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ON ZEROS OF ACCRETIVE OPERATORS WITH APPLICATION TO

THE CONVEX FEASIBILITY PROBLEM

Ashish Nandal1, Renu Chugh2

In this paper, we study some iterative algorithms for finding common zeros

of finite family of accretive operators in Banach spaces. Our results improve the recent
results of Kim and Tuyen [Appl. Math. Comput., 283(2016), 265-281 & Bull. Korean

Math. Soc., 54(2017), 1347-1359] by removing some assumptions on the parameters.

Note that these restrictive conditions on the parameters have been extensively used so
far for different versions of iterative algorithms in this literature. Finally, under more

relaxed conditions on the parameters, we solve the convex feasibility problem.
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1. Introduction

Fixed point theory has been revealed as a very powerful and effective tool for studying
a wide class of problems which arise from real world applications and can be translated into
equivalent fixed point problems. This theory has been successfully applied in different topics,
including split and convex feasibility, variational inequality and equilibrium problems as well
as for finding zeros of accretive operators. In order to obtain approximate solution of the
fixed point problems various iterative methods have been proposed (see, e.g., [10, 15, 19, 26,
28, 29, 30] and the references therein). The well-known convex feasibility problem, which
captures applications in various disciplines such as sensor networking [5], radiation therapy
treatment planning [9], computerized tomography [13], image restoration [11] is to find a
point in the intersection of a family of closed convex sets in a Hilbert space.

The aim of this paper is to control the conditions on the parameters used in iterative
algorithms for finding zeros of accretive operators in the setting of Hilbert and Banach spaces.
One of the first and most popular method for finding zeros of a maximal monotone operator
is the proximal point algorithm (PPA). Rockafellar [25] proved the weak convergence of the
PPA. However, Güler’s example shows that in an infinite dimensional Hilbert space, PPA
has only weak convergence (see [12]). To obtain the strong convergence, several authors
proposed modification of PPA; please, see: Kamimura and Takahashi [14], Kim and Xu [18],
Qin and Su [22] and references therein. Recently, Kim and Tuyen [16] introduced a new
iterative method for finding a common zero of two accretive operators in a Banach space.
They considered the following sequence based on alternating resolvent method:

xn+1 = αnu+ (1− αn)JBγnJ
A
βn
xn, n ≥ 0, (1)

where u and initial guess x0 are arbitrarily taken from a closed convex set C and proved
strong convergence theorem under the conditions:
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(i) lim
n→∞

αn = 0,

∞∑
n=0

αn =∞;

(ii)

∞∑
n=0

|αn+1 − αn| <∞ or lim
n→∞

αn+1

αn
= 1;

(iii) βn ≥ ε, γn ≥ ε for some ε > 0 and for all n, and

∞∑
n=0

|βn+1 − βn| <∞,
∞∑
n=0

|γn+1 − γn| <∞.

In [17], Kim and Tuyen introduced another iterative method for finding a common
zero of a finite family of monotone operators in a Hilbert space. They introduced iterative
algorithm {xn}, defined by


y0n = xn, n ≥ 0,

yin = (1− βi,n) yi−1n + βi,n Ji,n y
i−1
n , i = 1, . . . ,m, n ≥ 0, Ji,n = JAi

ri,n ,

xn+1 = αnu+ (1− αn)ymn , n ≥ 0,

(2)

where u and initial guess x0 are arbitrarily taken from a closed convex set C and proved its
strong convergence under the assumptions:

(i) min
i=1,2,...,m

{inf{ri,n}} ≥ ε > 0,

∞∑
n=0

|ri,n+1 − ri,n| <∞, for all i = 1, 2, . . . ,m;

(ii) {βi,n} ⊂ (α, β) with α, β ∈ (0, 1) and

∞∑
n=0

|βi,n+1−βi,n| <∞, for all i = 1, 2, . . . ,m;

(iii) {αn} ⊂ (0, 1), lim
n→∞

αn = 0,

∞∑
n=0

αn =∞ and

∞∑
n=0

|αn+1 − αn| <∞.

These results bring us some natural questions:

(a) Does the result proved in [16, Theorem 3.2] remain true after removing the re-

strictive conditions

∞∑
n=0

|αn+1 − αn| < ∞ or lim
n→∞

αn+1

αn
= 1 on {αn},

∞∑
n=0

|βn+1 − βn| < ∞

on {βn} and

∞∑
n=0

|γn+1 − γn| <∞ on {γn}?

