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MATHEMATICAL DESCRIPTION OF THE DENSITY 
PROFILE FOR THE INTERACTION OF AN ULTRA-HIGH 
INTENSITY LASER PULSE WITH A NANOSTRUCTURED 

FLAT-TOP CONE 

Maria MARTIȘ1, Olimpia BUDRIGĂ2 

The density profile of the plasma created by an ultra-high intensity laser pulse 
interacting with a new nanostructured flat-top cone target is described 
mathematically. The walls and the top of the nanostructured flat-top cone are coated 
with a layer of nanospheres which have the same diameter and are tangent to each 
other. This density profile is useful in two-dimensional Particle-in-Cell simulations 
for laser-ion acceleration.  

Keywords: nanostructured flat-top cone, density profile, ultra-high intensity laser 
pulse, nanospheres. 

1. Introduction 

In the last two decades, a lot of target geometries were proposed in order to 
obtain very energetic protons which can be used to treat cancer [1–6]. Several 
papers showed that the interaction of the ultra-high intensity laser pulse with a 
micro-cone target can generate protons accelerated at energies of tens of MeV with 
low angular divergence and high laser absorption [7–11] in the Target Normal 
Sheath Acceleration and Direct laser-light-pressure regimes. Other works were 
devoted to different kinds of cone targets suitable for proton acceleration at energies 
up to few tens of MeV [12–17] or high-power laser pulse intensification [18]. We 
proposed in a previous article a plastic flat-top cone with a nanostructured foil in 
the top, named as ‘cone with nanospheres’ [19]. In the case of the interaction of a 
circularly polarized ultra-high intensity laser pulse with a flat-top cone and a cone 
with nanospheres we obtained more energetic protons and carbon ions for the cone 
with nanospheres. These results motivated us to improve this cone target. 

We propose a new nanostructured cone target. It is a flat-top cone with the 
walls and the top coated inside with nanospheres. These nanospheres have the same 
diameter and are tangent to the walls as well as to each other. We depict 
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mathematically the density profile of the initial plasma created by an ultra-high 
intensity laser pulse interacting with a nanostructured flat-top cone. This density 
profile is designed to be used in two-dimensional Particle-in-Cell (PIC) codes.  
 This paper is organized as follows. In Section 2, we describe the 
nanostructured flat-top cone inside a simulation box. In Section 3, we obtain the 
formula for the number of nanospheres from the top of the cone and the formula for 
the number of nanospheres on the walls of the cone. In Section 4, we find the 
conditions for a charged particle associated with a mathematical point to be inside 
or outside of a nanosphere (from the walls or the top of the cone). We conclude 
with some remarks. 

           

2. Parameters of a nanostructured flat-top cone inside a simulation box 

Particle-in-Cell (PIC) simulation codes need an initial density profile of the 
initial plasma created at the interaction of an ultra-high intensity laser pulse with a 
target. The density profile corresponds to the geometry shape of the target, in our 
case a nanostructured flat-top cone. This cone has curved walls. PIC simulations 
are performed by inserting the target in a simulation box. In Figure 1 we sketch a 
two-dimensional nanostructured flat-top cone geometry inside a simulation box.  

 

 
Fig. 1. The geometry of the longitudinal section of the nanostructured flat-top cone inside a 

simulation box. 
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The nanostructured flat-top cone parameters are relative to a Cartesian 
coordinate system whose origin O is the left down corner of the simulation box. 
The x- and y-axis are the two perpendicular sides of the simulation box which 
intersect at the point O. The target has a conical shape with curved walls. Both walls 
have a given thickness, gwall. The walls are circular arcs of the circles with the radii 
R1 and R2=R1+gwall, with the centers C1(x1,c1) and C2(x2,c2=ly-c1), respectively. 
There is a foil on the top with the thickness gfoil and width lfoil. The other geometric 
parameters of the nanostructured cone are: the height hcone, the large base of the 
cone gbase and the small base of the cone gneck (Figure 1). The walls and the top are 
coated inside with nanospheres as can be seen in Figure 1. All nanospheres have 
the same diameter dns and are tangent to each other. The nanostructured cone is 
inserted in a simulation box with the width lx and the height ly. In the PIC simulations 
one must consider a vacuum before the target. We denote the vacuum width as lv. 
 We have also the following notations in Figure 1: B1(2) are the interior points 
of the intersection of the cone base with the bottom (upper) wall of the cone and 
A1(2) are the interior points of the intersection of the top of the cone with the bottom 
(upper) wall of the cone. 
 In Figures 2(a) and 2(b) is drawn the arrangement of the nanospheres on the 
walls and top of the cone, respectively.  
    

