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SOME GENERALIZATION OF NON-UNIQUE FIXED POINT

THEOREMS FOR MULTI-VALUED MAPPINGS IN b-METRIC SPACES
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In this paper, we prove common fixed point theorem for multi-valued generalized

contractive mappings in b-metric spaces. Our result extend and generalize some existing

results in literature.
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1. Introduction

In 1969, Nadler [23] introduced the notion of a multi-valued contractive mapping
in complete metric space and also proved Banach’s fixed point theorem for a multi-valued
mapping in a complete metric space.
On the other hand, In the year 1989, Bakhtin [5] and Czerwik [9], introduced b-metric
space as a sharp generalization of metric space and proved analogue of Banach contraction
principle in b-metric space.
Since then, several papers have dealt with fixed point theory or the variational principle for
single-valued and multi-valued operators in b-metric spaces (we may refer to [3, 6, 8, 16, 17,
18, 19, 20, 21, 22, 25, 26, 27]). In this paper, we obtain some common fixed point theorem
for multi-valued maps on complete b-metric space. In addition, the theorem can be regarded
as a generalization of some previous results on complete metric spaces. An example is given
to illustrate our main results.

2. Preliminaries

Before going towards our findings, we need the following definitions and lemma.

Definition 2.1. [5, 9] Let X be a nonempty set and s ≥ 1 be a given real number. A
function d : X ×X → R+ is a b-metric on X if for all x, y, z ∈ X the following conditions
hold:

(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x).
(3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space.
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Example 2.1. [12] The space lp,( 0 < p < 1),

lp =

{
xn ⊂ R :

∞∑
n=1

|xn|p <∞

}
,

together with the function

d(x, y) =

( ∞∑
n=1

|xn − yn|p
) 1
p

,

where x = xn, y = yn ∈ lp, is a b-metric space with coefficient s = 2
1
p . By an elementary

calculation we obtain that

d(x, z) ≤ 2
1
p [d(x, y) + d(y, z)] .

Example 2.2. [11] Let X = N ∪ {∞}. We define a mapping d : X ×X −→ R+ as follows:

d(m,n) =


0 if m = n

| 1
m −

1
n | if one of m,n is even and the other is even or ∞

5 if one of m,n is odd and the other is odd or ∞
2 otherwise m = n.

Then (X, d) is a b-metric space with coefficient s = 5
2 .

There are various examples of b-metrics which could be found in [11, 14, 15] ).

Definition 2.2. [11] Let (X, d) be a b-metric space and {xn} a sequence in X. We say that
:

(1) {xn} converges to x if d (xn, x)→ 0, as n→ +∞,
(2) {xn} is Cauchy sequence if d (xn, xm)→ 0, as n,m→ +∞,
(3) (X, d) is complete if every Cauchy sequence in X is convergent.

Let (X, d) be a complete b-metric space. In the sequel, we use the following notations
(see [10]):
CB(X) = {A : A is a nonempty closed and bounded subset of X},
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
δ(A,B) = sup{d(a,B) : a ∈ A},
δ(B,A) = sup{d(b, A) : b ∈ B},
H(A,B) = max{δ(A,B), δ(B,A)}.
Notice that H is called the Hausdorff metric induced by the metric d.
Forward, we denote by F (T ) the set of all fixed points of a multi-valued mapping T , that is,

F (T ) = {p ∈ X : p ∈ Tp} .

Definition 2.3. A point of x0 ∈ X is said to be a fixed point of the multi-valued mappings
T : X −→ CB(X) if x0 ∈ Tx0.

Lemma 2.1. Let (X, d) be a complete b-metric space. For any A,B,C ∈ CB(X) and any
x, y ∈ X, one has the following:

(1) d(x,B) ≤ d(x, b), for any b ∈ B.
(2) δ(A,B) ≤ H(A,B).
(3) d(x,B) ≤ H(A,B), for any x ∈ A.
(4) H(A,A) = 0.
(5) H(A,B) = H(B,A).
(6) H(A,C) ≤ s[H(A,B) +H(B,C)].
(7) d(x,A) ≤ s[d(x, y) + d(y,A)].
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(8) D(A,B) ≤ δ(A,B).