(b) Does the result proved in [17, Theorem 3.1] remain true after removing the restric-

tive conditions

∞∑
n=0

|αn+1−αn| <∞ on {αn},
∞∑
n=0

|ri,n+1− ri,n| <∞, for all i = 1, 2, . . . ,m,

on {ri,n} and

∞∑
n=0

|βi,n+1 − βi,n| < ∞, for all i = 1, 2, . . . ,m, on {βi,n}? Also {βi,n} are

bounded between zero and one which excludes the important case βi,n ∈ [1, 2], the over
relaxed case. Can this condition be further relaxed as 0 < lim inf βi,n ≤ lim supβi,n < 2 ?

In the present paper, we shall answer these questions affirmatively by removing the
superfluous conditions on the parameters. Also, our approaches are simpler than those
of Kim and Tuyen [16, 17]. Moreover, using our main results, we solve convex feasibility
problem. Our results improve the results of Kim and Tuyen [16, 17], Qin and Su [22], Kim
and Xu [18], Kamimura and Takahashi [14] and many others.
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2. Preliminaries

Let X be a real Banach space and X∗ be its dual space. Let J be the normalized
duality mapping from X into 2X

∗
given by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, ∀x ∈ X,
where 〈·, ·〉 denotes the generalized duality pairing. If X = H is a Hilbert space, then the
duality mapping becomes the identity mapping.

The norm of X is said to be Gâteaux differentiable (and X is said to be smooth) if
the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(3)

exists for x, y ∈ U := {x ∈ X : ‖x‖ = 1}. The norm is said to be uniformly Gâteaux
differentiable if for each y ∈ U , the limit is attained uniformly for x ∈ U . The space X is said
to have a Fréchet differentiable norm if for each x ∈ U , the limit in (3) is attained uniformly
for y ∈ U . The space X is said to have a uniformly Fréchet differentiable norm (and X is
said to be uniformly smooth) if the limit in (3) is attained uniformly for (x, y) ∈ U × U . It
is known that X is smooth if and only if each duality mapping J is single valued.

The Banach space X is said to be strictly convex if
∥∥∥x+ y

2

∥∥∥ < 1, for all x, y ∈ X,

with ‖x‖ = ‖y‖ = 1 and x 6= y. Furthermore, the Banach space X is called uniformly convex
if for each ε ∈ (0, 2], there exists δ > 0 such that ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε implies∥∥∥x+ y

2

∥∥∥ ≤ 1− δ.
Let C be a nonempty closed convex subset of X. Let T : C → C be a mapping. In

this paper, we use F (T ) to denote the set of fixed points of T . Recall that T is said to be
nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C. Let D be a nonempty subset of C.
Then a mapping Q is said to be retraction of C onto D if Qx = x, for all x ∈ D; Q is said to
be sunny if Q(Qx+λ(x−Qx)) = Qx holds whenever x ∈ C, λ ≥ 0 and Qx+λ(x−Qx) ∈ C;
D is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction of C onto D. In a Hilbert space, a sunny nonexpansive retraction Q coincides
with the metric projection mapping.

A mapping T : C → X is said to be firmly nonexpansive [6] if

‖Tx− Ty‖ ≤ ‖r(x− y) + (1− r)(Tx− Ty)‖, ∀ x, y ∈ C, r ≥ 0.

A sequence {Tn} of mappings of C into X is said to be strongly nonexpansive sequence [1]
if each Tn is nonexpansive and

‖xn − yn − (Tnxn − Tnyn)‖ → 0

whenever {xn} and {yn} are two sequences in C such that {xn − yn} is bounded and

‖xn − yn‖ − ‖Tnxn − Tnyn‖ → 0.