 
Fig. 2. (a) The enlarged scale geometry of the bottom wall of the nanostructured flat-top cone and 

the mathematical point associated with a charged particle M(xM,yM); (b) The enlarged scale 
geometry of the cone top.  
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The mathematical notations and quantities from the Figures 2(a) and 2(b) 
which will be used in our formulas are:  
Q1 - the center of the first nanosphere tangent to the top of the cone and to the arc 
𝐴𝐴1𝐵𝐵1;  
Qn - the center of the last nanosphere tangent to the arc 𝐴𝐴1𝐵𝐵1, closest to the base of 
the cone, where n is the total number of nanospheres tangent to the cone wall; 
𝑄𝑄𝑚𝑚′ - the center of the last nanosphere tangent to the top of the cone and to the arc 
A2B2, where m is the total number of nanospheres tangent to the cone top. 
M(xM,yM) - a mathematical point associated with a charged particle (electron, proton 
or ion)  
𝜃𝜃 ≝ 𝑚𝑚�𝑄𝑄1𝐶𝐶1𝐴𝐴1� �, 𝛼𝛼 ≝  𝑚𝑚�𝐵𝐵1𝐶𝐶1𝐴𝐴1� � ⇒  𝑚𝑚�𝐵𝐵1𝐶𝐶1𝑄𝑄1� � = 𝛼𝛼 − 𝜃𝜃  
𝜑𝜑 ≝  𝑚𝑚�𝑄𝑄𝚤𝚤+1𝐶𝐶1𝑄𝑄𝚤𝚤� �, where 𝑖𝑖 = 1,𝑛𝑛 − 1����������. 

We consider the following variables as being known: hcone, gbase, gneck, gfoil, 
lfoil, lv, lx, ly, dns and c1. 

We notice that we have a high enough number of nanospheres tangent to the 
walls of the cone, such that the angles 𝜃𝜃 and 𝜑𝜑 are smaller than π/2. All the centers 
of the n nanospheres on a cone wall, Q1, …, Qn, are on a circle with the center C1 
and the radius R2+dns/2. 
 The configuration from above describes mathematically the density profile 
used in the PIC simulations of the interaction of an ultra-high intensity laser pulse 
with a nanostructured cone target. 
 

3. The number of nanospheres 

 To be able to describe the density profile for the nanostructured cone it is 
necessary to know how many nanospheres can coat the walls on the inside. For this 
propose, we need to find the abscissa of the circle center C1(x1, c1) and the other 
quantities depending on the known values. 
 

 
Fig. 3. Two possible cases of the position of the circle center C1: (𝑎𝑎) 𝑥𝑥1 < ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣;  (𝑏𝑏) 𝑥𝑥1 ≥

ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣 . 
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 Due to the fact that the arc A1B1 is a part of the circle with the center C1 and 
the target is a cone trunk with a small base A1A2 and a large base B1B2, as can be 
seen in Figure 1, the point C1 can be located between the points A1 and B1 (case (a)) 
or in front of the point A1 (case (b)), as can be seen in Figure 3.  In order to find the 
abscissa of the circle center C1, we must calculate the lengths of the segments NC1, 
B1N, C1P and A1P (Figure 3). It is straightforward to evaluate them as following: 
(a) For 𝑥𝑥1 < ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣 we have 
       𝑁𝑁𝐶𝐶1 =  𝑥𝑥1 − 𝑙𝑙𝑣𝑣                                                                                              (1) 
        𝐵𝐵1𝑁𝑁 =  𝑙𝑙𝑦𝑦−𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2
− 𝑐𝑐1                                                                                     (2)    

   𝐶𝐶1𝑃𝑃 = ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣 − 𝑥𝑥1                                                                                  (3) 
       𝐴𝐴1𝑃𝑃 = 𝑙𝑙𝑦𝑦−𝑔𝑔𝑛𝑛𝑏𝑏𝑛𝑛𝑛𝑛

2
− 𝑐𝑐1                                                                                      (4) 

(b) For 𝑥𝑥1 ≥ ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣,  𝑁𝑁𝐶𝐶1,  𝐵𝐵1𝑁𝑁, 𝐴𝐴1𝑃𝑃  have the same dimensions as in case (a) 
and  

       𝐶𝐶1𝑃𝑃 =  𝑥𝑥1 − (ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣)                                                                             (5) 
      Due to the fact that B1C1=A1C1=R2 the radius of the circle with the center 
C1(x1,c1) and using the Pythagorean Theorem in the right-angle triangles ΔB1NC1 
and ΔA1PC1 we obtain the formula for the abscissa x1 