Lemma 2.2. [11] Let (X, d) be a complete b-metric space and let {xn} be a sequence in X
such that

d (xn+1, xn+2) ≤ λd (xn, xn+1) , foe all n = 0, 1, 2, . . .

where 0 ≤ λ < 1. Then {xn} is a Cauchy sequence in X.

3. Mains results

Before proving our main results, we need the following Lemma:

Lemma 3.1. Let (X, d) be a complete b-metric space with a coefficient s ≥ 1, α nonnegative
reel number, and S, T : X → CB(X) be multi-valued maps satisfying, for all x, y ∈ X

sαδ(Sx, Ty) ≤ N(x, y)M(x, y), (1)

where

N(x, y) =
max {d(x, y), D(x, Sx) +D(y, Ty), D(x, Ty) +D(y, Sx)}

δ(x, Sx) + δ(y, Ty) + 1
, (2)

and

M(x, y) = max

{
d(x, y), D(x, Sx), D(y, Ty),

D(x, Ty) +D(y, Sx)

2s

}
. (3)

Then every fixed point of S is a fixed point of T , and conversely.

Proof. Suppose that p is a fixed point of S. Using (1) and the definition of δ,

D(p, Tp) ≤ δ(p, Tp) ≤ δ(Sp, Tp) ≤ 1

sα
N(p, p)M(p, p). (4)

Where,

N(p, p) =
max {d(p, p), D(p, Sp) +D(p, Tp), D(p, Tp) +D(p, Sp)}

δ(p, Sp) + δ(p, Tp) + 1

≤ D(p, Tp)

D(p, Tp) + 1
= β < 1,

and,

M(p, p) = max

{
d(p, p), D(p, Sp), D(p, Tp),

D(p, Tp) +D(p, Sp)

2s

}
≤ D(p, Tp).

From 4

D(p, Tp) ≤ β

sα
D(p, Tp),

since
β

sα
< 1, which implies that p is also a fixed point of T .

In a similar manner it can be shown that, if p ∈ Tp, then p ∈ Sp.
�

Now, we prove the main result in this section.

Theorem 3.1. Let (X, d) be a complete b-metric space with a coefficient s ≥ 1, α nonneg-
ative reel number, and S, T : X → CB(X) be multi-valued maps satisfying (1), (2) and (3).
Then
(a) S and T have at least one common fixed point p ∈ X.
(b) For n even, {(ST )n/2x} and {T (ST )n/2x} converge to a common fixed point for each
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x ∈ X.
(c) If p and q are distinct common fixed points of S and T , then

sα

2
≤ d(p, q).

Proof. Part (a), let x0 ∈ X,x1 ∈ Sx0 and define {xn} by

x2n+1 ∈ Sx2n, x2n+2 ∈ Tx2n+1, for all n ≥ 0. (5)

Without loss of generality, we may assume that δ(Sx2n, Tx2n−1) 6= 0 and δ(Sx2n, Tx2n+1) 6=
0 for each n. For, if there exist an n such that δ(Sx2n, Tx2n−1) = 0, then Sx2n = Tx2n−1,
which implies that x2n ∈ Sx2n, since x2n ∈ Tx2n−1, and x2n is a fixed point of S, hence of
T by Lemma 3.1. Similar remarks apply if there exists an n for which δ(Sx2n, Tx2n+1) = 0.
We may also assume that xn 6= xn+1 for each n. For, if there exists an n for which
x2n 6= x2n+1, then, since x2n+1 ∈ Sx2n, x2n+1 ∈ F (S) , and by Lemma 3.1, x2n ∈ F (T ).
Similarly, x2n+1 = x2n+2 for any n implies that x2n+1 ∈ F (T ) ∩ F (S).