Note that if we put Tn = T for all n ∈ N, then we have definition of strongly nonexpansive
mapping defined in [7]. An operator A (possibly multivalued) with domain D(A) and range
R(A) in X is called accretive, if for each x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such
that

〈u− v, j(x− y)〉 ≥ 0, ∀u ∈ Ax, v ∈ Ay.
If X = H is a Hilbert space, accretive operators are also called monotone. We denote by
I the identity operator on X. An accretive operator A is said to be maximal if there is no
proper accretive extension of A and m-accretive if R(I + λA) = X, for all λ > 0. A is said

to satisfy the range condition if D(A) ⊆ R(I + rA), for all r > 0. If A is accretive, one can
define for each r > 0, a firmly nonexpansive single valued mapping

JAr : R(I + rA)→ D(A), JAr = (I + rA)−1,
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which is called resolvent of A and F (JAr ) = A−1(0) (see [7]), where F (JAr ) is the fixed point
set of JAr and A−1(0) = {x ∈ D(A) : Ax = 0}.

Lemma 2.1 ([21]). Let X be a Banach space. Then for x, y ∈ X, there exists j(x + y) ∈
J(x+ y) such that

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉.

Lemma 2.2 ([27]). Let {an} be a sequences of nonnegative real numbers such that an+1 ≤
(1− αn)an + δn, where {αn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)

∞∑
n=0

αn =∞;

(2) lim sup
n→∞

δn/αn ≤ 0 or

∞∑
n=0

|δn| <∞.

Then lim
n→∞

an = 0.

Lemma 2.3 ([3] The Resolvent Identity). For each λ, µ > 0,

JAλ x = JAµ

(µ
λ
x+

(
1− µ

λ

)
JAλ x

)
.

Lemma 2.4 ([23]). Let X be a uniformly smooth Banach space and let T : C → C be a
nonexpansive mapping with a fixed point. For each fixed u ∈ C and t ∈ (0, 1), the unique
fixed point xt ∈ C of the contraction x 7→ tu+ (1− t)Tx converges strongly to a fixed point
of T as t → 0. Define Q : C → F (T ) by Qu = s − lim

t→0
xt. Then Q is the unique sunny

nonexpansive retraction from C onto F (T ); that is, Q satisfies the property

〈u−Q(u), J(p−Q(u))〉 ≤ 0, u ∈ C, p ∈ F (T ).

Lemma 2.5 ([8]). If all the conditions of Lemma 2.4 are satisfied and {xn} is a bounded
sequence in C such that lim

n→∞
‖xn − Txn‖ = 0, then

lim sup
n→∞

〈u−Q(u), J(xn −Q(u))〉 ≤ 0.

Lemma 2.6 ([7]). If X is a uniformly convex Banach space, then every firmly nonexpansive
mapping is strongly nonexpansive.

Lemma 2.7 ([7]). If {Ti : 1 ≤ i ≤ k} is a family of strongly nonexpansive mappings and
k⋂
i=1

{F (Ti) : 1 ≤ i ≤ k} 6= ∅, then

k⋂
i=1

{F (Ti) : 1 ≤ i ≤ k} = F (TkTk−1 · · ·T2T1).

Lemma 2.8 ([2]). Let C be a nonempty subset of a uniformly convex Banach space X. Let
{Sn} be a sequence of firmly nonexpansive mappings of C into X. Then {Sn} is a strongly
nonexpansive sequence.

Lemma 2.9 ([2]). Let C be a nonempty subset of a uniformly convex Banach space X.
Let {Tn} be a sequence of nonexpansive mappings of C into X and {λn} a sequence in
[0, 1] such that lim inf

n→∞
λn > 0. Then, a sequence {Sn} of mappings of C into X defined by

Sn = λnI + (1 − λn)Tn, for n ∈ N, is a strongly nonexpansive sequence, where I is the
identity mapping on C.

Lemma 2.10 ([2]). Let C and D be two nonempty subsets of a Banach space X. Let {Sn}
be a sequence of mappings of C into X and {Tn} a sequence of mappings of D into X.
Suppose that both {Sn} and {Tn} are strongly nonexpansive sequences such that Tn(D) ⊂ C
for each n ∈ N. Then {SnTn} is a strongly nonexpansive sequence.
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Lemma 2.11 ([20]). Let {cn} be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} such that cni < cni+1, for all i ∈ N. Then, there exists a nondecreasing
sequence {mq} ⊂ N such that mq → ∞ and the following properties are satisfied by all
(sufficiently large) numbers q ∈ N:

cmq ≤ cmq+1, cq ≤ cmq+1.

