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A MODIFIED ITERATIVE ALGORITHM FOR SOLVING SPLIT

EQUALITY PROBLEMS
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In this paper, we investigate the split equality problems in Hilbert spaces. We

propose an iterative algorithm with self-adaptive step-size for solving split equality prob-

lems. Convergent analysis of the suggested algorithm is proved under some suitable

conditions.
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1. Introduction

Let H1, H2 and H3 be three real Hilbert spaces. Let C and Q be nonempty closed

convex subsets of H1 and H2, respectively. Let A : H1 → H3 and B : H2 → H3 be two

linear bounded operators. Let A∗ and B∗ be adjoint of A and B, respectively. The split

equality problem can be mathematically formulated as the problem of finding x ∈ C and

y ∈ Q such that

Ax = By. (1)

When H2 = H3 and B = I, then the split problem (1) reduces to the split feasibility problem

introduced by Censor and Elfving [?] which is to find x ∈ C such that

Ax ∈ Q. (2)

The split problems have a range of applications, for example, in image reconstruction, in-

tensity modulated radiation therapy, signal processing and so on. The split problems have 
been studied extensively in the literature, please refer to [1]-[3], [7]-[13] and [[17, 18, 19, 24, 31]. 
Their theories are closely related to other nonlinear problems, such as fixed point problems 
([4, 5], [20]-[29], [37, 39]), equilibrium problems ([27]) and variational inequality problems 
([14], [30]-[43]). In order to solve the split equality problem (1), Moudafi [15] established an 
alternating CQ-algorithm:{

xn+1 = PC(xn − ρnA∗(Axn −Byn)),

yn+1 = PQ(yn + ρnB
∗(Axn+1 −Byn)), n ∈ N,

(3)
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where ρn ∈ (ε,min{ 1
λA
, 1
λB
} − ε) with ε > 0, λA and λB are the spectral radii of of A∗A

and B∗B, respectively.

Let c : H1 → R and q : H2 → R be convex and subdifferentiable functions. Set

C = {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0}. In [?], Moudafi established a relaxed

alternating CQ-algorithm based on projections onto half-spaces as follows:{
xn+1 = PCn

(xn − γA∗(Axn −Byn)),

yn+1 = PQn(yn + βB∗(Axn+1 −Byn)), n ∈ N.
(4)

where γ = β ∈ (0,min{ 1
‖A‖2 ,

1
‖B‖2 }) and

Cn = {x ∈ H1 : c(xn) + 〈ξn, x− xn〉 ≤ 0}, ξn ∈ ∂c(xn),

and

Qn = {y ∈ H2 : q(yn) + 〈ηn, y − yn〉 ≤ 0}, ηn ∈ ∂q(yn).

Consequently, Moudafi and Byrne [?] suggested the following project Landweber al-

gorithm for solving split equality problem (1){
xn+1 = PC(xn − ρnA∗(Axn −Byn)),

yn+1 = PQ(yn + ρnB
∗(Axn −Byn)), n ∈ N.

(5)

where ρn ∈ (ε, 2
λA+λB

).

Very recently, many scholars implement the algorithms by using the self-adaptive 
techniques ([10, 18, 23, 24, 28, 31, 39) for solving the split problems in which the information of 
the operator norms do not need to be known in advance. Inspired by the work in this 
direction, in this paper, we presented a modified iterative algorithm for solving split equality 
problem (1). The modofied algorithm uses a self-adaptive step-size and a new searching 
direction. We prove that the suggested algorithm converges to a solution of the split equality 
problem (1).

2. Preliminaries

In this part, we give some definitions, notions and lemmas, which will be used in the 
following parts.

Definition 2.1. Let F : X ⊂ RN → RN be a mapping. F is said to be

(i) monotone, if

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ X.

(ii) co-coercive with modulus α > 0, if

〈F (x)− F (y), x− y〉 ≥ α‖F (x)− F (y)‖2, ∀x, y ∈ X.

(iii) Lipschitz continuous with constant λ > 0, if

‖F (x)− F (y)‖ ≤ λ‖x− y‖, ∀x, y ∈ X.

(iv) nonexpansive, if

‖F (x)− F (y)‖ ≤ ‖x− y‖, ∀x, y ∈ X.

Definition 2.2. An operator f : X → R is said to be lower semi-continuous at x ∈ X if

lim infy→x f(y) ≥ f(x).
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Definition 2.3. An operator U : X → X is called asymptotically regular if

lim
k→∞

‖Uk+1x− Ukx‖ = 0,

for all x ∈ X.

For the given nonempty closed convex set Ω in RN , the orthogonal projection from 
RN onto Ω is defined by

PΩ(x) = arg min{‖x − y‖ | y ∈ Ω}, x ∈ RN .

Lemma 2.1 ([18]). Let Ω be a nonempty closed convex subset in RN . Then for any x, y ∈ RN 

and z ∈ Ω, the following inequalities hold

(i) 〈PΩ(x)− x, z − PΩ(x)〉 ≥ 0;

(ii) ‖PΩ(x)− PΩ(y)‖2 ≤ 〈PΩ(x)− PΩ(y), x− y〉;
(iii) ‖PΩ(x)− z‖2 ≤ ‖x− z‖2 − ‖PΩ(x)− x‖2.