    𝑥𝑥1 = �𝑙𝑙𝑦𝑦−2𝑐𝑐1−𝑔𝑔𝑛𝑛𝑏𝑏�𝑔𝑔𝑏𝑏𝑛𝑛
2ℎ𝑛𝑛𝑐𝑐𝑛𝑛𝑏𝑏

  + ℎ𝑛𝑛𝑐𝑐𝑛𝑛𝑏𝑏+2𝑙𝑙𝑣𝑣
2

,                                                             (6) 

     where 𝑔𝑔𝑐𝑐𝑛𝑛 = 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑔𝑔𝑛𝑛𝑏𝑏𝑛𝑛𝑛𝑛
2

,  𝑔𝑔𝑛𝑛𝑐𝑐 = 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑔𝑔𝑛𝑛𝑏𝑏𝑛𝑛𝑛𝑛
2

 
 But m is the number of the nanospheres from the top of the con, i. e. an 
integer number, therefore we have 

𝑚𝑚 = �𝑔𝑔𝑛𝑛𝑏𝑏𝑛𝑛𝑛𝑛
𝑑𝑑𝑛𝑛𝑏𝑏

�                                                                                                (7) 
 Also, n is the number of nanospheres tangent to one of the inside walls of 
the cone. It is straightforward to determine the inequalities 
            (𝑛𝑛 − 1) ⋅ 𝜑𝜑 < 𝛼𝛼 and 𝜃𝜃 + 𝑛𝑛𝜑𝜑 ≥ 𝛼𝛼,  𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝜃𝜃,𝜑𝜑 ∈ (0,𝜋𝜋 2⁄ )                        (8) 
We obtain from the relations (8) the condition which the number n must fulfill 

 𝛼𝛼−𝜃𝜃
𝜑𝜑

≤ 𝑛𝑛 < 𝛼𝛼−𝜃𝜃
𝜑𝜑

+ 1                                                                                  (9) 
From the relation (9) and due to the fact that n is an integer number, n must be the 
integer part of the ratio (α-θ)/φ 
             𝑛𝑛 = �𝛼𝛼−𝜃𝜃

𝜑𝜑
�                                                                                                (10)  

In order to determine the number of nanospheres on the cone walls, n we 
have to find the quantities 𝛼𝛼, 𝜑𝜑 and θ.  
  Aa a consequence of the condition 𝛼𝛼 ∈ (0,𝜋𝜋), the cos function is bijective 
and thus the inverse 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎 𝛼𝛼 is uniquely determined. We apply the generalized 
Pythagorean Theorem in the triangle ∆𝐴𝐴1𝐵𝐵1𝐶𝐶1  and we get 

𝛼𝛼 = 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎 𝑎𝑎 �1 − 𝐴𝐴1𝐵𝐵12

2𝑅𝑅22
�                                                                         (11) 
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We notice that in order to find out the angle 𝛼𝛼 we must find the values of 
the segment A1B1 and the radius R2. 

We get the A1B1 length considering the fact that the points A1 and B1 have 
known coordinates,  

 𝐴𝐴1𝐵𝐵1 = �ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑔𝑔𝑛𝑛𝑐𝑐2                                                                           (12) 
In order to determine the radius R2 we apply Pythagoras' Theorem in the triangle 
ΔC1B1N and find 

𝑅𝑅2 = ��𝑙𝑙𝑦𝑦−𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
2

− 𝑐𝑐1�
2

+ (𝑥𝑥1 − 𝑙𝑙𝑣𝑣)2                                                   (13) 
Inserting the formulas (12) and (13) in the relation (11) we get the formula of the 
quantity α 

 𝛼𝛼 = arccos �1 − ℎ𝑛𝑛𝑐𝑐𝑛𝑛𝑏𝑏2 +𝑔𝑔𝑏𝑏𝑛𝑛
2

2��
𝑙𝑙𝑦𝑦−𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 −𝑐𝑐1�
2
+(𝑥𝑥1−𝑙𝑙𝑣𝑣)2�

�                                       (14)    

In order to find the 𝜑𝜑 angle we apply generalized Pythagorean Theorem in 
the triangle ∆Q1C1Q2 and obtain 

𝜑𝜑 = 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎 �1 − 𝑑𝑑𝑛𝑛𝑏𝑏2

2𝑅𝑅22
�                                                                           (15) 

To determine the θ angle we apply the generalized Pythagorean Theorem in 
the triangle  ∆𝑄𝑄1𝐶𝐶1𝐴𝐴1  and achieve 

         𝑄𝑄1𝐴𝐴12 = 𝑄𝑄1𝐶𝐶12 + 𝐶𝐶1𝐴𝐴12 − 2𝑄𝑄1𝐶𝐶1 ⋅ 𝐶𝐶1𝐴𝐴1 ⋅ cos 𝜃𝜃                                        (16)                                                        
From the definition of the distance between two points we find 