In fact, mq = max{j ≤ q : cj < cj+1}.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex and uni-
formly smooth Banach space X. Let Ai : D(Ai) ⊆ C → 2X be accretive operators such

that S :=

m⋂
i=1

A−1i 0 6= ∅ and D(Ai) ⊂ C ⊂
⋂
r>0

R(I + rAi), for all i = 1, 2, . . . ,m. Let

{αn} ⊂ (0, 1) and {ri,n} be sequences of positive numbers satisfying the following condi-
tions:

(i) lim
n→∞

αn = 0,

∞∑
n=0

αn =∞;

(ii) {ri,n} ≥ ε for some ε > 0, for all n ≥ 0 and for all i = 1, 2, . . . ,m.
Then the sequence {xn} defined by x0, u ∈ C and

xn+1 = αnu+ (1− αn)Jm,nJm−1,n · · · J1,nxn, n ≥ 0, Ji,n = JAi
ri,n , (4)

converges strongly to Qsu, where Qs : C → S is a sunny nonexpansive retraction from C
onto S.

Proof. We start the proof with the boundedness of the sequence {xn}.
Let z = Qsu(∈ S) and put Tn = Jm,nJm−1,n · · · J1,n, for each n ≥ 0. Clearly, Tn is

nonexpansive for each n ≥ 0. By using Lemma 2.6, for each n ≥ 0, Tn is composition of
strongly nonexpansive mappings. Therefore, from Lemma 2.7, we get

∅ 6= S :=

m⋂
i=1

A−1i 0 =

m⋂
i=1

F (Ji,n) = F (Tn),

for each n ≥ 0. From (4), we have

‖xn+1 − z‖ ≤ αn‖u− z‖+ (1− αn)‖Tnxn − z‖
≤ αn‖u− z‖+ (1− αn)‖xn − z‖
≤ max{‖u− z‖, ‖xn − z‖}.

By induction on n, we get

‖xn+1 − z‖ ≤ max{‖u− z‖, ‖x0 − z‖}.

This implies that {xn} is bounded.
Again from (4), we see that

‖xn+1 − z‖ ≤ αn‖u− z‖+ (1− αn)‖Tnxn − z‖
≤ αn‖u− z‖+ ‖Tnxn − z‖. (5)

Using the nonexpansiveness of Tn and (5), we observe that

0 ≤ ‖xn − z‖ − ‖Tnxn − z‖
≤ ‖xn − z‖ − ‖xn+1 − z‖+ αn‖u− z‖. (6)



100 Ashish Nandal, Renu Chugh

Again from (4), we get

‖xn+1 − z‖ ≤ αn‖u− z‖+ (1− αn)‖Jm,nJm−1,n · · · J1,nxn − z‖
≤ αn‖u− z‖+ ‖Jm−1,n · · · J1,nxn − z‖. (7)

Using the nonexpansiveness of Jm−1,nJm−2,n · · · J1,n and (7), we observe that

0 ≤ ‖xn − z‖ − ‖Jm−1,nJm−2,n · · · J1,nxn − z‖
≤ ‖xn − z‖ − ‖xn+1 − z‖+ αn‖u− z‖. (8)

Continuing like (6) and (8), for each i = 1, 2, . . . ,m, we can obtain

0 ≤ ‖xn − z‖ − ‖Ji,nJi−1,n · · · J1,nxn − z‖
≤ ‖xn − z‖ − ‖xn+1 − z‖+ αn‖u− z‖. (9)

Now, in order to prove that xn → z as n→∞, we consider two possible cases.
Case 1. Assume that there exists n0 ∈ N such that the real sequence {‖xn − z‖}

is nonincreasing for all n ≥ n0. Since {‖xn − z‖} is bounded, {‖xn − z‖} is convergent.
Therefore, using the given condition αn → 0 in (9), for each i = 1, 2, . . . ,m, we obtain

‖xn − z‖ − ‖Ji,nJi−1,n · · · J1,nxn − z‖ → 0 as n→∞.
Using Lemma 2.8 and Lemma 2.10, for each i = 1, 2, . . . ,m, {Ji,nJi−1,n · · · J1,n} is strongly
nonexpansive sequence. Therefore, we have

‖xn − Ji,nJi−1,n · · · J1,nxn‖ → 0 as n→∞. (10)

Next, we show that

‖xn − Ji,nxn‖ → 0 as n→∞, for each i = 1, 2, . . . ,m. (11)

Clearly, from (10) for i = 1, (11) is true. Now for i = 2, 3, . . . ,m, we see that

‖xn − Ji,nxn‖ ≤ ‖xn − Ji,nJi−1,n · · · J1,nxn‖+ ‖Ji,nJi−1,n · · · J1,nxn − Ji,nxn‖
≤ ‖xn − Ji,nJi−1,n · · · J1,nxn‖+ ‖Ji−1,nJi−2,n · · · J1,nxn − xn‖.