Let F : RN → RN be a mapping. For any x ∈ RN and α > 0, define

x(α) = PΩ(x− αF (x)), (6)

and

e(x, α) = x− x(α). (7)

It is known that ‖e(x, α)‖/α, α > 0 is nonincreasing ([?]) and ‖e(x, α)‖, α > 0 is nondecreas-

ing ([23]).

Lemma 2.2 ([18]). For any x ∈ RN and α > 0, we have

min{1, α}‖e(x, 1)‖ ≤ ‖e(x, α)‖ ≤ max{1, α}‖e(x, 1)‖.

Lemma 2.3 ([10]). Assume that h : RN → R is a convex function, then it is subdifferentiable 
and it’s subdifferentials are uniformly bounded on any bounded subset of RN .

3. Main results

Let C and Q be nonempty closed convex sets in RN and RM , respectively. Let A and

B be J by N and J by M real matrices, respectively. Let I = M +N . Define

D = [A, −B], vk =
[
xk, yk

]T
,

DTD =

[
ATA, −ATB
−BTA, BTB

]
.

We give two assumptions as follows:

(B1) The convex and nonempty sets C and Q are given by

C := {x ∈ RN |c(x) ≤ 0},

and

Q := {y ∈ RM |q(y) ≤ 0},
where c : RN → R and q : RM → R are convex functions.

(B2) For any x ∈ RN , y ∈ RM , ∂c(x) and ∂q(y) denote the generalized gradient of c(x) and

q(y), respectively. At least one subgradient ξ ∈ ∂c(x) can be computed, so we define

∂c(x) = {ξ ∈ RN | c(z) ≥ c(x) + 〈ξ, z − x〉 for all z ∈ RN}
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and at least one subgradient η ∈ ∂q(y) can be computed, so we defined

∂q(y) = {η ∈ RM | q(u) ≥ q(y) + 〈η, u− y〉 for all u ∈ RM}.

Define

Ck := {x|c(xk) + 〈ξk, x− xk〉 ≤ 0},
and

Qk := {y|q(yk) + 〈ηk, y − yk〉 ≤ 0},
where ξk ∈ ∂c(xk) and ηk ∈ ∂q(yk).

Set ζk = [ξk, ηk]T . Let l : RN ×RM and

l(v) = l(x, y) = c(x) + q(y), ∂l(vk) = ∂c(xk)× ∂q(yk),

S := {v|l(v) ≤ 0}, Sk := {v|〈ζk, v − vk〉+ l(vk) ≤ 0}.
It is clear that C ⊂ Ck and Q ⊂ Qk and C ×Q ⊂ S.

Note that the split equality problem (1) is equivalent to the following minimization

problem

min
x∈C,y∈Q

1

2
‖Ax−By‖2.

Define

l(v) =
1

2
‖Ax−By‖2,

i.e.

l(v) =
1

2
‖Dv‖2.

For all k define Fk : RI → RI as follows:

Fk(v) = DTD(v).

Next, we introduce our algorithm for solving (1).

Algorithm 3.1. Let τ ∈ (0, 2), β ∈ (0, 1) and µ ∈ (0, 1) be given constants and let v0 ∈ RI
be an initial guess. Let the sequence {vk} be defined by

vk = PSk
(vk − λkFk(vk)),

dk = vk − vk + λkFk(vk)− λkFk(vk),

vk+1 = vk − λkdk, k ≥ 0,

where λk = τβmk and mk is the smallest nonnegative integer m such that

‖Fk(vk)− Fk(vk)‖ ≤ µ‖v
k − vk‖
λk

. (8)

Lemma 3.1. (i) Fk is Lipschitz continuous with constant L and co-coercive with modulus
1
L , where L is the largest eigenvalue of the matrix DTD; (ii) the search rule (8) is well

defined and µβ
L < λk ≤ τ .

Proof. Take any x, y ∈ RI . By the definition of Fk, we can get

‖Fk(x)− Fk(y)‖2 = ‖DTDx−DTDy‖2 ≤ L‖Dx−Dy‖2,

and

〈Fk(x)− Fk(y), x− y〉 =〈DTDx−DTDy, x− y〉
=〈Dx−Dy,Dx−Dy〉

=‖Dx−Dy‖2.
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So

‖Fk(x)− Fk(y)‖2 ≤ L‖Dx−Dy‖2 = L〈Fk(x)− Fk(y), x− y〉,

that is

〈Fk(x)− Fk(y), x− y〉 ≥ 1

L
‖Fk(x)− Fk(y)‖2.

Obviously, λk ≤ τ by the search rule (8). Note that λk/β violate the search rule (8), i.e.,

‖Fk(vk)− Fk(Psk(vk − λk
β
Fk(vk)))‖ > µ

‖vk − PSk
(vk − λk

β Fk(vk))‖
λk

β

,

consequently, we can get

λk >
µβ

L
.