         𝑄𝑄1𝐴𝐴12 = (𝑥𝑥1 − 𝑥𝑥𝐴𝐴1)2 − (𝑦𝑦𝑄𝑄1 − 𝑦𝑦𝐴𝐴1)2                                                      (17) 
Therefore, considering the formulas (16) and (17) and the fact that 𝜃𝜃 < 𝜋𝜋 

we obtain that the cosine function is bijective and its inverse arccos is uniquely 
determined. This means that the 𝜃𝜃 angle is uniquely determined and has the 
formula    

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎 𝑄𝑄1𝐶𝐶1
2+𝑅𝑅22−𝑄𝑄1𝐴𝐴12

2𝑄𝑄1𝐶𝐶1⋅𝑅𝑅2
                                                                        (18) 

We must notice that 𝜃𝜃 can be calculated only if we find the Cartesian 
coordinates of the point Q1.  

The nanosphere with the center 𝑄𝑄1(𝑥𝑥𝑄𝑄1 ,𝑦𝑦𝑄𝑄1) is tangent to the top of the cone 
and to the wall of cone and hence we have 

𝑥𝑥𝑄𝑄1 = ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣 − 𝑑𝑑𝑐𝑐𝑛𝑛 2⁄                                                                     (19) 
𝐶𝐶1𝑄𝑄1 = 𝑅𝑅2 + 𝑑𝑑𝑐𝑐𝑛𝑛 2⁄                                                                               (20) 

From the definition of the distance between two points we find   
  𝐶𝐶1𝑄𝑄12 = (𝑥𝑥1 − 𝑥𝑥𝑄𝑄1)2 + (𝑐𝑐1 − 𝑦𝑦𝑄𝑄1)2                                                       (21) 
Hence, from the formulas (19), (20) and (21) we obtain the y-coordinate of 

the point Q1  
𝑦𝑦𝑄𝑄1 = 𝑐𝑐1 + �(𝑅𝑅2 + 𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ )2 − (𝑥𝑥1 − ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑙𝑙𝑣𝑣 + 𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ )2              (22) 
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The number of the nanospheres from the inside cone walls can be find 
from the relations (10), (13), (14), (15), (18), (19) and (20).  

4. The conditions for a charged particle from the initial plasma to be 
inside a nanosphere 

 A charged particle has an infinitesimal dimension, so we can associate an 
M(xM,yM) mathematical point with it (Figure 1). The cone is a fixed target and 
because the nanospheres are tangent to the cone, it means that they have a fixed 
position. 
 Also, in the case when the M point doesn’t belong to the area of a 
nanosphere from the cone walls, we must search which is the nanosphere closest to 
the M point. Therefore, we need to find the indices of the centers of two consecutive 
nanospheres, the ith and (i+1)th nanospheres closest to the M point. Therefore, the 
M point will be inside an angle 𝑄𝑄𝚤𝚤𝐶𝐶1𝑄𝑄𝚤𝚤+1� . We must find the index i < n. It is 
straightforward to obtain the i index as the ratio 𝑚𝑚(𝑀𝑀𝐶𝐶1𝐴𝐴1)�  𝜑𝜑⁄  (Figure 2(a)).  

We must find the coordinates of the centers of the tangent nanospheres at 
the cone walls and at the top of the cone. In order to determine if the M point is 
inside of a nanosphere, we must obtain the distance from M to Qi, and by using this 
value, the distance from M to the Qi+1 point. Thus, we achieve the coordinates of 
the centers Qi by means of a recurrence formula. 
 For a better understanding of how to obtain the coordinates of the Qi centers 
we draw a scheme of the positions of the points C1, A1, Q1 and Qi in Figure 4. 

 

 
Fig. 4. The positions of the points C1, A1, Q1 and Qi. 

 For the achievement of the coordinates of the nanosphere centers on the 
cone walls we apply the generalized Pythagorean Theorem in triangle  ∆𝐴𝐴1𝐶𝐶1𝑄𝑄𝑖𝑖. 
We get 
�𝑥𝑥𝐴𝐴2 − 𝑥𝑥𝐶𝐶1

2 � + �𝑦𝑦𝐴𝐴2 − 𝑦𝑦𝐶𝐶1
2 � − 2�𝑥𝑥𝐴𝐴1 − 𝑥𝑥𝐶𝐶1�𝑥𝑥𝑖𝑖 − 2�𝑦𝑦𝐴𝐴1 − 𝑦𝑦𝐶𝐶1�𝑦𝑦𝑖𝑖 = 𝑅𝑅𝑖𝑖𝜑𝜑           (23) 
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where 𝑅𝑅𝑖𝑖𝜑𝜑 ≝ 𝑅𝑅22 − 2𝑅𝑅2(𝑅𝑅2 + 𝑑𝑑)𝑐𝑐𝑎𝑎𝑎𝑎(𝜃𝜃 + (𝑖𝑖 − 1)𝜑𝜑). 
We do the same in the triangle ∆𝐶𝐶1𝑄𝑄1𝑄𝑄𝑖𝑖 and we get 

