
, y

)
d

(
y,

1

2
− 1

y

)
= 4

so that (9) is satisfied for τ = log 2.

Again, if 1
2 6= x ∈ [0, 1)

d(T 2x, T1) = d

(
1

2
, 0

)
= min

{
1

2
+ 0, 2

}
=

1

2
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and

d(Tx, 1)d(1, T1) = d

(
1

2
, 1

)
d (1, 0) =

3

2

so that (9) is satisfied for e−2τ = 1
3 or τ = log

√
3.

Also, for x ≥ 2

d(T 2x, T1) = d

(
1

2
− 1

x
, 0

)
= min

{
1

2
− 1

x
, 2

}
≤ 1

2

and

d(Tx, 1)d(1, T1) = d

(
1

2
− 1

x
, 1

)
d (1, 0) = min

{
3

2
− 1

x
, 2

}
≥ 1

so that (9) is satisfied for e−2τ = 1
2 or τ = log

√
2.

Further, for 0 ≤ x ≤ 1

d

(
T 2x, T

1

2

)
= d

(
1

2
,

1

2

)
= 0

and finally, for x ≥ 2

d

(
T 2x, T

1

2

)
= d

(
1

2
,

1

2

)
= 0

so that (10) is trivially satisfied for all x, y ∈ X with d(Tx, y)d(y, Ty) = 0. Thus for

τ = log
√

2, (9) is satisfied for all x, y ∈ X with d(Tx, y)d(y, Ty) 6= 0 and (10) is satisfied
for all x, y ∈ X with d(Tx, y)d(y, Ty) = 0.

Hence all the conditions of Theorem 4.1 are satisfied and therefore T has a unique
fixed point, which is x = 1

2 .

Definition 4.2 can be obtained from the definition of F -contractive type mappings ([8],
Definition 1.6) as F -contractive type mappings are iterated F -contractions and the fact that,
for any positive numbers a and b, either

1

3
(2a+ b) ≤ 1

2
(a+ b) or

1

3
(a+ 2b) ≤ 1

2
(a+ b). (11)

For, replacing x by Tx in condition (1) of Definition 1.6 [8], we get,

τ + F
(
d(T 2x, Ty)

)
≤ 1

3

{
F
(
d(Tx, y)

)
+ F

(
d(T 2x, Tx)

)
+ F

(
d(y, Ty)

)}
If F

(
d(T 2x, Tx)

)
≤ F

(
d(Tx, y)

)
or F

(
d(T 2x, Tx)

)
≤ F

(
d(y, Ty)

)
, we get (7). If

F
(
d(T 2x, Tx)

)
> F

(
d(Tx, y)

)
and F

(
d(T 2x, Tx)

)
> F

(
d(y, Ty)

)
, we get a contradiction to

the fact that F -contractive type mappings are iterated F -contractions.

Now, if x is a fixed point of T , condition (2) of Definition 1.6 [8] gives

τ + F
(
d(T 2x, Ty)

)
≤ 1

3

{
2F
(
d(Tx, y)

)
+ F

(
d(x, Ty)

)}
which by (11) implies (8). Similar result is obtained if y is a fixed point. We have thus
proved the following proposition.

Proposition 4.1. Every F -contractive type mapping is a fundamentally F -contractive type
mapping.

Finally, we consider the following example to show that a fundamentally F -contractive
type mapping need not be an F -contractive type mapping.



Iterated F -contractions in b-metric spaces 35

Example 4.3. Consider the complete metric space (X, d) where X = [0, 1] ∪[2,∞) with
the metric d on X defined by

d(x, y) =

{
min

{
x+ y, 1.75

}
, x 6= y

0, x = y

Consider the function T : X −→ X defined by

Tx =

{
1, 0 ≤ x ≤ 1
1
x , x ≥ 2

For x, y ∈ [0, 1] with x 6= 1 and y 6= 1, we have F
(
d(T 2x, Ty)

)
= F

(
d(1, 1)

)
= −∞,

and (7) is trivially satisfied.

For x, y ≥ 2, we have

F
(
d(T 2x, Ty)

)
= F

(
d

(
1,

1

y

))
= F

(
1 +

1

y

)
≤ F

(
1.5
)

and

1

2

{
F
(
d(Tx, y)

)
+ F

(
d(y, Ty)

)}
=

1

2

{
F

(
1

x
+ y

)
+ F

(
y +

1

y

)}
= F

(
1.75

)
and since F is strictly increasing, we can find τ > 0 such that (7) holds.

For 1 6= x ∈ [0, 1] and y ≥ 2 or vice versa, we have

F
(
d(T 2x, Ty)

)
= F

(
d

(
1,

1

y

))
= F

(
1 +

1

y

)
≤ F

(
1.5
)

and
1

2

{
F
(
d(Tx, y)

)
+ F

(
d(y, Ty)

)}
=

1

2

{
F (1 + y) + F

(
y +

1

y

)}
= F

(
1.75

)
and hence (7) holds for some τ > 0.

Also, for y ∈ [0, 1], F
(
d(T 21, Ty)

)
= F (d (1, 1)) = −∞, and (8) is trivially satisfied.

Finally, for y ≥ 2, we have

F
(
d(T 21, Ty)

)
= F

(
d

(
1,

1

y

))
= F

(
1 +

1

y

)
≤ F

(
1.5
)

and
1

2

{
F
(
d(1, T y)

)
+ F

(
d(T1, y)

)}
=

1

2

{
F

(
1 +

1

y

)
+ F (1 + y)

}
> F

(
1.5
)
.

Since F is strictly increasing, we can find some τ > 0 for which (8) holds true. Thus,
T is a fundamentally F -contractive type mapping.

We shall show that T is not an F -contractive type mapping. As in Example 1.7 [8],
for F = log x the F -contractive conditions are:

d(x, Tx)d(y, Ty) 6= 0 implies

s3d(Tx, Ty)3 ≤ e−3τd(x, y)d(x, Tx)d(y, Ty) (12)

and d(x, Tx)d(y, Ty) = 0 implies

s3d(Tx, Ty)3 ≤ e−3τd(x, y)d(x, Ty)d(y, Tx). (13)

Now, for x = 0 and y = 2, we have

d(Tx, Ty)3 = d

(
1,

1

2

)3

=

(
3

2

)3

= 3.375
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and

e−3τd(x, y)d(x, Tx)d(y, Ty) = e−3τd(0, 2)d(0, 1)d

(
2,

1

2

)
= e−3τ × 1.75× 1× 1.75 = e−3τ × 3.0625.

Thus equation (12) is not satisfied for any τ > 0 and hence T is not an F -contractive
type mapping.

5. Conclusion

We introduced new classes of mappings called iterated F -contraction and fundamen-
tally F -contractive type mappings in a b-metric space and obtained some fixed point exis-
tence results for such classes of mappings.
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