Thus, we have ‖xn − JAi
ri,nxn‖ → 0 as n→∞, for each i = 1, 2, . . . ,m.

Take a fixed number s such that ε > s > 0 and using Lemma 2.3, for each i =
1, 2, . . . ,m, we have

‖xn − JAi
s xn‖ ≤ ‖xn − JAi

ri,nxn‖+ ‖JAi
ri,nxn − J

Ai
s xn‖

≤ ‖xn − JAi
ri,nxn‖+

∥∥∥JAi
s

( s

ri,n
xn +

(
1− s

ri,n

)
JAi
ri,nxn

)
− JAi

s xn

∥∥∥)
≤ ‖xn − JAi

ri,nxn‖+
∥∥∥ s

ri,n
xn +

(
1− s

ri,n

)
JAi
ri,nxn − xn

∥∥∥
= ‖xn − JAi

ri,nxn‖+
(

1− s

ri,n

)
‖JAi
ri,nxn − xn‖

≤ 2‖xn − JAi
ri,nxn‖.

Hence, we obtain

‖xn − JAi
s xn‖ → 0 as n→∞, for each i = 1, 2, . . . ,m. (12)

Next, we show that ‖xn −Wxn‖ → 0 as n → ∞, where W =
1

m

( m∑
i=1

JAi
s

)
and 0 < s < ε.

Using (12), we obtain

‖xn −Wxn‖ ≤
1

m

m∑
i=1

‖xn − JAi
s xn‖ → 0 as n→∞.

Next, we show that lim sup
n→∞

〈u− z, J(xn − z)〉 ≤ 0, where z = QSu.
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For t ∈ (0, 1), let xt ∈ C be unique fixed point of the contraction mapping
Rtx = tu + (1 − t)Wx, x ∈ C. Then, by Lemma 2.4, xt = tu + (1 − t)Wxt converges
strongly to Qsu ∈ F (W ) = S.

Note that {xn} is bounded and lim
n→∞

‖xn−Wxn‖ = 0 as n→∞. Thus, using Lemma

2.5, we obtain lim sup
n→∞

〈u − z, J(xn − z)〉 ≤ 0. Finally, we claim that xn → z as n → ∞.

Using Lemma 2.1, we have

‖xn+1 − z‖2 = ‖αnu+ (1− αn)Tnxn − z‖2

≤ (1− αn)2‖Tnxn − z‖2 + 2αn〈u− z, J(xn+1 − z)〉
≤ (1− αn)‖xn − z‖2 + 2αn〈u− z, J(xn+1 − z)〉. (13)

By Lemma 2.2, we get xn → z(= Qsu) as n→∞.
Case 2. Assume that there exists a subsequence {xnj} of {xn} such that

‖xnj
− z‖ < ‖xnj+1 − z‖, ∀ j ≥ 0.

Then, by Lemma 2.11, there exists a nondecreasing sequence of integers {mq} ⊂ N such
that mq →∞ as q →∞ and

‖xmq
− z‖ ≤ ‖xmq+1 − z‖ and ‖xq − z‖ ≤ ‖xmq+1 − z‖, (14)

for all q ∈ N. Now, using (14) in (9), we have

0 ≤ ‖xmq
− z‖ − ‖Ji,mq

Ji−1,mq
· · · J1,mq

xmq
− z‖

≤ ‖xmq
− z‖ − ‖xmq+1 − z‖+ αmq

‖u− z‖
≤ αmq

‖u− z‖.
Since αmq

→ 0, we obtain

‖xmq − z‖ − ‖Ji,mqJi−1,mq · · · J1,mqxmq − z‖ → 0 as q →∞
As {Ji,mq

Ji−1,mq
· · · J1,mq

} is strongly nonexpansive sequence for each i = 1, 2, ..
.,m, we have

‖xmq
− Ji,mq

Ji−1,mq
· · · J1,mq

xmq
‖ → 0 as q →∞.