2�𝑥𝑥1 − 𝑥𝑥𝑄𝑄1�𝑥𝑥𝑖𝑖 + 2�𝑦𝑦𝐶𝐶1 − 𝑦𝑦𝑄𝑄1�𝑦𝑦𝑖𝑖 − �𝑥𝑥12 − 𝑥𝑥𝑄𝑄1
2 � − �𝑦𝑦𝐶𝐶1

2 − 𝑦𝑦𝑄𝑄1
2 � = 𝑅𝑅𝑖𝑖𝜑𝜑1           (24) 

where 𝑅𝑅𝑖𝑖𝜑𝜑1 ≝ (𝑅𝑅2 + 𝑑𝑑)2 − 2(𝑅𝑅2 + 𝑑𝑑)2𝑐𝑐𝑎𝑎𝑎𝑎�(𝑖𝑖 − 1)𝜑𝜑�. 
Taking into account the relations (23) and (24) we obtain a system of two 

equations with two variables, xi and yi: 

�
2(𝑥𝑥1 − 𝑥𝑥𝐴𝐴)𝑥𝑥𝑖𝑖 + 2�𝑦𝑦𝐶𝐶1 − 𝑦𝑦𝐴𝐴�𝑦𝑦𝑖𝑖 = 𝑅𝑅𝑖𝑖𝜑𝜑 − �𝑥𝑥𝐴𝐴2 + 𝑦𝑦𝐴𝐴2 − 𝑥𝑥12 − 𝑦𝑦𝐶𝐶1

2 �
  2�𝑥𝑥1 − 𝑥𝑥𝑄𝑄1�𝑥𝑥𝑖𝑖 + 2�𝑦𝑦𝐶𝐶1 − 𝑦𝑦𝑄𝑄1�𝑦𝑦𝑖𝑖 = 𝑅𝑅𝑖𝑖𝜑𝜑1 + �𝑥𝑥12 + 𝑦𝑦𝐶𝐶1

2 − 𝑥𝑥𝑄𝑄1
2 − 𝑦𝑦𝑄𝑄1

2 �
          (25) 

We must notice that 2𝑎𝑎 ∙ 𝑦𝑦𝑖𝑖 = 𝑅𝑅𝑖𝑖𝜑𝜑2  and −2𝑎𝑎𝑥𝑥𝑖𝑖 = 𝑅𝑅𝑖𝑖𝜑𝜑3 ,  where 
𝑎𝑎 = �𝑦𝑦𝐶𝐶1 − 𝑦𝑦𝐴𝐴1��𝑥𝑥1 − 𝑥𝑥𝑄𝑄1� − �𝑦𝑦𝐶𝐶1 − 𝑦𝑦𝑄𝑄1��𝑥𝑥1 − 𝑥𝑥𝐴𝐴1�                                (26) 

𝑅𝑅𝑖𝑖𝜑𝜑2 = 𝑅𝑅𝑖𝑖𝜑𝜑 − �𝑥𝑥𝐴𝐴1
2 + 𝑦𝑦𝐴𝐴1

2 − 𝑥𝑥12 − 𝑦𝑦𝐶𝐶1
2 ��𝑥𝑥1 − 𝑥𝑥𝑄𝑄1�

− �𝑅𝑅𝑖𝑖𝜑𝜑1 + 𝑥𝑥12 + 𝑦𝑦𝐶𝐶1
2 − 𝑥𝑥𝑄𝑄1

2 − 𝑦𝑦𝑄𝑄1
2 ��𝑥𝑥1 − 𝑥𝑥𝐴𝐴1� 

𝑅𝑅𝑖𝑖𝜑𝜑3 = �𝑅𝑅𝑖𝑖𝜑𝜑 − 𝑥𝑥𝐴𝐴1
2 − 𝑦𝑦𝐴𝐴1

2 + 𝑥𝑥12 + 𝑦𝑦𝐶𝐶1
2 ��𝑦𝑦𝐶𝐶1 − 𝑦𝑦𝑄𝑄1�

− �𝑅𝑅𝑖𝑖𝜑𝜑1 + 𝑥𝑥12 + 𝑦𝑦𝐶𝐶1
2 − 𝑥𝑥𝑄𝑄1

 2 − 𝑦𝑦𝑄𝑄1
2 ��𝑦𝑦𝐶𝐶1 − 𝑦𝑦𝐴𝐴1�  

We can see that the quantities defined above to simplify the calculations 
𝑅𝑅𝑖𝑖𝜑𝜑 ,  𝑅𝑅𝑖𝑖𝜑𝜑1 ,  𝑅𝑅𝑖𝑖𝜑𝜑2 ,𝑅𝑅𝑖𝑖𝜑𝜑3  𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎  are known, because they are defined as function of 
known quantities. Therefore, from the equations (24), (25) and (26) we obtain the 
y-coordinate of the center of the ith nanosphere, Qi  