First we to show that {xn} is a Cauchy sequence in X. For this, consider

d(x2n+1, x2n) ≤ δ(Sx2n, Tx2n−1). (6)

Note that d2n = d(x2n+1, x2n).
From (2)

N(x2n, x2n−1) ≤ max {d2n−1, d2n + d2n−1, 0 + d(x2n−1, x2n+1)}
d2n + d2n−1 + 1

≤ max {d2n−1, d2n + d2n−1, s [d2n−1 + d2n]}
d2n + d2n−1 + 1

= s
d2n−1 + d2n

d2n−1 + d2n + 1
= sβ2n, (7)

where β2n =
d2n−1 + d2n

d2n−1 + d2n + 1
.

From (3)

M(x2n, x2n−1) ≤ max

{
d2n−1, d2n, d2n−1,

0 + d(x2n−1, x2n+1)

2s

}
≤ max

{
d2n−1, d2n,

d2n−1 + d2n

2

}
= max{d2n−1, d2n}. (8)

Using (1), (7) and (8) in (6) yields

d2n ≤ δ(Sx2n, Tx2n−1) ≤ β2n

sα−1
max{d2n−1, d2n}.

Since each xn 6= xn+1, d2n > 0, the above inequality implies that

d2n ≤
β2n

sα−1
d2n−1. (9)

A similar computation verifies that

d2n+1 ≤
β2n+1

sα−1
d2n. (10)

From inequalities (9) and (10), for all n > 0,

dn+1 ≤
βn+1

sα−1
dn. (11)
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Let λ =
βn+1

sα−1
. Then, we have that λ ∈ [0, 1). Hence, by Lemma 2.2, we obtain that {xn}

is a Cauchy sequence in (X, d). By completeness of (X, d), there exists p ∈ X such that
limn→∞ xn = p.
Next, to show that p is a fixed point of T . For this, using triangular inequality, we have

D(p, Tp) ≤ s[d(p, x2n+1) +D(x2n+1, Tp)]

≤ s[d(p, x2n+1) + δ(Sx2n, Tp)].
(12)

Using (2),

N(x2n, p) =
max {d(x2n, p), D(x2n, Sx2n) +D(p, Tp), D(x2n, Tp) +D(p, Sx2n)}

δ(x2n, Sx2n) + δ(p, Tp) + 1

≤ max {d(x2n, p), d(x2n, x2n+1) + d(p, Tp), d(x2n, Tp) + d(p, x2n+1)}
d(x2n, x2n+1) + d(p, Tp) + 1

.

(13)

From (3),

M(x2n, p) = max

{
d(x2n, p), D(x2n, Sx2n), D(p, Tp),

D(x2n, Tp) +D(p, Sx2n)

2s

}
≤ max

{
d(x2n, p), d(x2n, x2n+1), D(p, Tp),

d(x2n, Tp) + d(p, x2n+1)

2s

}
.

(14)

Substituting (13) and (14) into (12), using (1), and taking the limit of both sides as n −→∞,
one obtains

D(p, Tp) ≤ 1

sα−1

d(p, Tp)

d(p, Tp) + 1
D(p, Tp),

since
1

sα−1

d(p, Tp)

d(p, Tp) + 1
< 1, which implies that D(p, Tp) = 0, and hence that p ∈ F (T ).

From Lemma 3.1, p ∈ F (S).
To prove (b), merely observe that, from (5) and the fact that x0 is arbitrary, we may write.

xn+1 ∈ (ST )n/2x and xn+2 ∈ T (ST )n/2x.

(c) Suppose that p and q are distinct common fixed points of S and T .
Then

d(p, q) ≤ δ(Sp, Tq). (15)

Using (2),

N(p, q) =
max {d(p, q), 0, D(p, Tq) +D(q, Sp)}

δ(p, Sp) + δ(q, T q) + 1

≤ max {d(p, q), d(p, q) + d(q, p)}
d(p, Sp) + d(q, T q) + 1

= 2d(p, q).

Using (3),

M(p, q) = max

{
d(p, q), 0, 0,

D(p, Tq) +D(q, Sp)

2s

}
= d(p, q).