Following similar arguments as in case 1, we can obtain

lim sup
q→∞

〈u− z, J(xmq − z)〉 ≤ 0, (15)

where z = Qsu. Now, from (13), we have

amq+1 ≤ (1− αmq
)amq

+ αmq
δmq

, (16)

where amq
= ‖xmq

− z‖2 and δmq
= 2〈u− z, J(xmq+1 − z)〉.

Thus, (14) and (16) implies that

αmq
amq

≤ amq
− amq+1 + αmq

δmq

αmq
amq

≤ αmq
δmq

.

Using the fact that αmq > 0, we obtain

amq
≤ δmq

,

that is,
‖xmq − z‖2 ≤ 2〈u− z, J(xmq+1 − z)〉,

it follows from (15) that
‖xmq − z‖ → 0 as q →∞.

This together with (16) implies that ‖xmq+1−z‖ → 0 as q →∞. But ‖xq−z‖ ≤ ‖xmq+1−z‖
for all q ∈ N, which gives that xq → z as q →∞. �
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Theorem 3.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let

Ai : D(Ai) ⊆ C → 2H be monotone operators such that S :=

m⋂
i=1

A−1i 0 6= ∅ and D(Ai) ⊂

C ⊂
⋂
r>0

R(I + rAi), for all i = 1, 2, . . . ,m. If the sequences {αn}, {βi,n} and {ri,n} satisfy

the following conditions:

(i) {αn} ⊂ (0, 1), lim
n→∞

αn = 0,

∞∑
n=0

αn =∞;

(ii) {ri,n} ≥ ε, for some ε > 0, for all n ≥ 0 and for all i = 1, 2, . . . ,m;

(iii) {βi,n} ⊂ (0, 2), 0 < lim inf
n→∞

βi,n ≤ lim sup
n→∞

βi,n < 2, for all i = 1, 2, . . . ,m.

Then the sequence {xn} defined by (2) converges strongly to PSu, where PS : C
→ S is a metric projection from C onto S.

Proof. Firstly, we rewrite (2) as{
xn+1 = αnu+ (1− αn)Sm,nSm−1,n · · ·S1,nxn

Si,n = (1− βi,n)I + βi,nJi,n, Ji,n = JAi
ri,n , i = 1, 2, . . . ,m, n ≥ 0.

(17)

Also, note that for each i = 1, 2, . . . ,m, Si,n can further be written as

Si,n =
(

1− βi,n
2

)
I +

βi,n
2

(2Ji,n − I)

= (1− γi,n)I + γi,nRi,n, (18)

where γi,n =
βi,n

2
and Ri,n = 2Ji,n − I. Clearly, 0 < lim inf

n→∞
γi,n ≤ lim sup

n→∞
γi,n < 1 and Ri,n

is nonexpansive mapping for each i = 1, 2, . . . ,m.
Let Tn = Sm,nSm−1,n · · ·S1,n and z = PSu(∈ S). Using Lemma 2.9, Si,n is strongly
nonexpansive for each i = 1, 2, . . . ,m and n ≥ 0. Also, from Lemma 2.7, we obtain F (Tn) =
m⋂
i=1

F (Si,n), for all n ≥ 0. Note that

∅ 6= S =

m⋂
i=1

A−1i (0) =

m⋂
i=1

F (Ji,n) =

m⋂
i=1

F (Ri,n) =

m⋂
i=1

F (Si,n) = F (Tn).

Further, being composition of nonexpansive mappings, Tn is nonexpansive for each n ≥ 0.
It follows from (17) that

‖xn+1 − z‖ ≤ αn‖u− z‖+ (1− αn)‖Tnxn − z‖
≤ αn‖u− z‖+ (1− αn)‖xn − z‖
≤ max{‖u− z‖, ‖xn − z‖}.