𝑦𝑦𝑖𝑖 =
𝑅𝑅𝑖𝑖𝑖𝑖
2

2𝑛𝑛
                                                                                                      (27) 

and the x-coordinate,  

𝑥𝑥𝑖𝑖 = −
𝑅𝑅𝑖𝑖𝑖𝑖
3

𝑛𝑛
                                                                                                   (28) 

For the nanospheres on the top of the cone we find the coordinates of the 
𝑄𝑄𝑖𝑖′, 𝑖𝑖 = 1,𝑚𝑚������ centers also by a recurrence formula. These are straightforward to 
determine because we know the coordinates of the center Q1, the diameter of a 
nanosphere and the small base of the inside of the cone gneck. Due to the fact that 
the nanospheres on the top of the cone are tangent to the top of the cone we deduce 
that their centers have the same abscissa. From the formula (19) we obtain 

𝑥𝑥𝑄𝑄𝑖𝑖′ = ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣 − 𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ , 𝑖𝑖 = 2,𝑚𝑚������                                                          (29) 
 If we look at the Figure 2(b), we deduce that 𝑦𝑦𝑄𝑄𝑖𝑖′ = 𝑦𝑦𝑄𝑄𝑖𝑖−1′ + 𝑑𝑑𝑐𝑐𝑛𝑛. By using 
formula (22) we get the recurrence formula for the y-coordinate of the nanosphere 
center Qi

’ 

𝑦𝑦𝑄𝑄𝑖𝑖′ = 𝑦𝑦𝑄𝑄1 + (𝑖𝑖 − 1)𝑑𝑑𝑐𝑐𝑛𝑛                                                                                  (30) 
As explained above, in order to find out which is the nanosphere on the cone 

wall closest to the M point, we must first find the measure of the angle 𝑀𝑀𝐶𝐶1𝐴𝐴1� . For 
this, we apply generalized Pythagorean Theorem in the triangle ∆𝐴𝐴1𝐶𝐶1𝑀𝑀 (Figure 
2(a)) and get 

https://hallo.ro/dictionar-englez-roman/y-coordinate
https://hallo.ro/dictionar-englez-roman/y-coordinate
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𝑚𝑚� 𝑀𝑀𝐶𝐶1𝐴𝐴1� � = 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎 𝑀𝑀𝐶𝐶1
2+𝑅𝑅22−𝑀𝑀𝐴𝐴12

𝑅𝑅2⋅𝑀𝑀𝐶𝐶1
                                                (31) 

Because the coordinates of the points M, C1 and A1 are known, the segments 
MC1 and MA1 are uniquely determined.  

Considering all the formulas achieved above and the fact that a cone has a 
symmetry axis perpendicular to the bases of the cone, we write below an algorithm 
for the calculation of the position of a M point.  

If 𝑥𝑥𝑀𝑀 > ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣  or 𝑥𝑥𝑀𝑀 < 𝑙𝑙𝑣𝑣, then the M point is outside the cone, so it is 
outside the nanospheres; 

If  𝑙𝑙𝑣𝑣 ≤ 𝑥𝑥𝑀𝑀 ≤ ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣, then 
   If 𝑦𝑦𝑀𝑀 < 𝑦𝑦𝐵𝐵1  𝑎𝑎𝑎𝑎 𝑦𝑦𝑀𝑀 > 𝑦𝑦𝐵𝐵2, then the M point is outside the nanospheres; 
If  𝑦𝑦𝑀𝑀 ≥ 𝑦𝑦𝐵𝐵1  𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦𝑀𝑀 ≤ 𝑦𝑦𝐵𝐵2, then 

               If  𝑑𝑑(𝑀𝑀,𝐶𝐶1) < 𝑅𝑅2, then the M point is outside the nanospheres; 
               If  𝑅𝑅2 ≤ 𝑑𝑑(𝑀𝑀,𝐶𝐶1) ≤ 𝑅𝑅2 + 𝑑𝑑𝑐𝑐𝑛𝑛, then 