Using (1) and substituting it into (15) gives

d(p, q) ≤ 2

sα
d2(p, q).

which yields the result. �

The following corollaries can be deduced as particular cases of the main theorem.
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Corollary 3.1. Let (X, d) be a complete b-metric space with a coefficient s ≥ 1, α nonneg-
ative reel number, and T : X → CB(X) be a multivalued map satisfying for all x, y ∈ X

sαδ(Tx, Ty) ≤ N(x, y)M(x, y), (16)

where

N(x, y) =
max {d(x, y), D(x, Tx) +D(y, Ty), D(x, Ty) +D(y, Tx)}

δ(x, Tx) + δ(y, Ty) + 1
, (17)

and

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2s

}
. (18)

Then
(a) T has at least one fixed point.
(b) {Tnx} converge to a fixed point of T .
(c) If p and q are distinct fixed points of T , then

sα

2
≤ d(p, q).

Proof. Take S = T in Theorem 3.1. �

Corollary 3.2. Let (X, d) be a complete b-metric space and let T be a selfmap of X satisfying

sαd(Tx, Ty) ≤
(

d(x, Ty) + d(y, Tx)

d(x, Tx) + d(y, Ty) + 1

)
d(x, y), (19)

for all x, y ∈ X. Then
(a) T has at least one fixed point.
(b) {Tnx} converge to a fixed point of T .

(c) If p and q are distinct fixed points of T , then sα

2 ≤ d(p, q).

Proof. Take S = T in (1), N(x, y) =
d(x, Ty) + d(y, Tx)

d(x, Tx) + d(y, Ty) + 1
in (2) and M(x, y) = d(x, y)

in (3), from Theorem 3.1. �

Remark 3.1. By choosing :
s = 1 in Theorem 3.1, we get Theorem 2.6 and 2.1 of [24].
s = 1 in Corollary 3.2, we get Theorem 1 of [18].

Example 3.1. Let X = {0, 1
2 , 1} and let d : X −→ R+ defined by

d(0,
1

2
) = 1, d(0, 1) = 10, d(1,

1

2
) = 8,

d(0, 0) = d(
1

2
,

1

2
) = d(1, 1) = 0,

d(x, y) = d(y, x), for all x, y ∈ X.

(X, d) is a complete b-metric space with coefficient s =
10

9
, and α = 1. Let T : X −→ X be

defined by

Tx =

0, x = 0, 1
1

2
, x =

1

2
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Then, we have the following cases:

- When x = 0 and y =
1

2
then,

d(T0, T
1

2
) = d(0,

1

2
) = 1

≤ 9

10

(
d(0, T 1

2 ) + d( 1
2 , T0)

d(0, T0) + d( 1
2 , T

1
2 ) + 1

)
d(0,

1

2
)

=
9

5
.

- When x = 1 and y =
1

2
then,

d(T1, T
1

2
) = d(0,

1

2
) = 1

≤ 9

10

(
d(1, T 1

2 ) + d( 1
2 , T1)

d(1, T1) + d( 1
2 , T

1
2 ) + 1

)
d(1,

1

2
)

=
324

55
.

- When x = 0 and y = 1 then,

d(T0, T1) = d(0, 0) = 0

≤ 9

10

(
d(0, T1) + d(1, T0)

d(0, T0) + d(1, T1) + 1

)
d(0, 1)

=
90

11
.

- When x =
1

2
and y = 0 then,

d(T
1

2
, T0) = d(

1

2
, 0) = 1

≤ 9

10

(
d( 1

2 , T0) + d(0, T 1
2 )

d( 1
2 , T

1
2 ) + d(0, T0) + 1

)
d(

1

2
, 0)

=
81

10
.

Thus all the cases are verified. Moreover, it can be shown that T satisfies all the conditions
of the corollary 3.2. Then T has two distinct fixed points {0, 1

2} and 5
9 ≤ d(0, 1

2 ) = 1.

4. Conclusions

In this work, we introduced and studied a new generalized contraction for a pair of
multivalued mappings in complete b-metric spaces. Based on this a new contraction, some
exciting fixed and common fixed point results were obtained. Our results are modifications
and improvements for many existing results in the literature. Finally, we show the novelty
of our work by setting up an example.
Acknowledgement: The authors thank the reviewers and the editor for their valuable
remarks and comments which have improved the quality of the paper.
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