By induction on n, we get

‖xn+1 − z‖ ≤ max{‖u− z‖, ‖x0 − z‖}.
Thus, {xn} is bounded.
Again from (17), we see that

‖xn+1 − z‖ ≤ αn‖u− z‖+ (1− αn)‖Tnxn − z‖
≤ αn‖u− z‖+ ‖Tnxn − z‖. (19)

Using the nonexpansiveness of Tn and (19), we obtain

0 ≤ ‖xn − z‖ − ‖Tnxn − z‖
≤ ‖xn − z‖ − ‖xn+1 − z‖+ αn‖u− z‖. (20)
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Since Sm,n is nonexpansive, we obtain from (19)

‖xn+1 − z‖ ≤ αn‖u− z‖+ ‖Sm−1,n · · ·S1,nxn − z‖. (21)

Also, from the nonexpansiveness of Sm−1,nSm−2,n · · ·S1,n and (21), it follows that

0 ≤ ‖xn − z‖ − ‖Sm−1,nSm−2,n · · ·S1,nxn − z‖
≤ ‖xn − z‖ − ‖xn+1 − z‖+ αn‖u− z‖. (22)

Continuing like (20) and (22), for each i = 1, 2, . . . ,m, we can obtain

0 ≤ ‖xn − z‖ − ‖Si,nSi−1,n · · ·S1,nxn − z‖
≤ ‖xn − z‖ − ‖xn+1 − z‖+ αn‖u− z‖. (23)

Now, in order to prove that xn → z as n→∞, we consider two possible cases.

Case 1. Assume that there exists n0 ∈ N such that the real sequence {‖xn − z‖}
is nonincreasing for all n ≥ n0. Since {‖xn − z‖} is bounded, {‖xn − z‖} is convergent.
Therefore, using the given condition αn → 0 in (23), for each i = 1, 2, . . . ,m, we obtain

‖xn − z‖ − ‖Si,nSi−1,n · · ·S1,nxn − z‖ → 0 as n→∞.

Using Lemma 2.9 and Lemma 2.10, for each i = 1, 2, . . . ,m, {Si,nSi−1,n · · ·S1,n} is strongly
nonexpansive sequence. Therefore, we have

‖xn − Si,nSi−1,n · · ·S1,nxn‖ → 0 as n→∞. (24)

Next, we show that

‖xn − Si,nxn‖ → 0 as n→∞, for each i = 1, 2, . . . ,m. (25)

Clearly, from (24) for i = 1, (25) is true. Now, for i = 2, 3, . . . ,m, we see that

‖xn − Si,nxn‖ ≤ ‖xn − Si,nSi−1,n · · ·S1,nxn‖+ ‖Si,nSi−1,n · · ·S1,nxn − Si,nxn‖
≤ ‖xn − Si,nSi−1,n · · ·S1,nxn‖+ ‖Si−1,nSi−2,n · · ·S1,nxn − xn‖.

Thus, using (24), we obtain (25).
Now, for each i = 1, 2, . . . ,m, it follows from (18) that

‖xn − Si,nxn‖ = ‖γi,nxn − γi,nRi,nxn‖ = 2γi,n‖xn − Ji,nxn‖. (26)

Using (25) and lim inf
n→∞

γi,n > 0 in (26), we obtain

‖xn − Ji,nxn‖ → 0 as n→∞, for each i = 1, 2, . . . ,m.

Now, following the proof lines of Theorem 3.1, we can obtain

lim sup
n→∞

〈u− z, xn − z〉 ≤ 0,

where z = PSu. Finally, we claim that xn → z as n→∞. Using Lemma 2.1, we have

‖xn+1 − z‖2 = ‖αnu+ (1− αn)Tnxn − z‖2

≤ (1− αn)2‖Tnxn − z‖2 + 2αn < u− z, xn+1 − z >
≤ (1− αn)‖xn − z‖2 + 2αn < u− z, xn+1 − z > .

By Lemma 2.2, we get xn → z as n→∞.
Similarly, for case 2, we follow the proof lines of Theorem 3.1 and obtain the required
result. �
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4. Application and numerical example

Using above results, we solve the Convex Feasibility Problem (CFP), that is, finding
an element

x̄ ∈ S :=

m⋂
i=1

Ci,

where Ci, i = 1, 2, . . . ,m, are closed and convex sets in a real Hilbert space H.
Let f : H → ]−∞,∞] be a proper lower semicontinuous convex function. Define the

subdifferential
∂f(x) = {y ∈ H : f(x) + 〈z − x, y〉 ≤ f(z), ∀z ∈ H},

for all x ∈ H. By Rockafellar theorem [24], ∂f is a maximal monotone operator of H into
itself.