      If 𝑚𝑚(∢𝑀𝑀𝐶𝐶1𝐴𝐴1) > 𝜃𝜃 𝑎𝑎𝑛𝑛𝑑𝑑 𝑚𝑚(∢𝑀𝑀𝐶𝐶1𝐵𝐵1) > 𝛼𝛼 − 𝜃𝜃, then  
𝑀𝑀 ∈ 𝐼𝐼𝑛𝑛𝑤𝑤(𝑄𝑄𝚤𝚤+1𝐶𝐶1𝑄𝑄𝚤𝚤� ), where   𝑖𝑖 = �𝑚𝑚(∢𝑀𝑀𝐶𝐶1𝐴𝐴1)−𝜃𝜃

𝜑𝜑
�   

                    If 𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖) ≤ 𝑑𝑑𝑐𝑐𝑛𝑛/2, then 𝑀𝑀 ∈ 𝒟𝒟(𝑄𝑄𝑖𝑖,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ ); 
                       If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖) > 𝑑𝑑𝑐𝑐𝑛𝑛/2, then  
                       If 𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖+1) > 𝑑𝑑𝑐𝑐𝑛𝑛/2, then the M point is outside the nanospheres;   

  If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖+1) ≤ 𝑑𝑑𝑐𝑐𝑛𝑛/2, then 𝑀𝑀 ∈ 𝒟𝒟(𝑄𝑄𝑖𝑖+1,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ );                    
  If  𝑚𝑚(∢𝑀𝑀𝐶𝐶1𝐴𝐴1) ≤ 𝜃𝜃, then 𝑀𝑀 ∈ 𝐼𝐼𝑛𝑛𝑤𝑤(𝑄𝑄1𝐶𝐶1𝐴𝐴1� ) 

                           If  𝑑𝑑(𝑀𝑀,𝑄𝑄1) ≤ 𝑑𝑑𝑐𝑐𝑛𝑛/2, then 𝑀𝑀 ∈ 𝒟𝒟(𝑄𝑄1,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ ); 
                           If  𝑑𝑑(𝑀𝑀,𝑄𝑄1) > 𝑑𝑑𝑐𝑐𝑛𝑛/2, then the M point is outside the nanospheres; 
                       If  𝑚𝑚(∢𝑀𝑀𝐶𝐶1𝐵𝐵1) ≤  𝛼𝛼 − 𝜃𝜃, then 𝑀𝑀 ∈ 𝐼𝐼𝑛𝑛𝑤𝑤(𝐵𝐵1𝐶𝐶1𝑄𝑄𝑐𝑐� ) 
                           If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑐𝑐) ≤ 𝑑𝑑𝑐𝑐𝑛𝑛/2, then 𝑀𝑀 ∈ 𝒟𝒟(𝑄𝑄𝑐𝑐,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ ); 
                           If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑐𝑐) > 𝑑𝑑𝑐𝑐𝑛𝑛/2, then the M point is outside the nanospheres; 
                    If  𝑑𝑑(𝑀𝑀,𝐶𝐶1) > 𝑅𝑅2 + 𝑑𝑑𝑐𝑐𝑛𝑛 , then  
           If   ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣 − 𝑥𝑥𝑀𝑀 > 𝑑𝑑𝑐𝑐𝑛𝑛 , then  
                       If 𝑑𝑑(𝑀𝑀,𝐶𝐶2) > 𝑅𝑅2 + 𝑑𝑑𝑐𝑐𝑛𝑛, then the M point is outside the nanospheres; 
                              If 𝑑𝑑(𝑀𝑀,𝐶𝐶2) < 𝑅𝑅2 , then the M point is outside the nanospheres; 
                              If 𝑅𝑅2 ≤ 𝑑𝑑(𝑀𝑀,𝐶𝐶2) ≤ 𝑅𝑅2 + 𝑑𝑑𝑐𝑐𝑛𝑛 , then  

           If 𝑚𝑚(∢𝑀𝑀𝐶𝐶2𝐴𝐴2) > 𝜃𝜃 𝑎𝑎𝑛𝑛𝑑𝑑 𝑚𝑚(∢𝑀𝑀𝐶𝐶2𝐵𝐵2) > 𝛼𝛼 − 𝜃𝜃, then  
                  𝑀𝑀 ∈ 𝐼𝐼𝑛𝑛𝑤𝑤(𝑄𝑄𝚤𝚤+1𝐶𝐶2𝑄𝑄𝚤𝚤� ), where   𝑖𝑖 = �𝑚𝑚(∢𝑀𝑀𝐶𝐶2𝐴𝐴2)−𝜃𝜃

𝜑𝜑
�  ; 

 If 𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖) ≤ 𝑑𝑑𝑐𝑐𝑛𝑛/2, then 𝑀𝑀 ∈ 𝒟𝒟(𝑄𝑄𝑖𝑖,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ ); 
  If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖) > 𝑑𝑑𝑐𝑐𝑛𝑛/2, then  

                  If 𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖+1) > 𝑑𝑑𝑐𝑐𝑛𝑛/2, then the M point is outside the nanospheres;                        
 If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖+1) ≤ 𝑑𝑑𝑐𝑐𝑛𝑛/2, then 𝑀𝑀 ∈ 𝒟𝒟(𝑄𝑄𝑖𝑖+1,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ );                     

                   If  𝑚𝑚(∢𝑀𝑀𝐶𝐶2𝐴𝐴2) ≤ 𝜃𝜃, then 𝑀𝑀 ∈ 𝐼𝐼𝑛𝑛𝑤𝑤(𝑄𝑄𝑚𝑚′ 𝐶𝐶2𝐴𝐴2� ) 
                          If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑚𝑚′ ) ≤ 𝑑𝑑𝑐𝑐𝑛𝑛/2, then 𝑀𝑀 ∈ 𝒟𝒟(𝑄𝑄𝑚𝑚′ ,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ ); 
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                          If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑚𝑚′ ) > 𝑑𝑑𝑐𝑐𝑛𝑛/2, then the M point is outside the nanospheres; 
                   If  𝑚𝑚(∢𝑀𝑀𝐶𝐶2𝐵𝐵2) ≤  𝛼𝛼 − 𝜃𝜃, then 𝑀𝑀 ∈ 𝐼𝐼𝑛𝑛𝑤𝑤(𝐵𝐵2𝐶𝐶2𝑄𝑄𝑐𝑐� )  
                           If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑐𝑐) ≤ 𝑑𝑑𝑐𝑐𝑛𝑛/2, then 𝑀𝑀 ∈ 𝒟𝒟(𝑄𝑄𝑐𝑐,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ ); 
                           If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑐𝑐) > 𝑑𝑑𝑐𝑐𝑛𝑛/2, then the M point is outside the nanospheres; 
                    If  𝑑𝑑(𝑀𝑀,𝐶𝐶2) > 𝑅𝑅2 + 𝑑𝑑𝑐𝑐𝑛𝑛 , then  
           If   ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣 − 𝑥𝑥𝑀𝑀 > 𝑑𝑑𝑐𝑐𝑛𝑛 , then  
                       If 𝑑𝑑(𝑀𝑀,𝐶𝐶2) > 𝑅𝑅2 + 𝑑𝑑𝑐𝑐𝑛𝑛, then the M point is outside the nanospheres; 
                              If 𝑑𝑑(𝑀𝑀,𝐶𝐶2) < 𝑅𝑅2, then the M point is outside the nanospheres; 
       If ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑣𝑣 − 𝑥𝑥𝑀𝑀 ≤ 𝑑𝑑𝑐𝑐𝑛𝑛, then  
                    If 𝑦𝑦𝑄𝑄𝑖𝑖′ ≤ 𝑦𝑦𝑀𝑀 ≤ 𝑦𝑦𝑄𝑄𝑖𝑖+1, , then 
                      If 𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖′) ≤ 𝑑𝑑𝑐𝑐𝑛𝑛/2, then 𝑀𝑀 ∈ 𝒟𝒟(𝑄𝑄𝑖𝑖′,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ ); 
                      If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖′) > 𝑑𝑑𝑐𝑐𝑛𝑛/2, then  
                      If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖+1′ ) > 𝑑𝑑𝑐𝑐𝑛𝑛/2, then the M point is outside the nanospheres;                        
                                  If  𝑑𝑑(𝑀𝑀,𝑄𝑄𝑖𝑖+1′ ) ≤ 𝑑𝑑𝑐𝑐𝑛𝑛/2, then 𝑀𝑀 ∈ 𝒟𝒟(𝑄𝑄𝑖𝑖+1′ ,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ ). 

We named 𝒟𝒟(𝑄𝑄𝑖𝑖,𝑑𝑑𝑐𝑐𝑛𝑛 2⁄ ) the disk with the center 𝑄𝑄𝑖𝑖 and the radius dns/2 
which is the section in the x-y plan of the ith nanosphere.                                         

This algorithm can be used in a PIC code for the density profile of an initial 
plasma created at the interaction of an ultra-high intensity laser pulse with a 
nanostructured cone. 

5. Conclusions 

We described mathematically the density profile of the initial plasma 
created at the interaction of an ultra-high intensity laser pulse with a new 
nanostructured flat-top cone target. The flat-top cone is coated inside with 
nanospheres with the same diameter. We found the coordinates of the centers of the 
nanospheres which are on the top and walls of a nanostructured cone target. The 
formula for the number of the nanospheres was determined. We obtained the 
necessary and sufficient conditions for a charged particle to be inside of a 
nanosphere.  

 This profile density is dedicated to be used in PIC codes. 
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