Let C be a closed convex subset of H and iC be the indicator function of C, that is

iCx =

{
0, x ∈ C
∞, x /∈ C.

Also recall, the normal cone for C at a point x ∈ C is defined by

NC(x) = {y ∈ H : 〈y, z − x〉 ≤ 0, ∀z ∈ H}.
Since iC : H → ]−∞,∞] is a proper lower semicontinuous convex function, ∂iC is a maximal
monotone operator. Also, it is known that ∂iC = NC (see [4, Ex. 16.12]). So, from Theorem
3.2 and by using the equality

(I + r∂iC)−1 = (I + rNC)−1 = PC ,

for all closed convex subset C in H and for all r > 0, we solve the CFP as follows:

Theorem 4.1. Let Ci, i = 1, 2, . . . ,m, be closed and convex sets in a real Hilbert space H

such that S :=

m⋂
i=1

Ci 6= ∅. Let {αn} and {βi,n} be the sequences of positive real numbers

satisfying the following conditions:

(i) {αn} ⊂ (0, 1), lim
n→∞

αn = 0,

∞∑
n=0

αn =∞;

(ii) {βi,n} ⊂ (0, 2), 0 < lim inf
n→∞

βi,n ≤ lim sup
n→∞

βi,n < 2, for all i = 1, 2, . . . ,m;

then the sequence {xn} defined by x0, u ∈ H and
y0n = xn, n ≥ 0,

yin = (1− βi,n)yi−1n + βi,nPCi
yi−1n , i = 1, 2, . . . ,m, n ≥ 0,

xn+1 = αnu+ (1− αn)ymn , n ≥ 0,

(27)

converges strongly to some x∗ ∈ S.

Proof. Put Ai = NCi
(i = 1, 2, ...,m) in Theorem 3.2, where NCi

is normal cone of closed
and convex set Ci, we obtain the desired result. �

As illustration to our algorithm, let us solve a CFP by applying Theorem 4.1. Let C1

and C2 be two solid cuboids in R3 defined as

C1 = {(x, y, z) : 0 ≤ x ≤ 2 ; 0 ≤ y ≤ 1 ; 0 ≤ z ≤ 1.5},
C2 = {(x, y, z) : 1 ≤ x ≤ 4 ; 0.5 ≤ y ≤ 2 ; 1 ≤ z ≤ 3}.

Clearly S = C1 ∩ C2 6= ∅. Applying the iterative algorithm (27) with x1 = (4, 3.6, 5) and

u = (2.5, 0.8, 3.5) (arbitrary chosen), β1,n = 1, β2,n =
3

2
and {αn} is given by α2n = (n+1)−

1
2

and a2n−1 = (n + 1)−
1
2 + (n + 1)−1, n ∈ N. Note that we relax condition βi,n ∈ (0, 1)
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to βi,n ∈ (0, 2) and also, αn does not satisfy extra condition

∞∑
n=0

|αn+1 − αn| < ∞ or

lim
n→∞

αn+1

αn
= 1.

Table 1: Numerical experiment of the algorithm (27)

n xn+1

0 (4, 3.6, 5)
1 (2.60355, 0.758579, 3.91421)
2 (2.35355, 0.787868, 2.91421)
3 (2.45534, 0.798916, 3.32137)
4 (2.28868, 0.799542, 2.6547)
5 (2.375, 0.799886, 3)
6 (2.25, 0.799943, 2.5)
7 (2.32361, 0.79998, 2.79443)
8 (2.22361, 0.799989, 2.39443)
15 (2.22222, 0.8, 2.38889)
100 (2.07001, 0.8, 1.78006)
1000 (2.02234, 0.8, 1.58935)

Figure 1: The exact solution is x∗ = PSu = (2, 0.8, 1.5)

5. Conclusions

In this paper, we establish strong convergence theorems using iterative algorithms (4)
and (2) for finding common zeros of finite accretive operators and remove many superfluous
conditions on the parameters which were used in the results of Kim and Tuyen [16, 17].
Further, by using our main results, we solve convex feasibility problem. The results presented
in this paper improve the previous work from the current existing literature (see, for example,
[14, 16, 17, 18, 22] and many others).
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