The proof is completed. �

Theorem 3.1. Assume that (B1) and (B2) are satisfied and µβ
L < λk ≤ min{L, τ}. Let

{vk} be generated by Algorithm 3.1, if the solution set is nonempty, then {vk} converges to

v ∈ S, Dv = 0 and v is a solution of the split equality problem (1).

Proof. Let v∗ be a solution of the split equality problem (1). So Fk(v∗) = 0, k = 0, 1, · · ·.
Using the monotonicity of Fk, we can get

〈Fk(vk)− Fk(v∗), vk − v∗〉 ≥ 0,

i.e.,

〈Fk(vk), vk − v∗〉 ≥ 0, (9)

which is equivalent to

〈Fk(vk), vk − v∗〉 ≥ 〈Fk(vk), vk − vk〉.

Thus, we obtain

‖vk+1 − v∗‖2 = ‖vk − λkdk − v∗‖2

= ‖vk − v∗‖2 − 2λk〈dk, vk − v∗〉+ λ2
k‖dk‖2

= ‖vk − v∗‖2 − 2λk〈dk, vk − v∗〉 − 2λk〈dk, vk − vk〉+ λ2
k‖dk‖2.

Note that

〈dk, vk − v∗〉 = 〈vk − vk + λkFk(vk)− λkFk(vk), vk − v∗〉

= 〈vk − λkFk(vk)− vk, vk − v∗〉+ λk〈Fk(vk), vk − v∗〉.
(10)

Let vk − λkFk(vk) = wk. From the projection property (i) of Lemma 2.1, we have

〈vk − λkFk(vk)− vk, vk − v∗〉 =〈wk − vk, vk − v∗〉

=〈wk − PSk
(wk), PSk

(wk)− v∗〉
≥0,

(11)

By (9), (10) and (11), we have

〈dk, vk − v∗〉 ≥ 0. (12)
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From the definition of vk and Lemma 3.1, we can get

〈dk, vk − vk〉 = 〈dk, vk − vk + λkFk(vk)− λkFk(vk)〉+ λk〈dk, Fk(vk)− Fk(vk)〉

= ‖dk‖2 + λk〈vk − vk + λkFk(vk)− λkFk(vk), Fk(vk)− Fk(vk)〉

= ‖dk‖2 + λk〈vk − vk, Fk(vk)− Fk(vk)〉 − λ2
k‖Fk(vk)− Fk(vk)‖2

≥ ‖dk‖2 + (λk − λ2
k ·

1

L
)〈vk − vk, Fk(vk)− Fk(vk)〉

= ‖dk‖2 + (λk − λ2
k ·

1

L
)〈vk − vk, DTD(vk)−DTD(vk)〉

= ‖dk‖2 + (λk − λ2
k ·

1

L
)〈D(vk)−D(vk), D(vk)−D(vk)〉

= ‖dk‖2 + (λk − λ2
k ·

1

L
)‖D(vk)−D(vk)‖2,

(13)

According to (12) and (13), we obtain

‖vk+1 − v∗‖2 = ‖vk − v∗‖2 − 2λk〈dk, vk − v∗〉 − 2λk〈dk, vk − vk〉+ λ2
k‖dk‖2

≤ ‖vk − v∗‖2 − 2λk〈dk, vk − v∗〉+ λ2
k‖dk‖2

− 2λk[‖dk‖2 + (λk − λ2
k ·

1

L
)‖D(vk)−D(vk)‖2]

= ‖vk − v∗‖2 − λk(2− λk)‖dk‖2 − 2λk〈dk, vk − v∗〉

− 2λ2
k(1− λk ·

1

L
)‖D(vk)−D(vk)‖2.

(14)

Since µβ
L < λk ≤ min{L, τ}, we deduce that {‖vk − v∗‖} is monotone. Hence, {vk} is

bounded and convergent. Furthermore,

lim
k→∞

‖D(vk)−D(vk)‖ = lim
k→∞

‖D(vk − vk)‖ = 0.

Therefore

lim
k→∞

‖vk − vk‖ = 0. (15)

By (8), we have

‖vk+1 − vk‖ ≤ ‖vk+1 − vk‖+ ‖vk − vk‖

= ‖vk − λkdk − vk‖+ ‖vk − vk‖

= ‖vk − vk − λk(vk − vk + λkFk(vk)− λkFk(vk))‖+ ‖vk − vk‖

= ‖vk − vk − λk(vk − vk)− λ2
k(Fk(vk)− Fk(vk))‖+ ‖vk − vk‖

≤ ‖vk − vk − λk(vk − vk)‖+ λ2
k ‖ Fk(vk)− Fk(vk) ‖ + ‖ vk − vk ‖

≤ ‖vk − vk‖+ λk‖vk − vk‖+ λ2
k

µ‖vk − vk‖
λk

+ ‖ vk − vk ‖

= (2 + (1 + µ)λk)‖vk − vk‖,

which together with (15) implies that

lim
k→∞

‖vk+1 − vk‖ = 0. (16)

Suppose that v is a cluster point of {vk} and {vki} is a convergent subsequence of {vk}.
Next, we will prove that v is a solution of the split equality problem (1) and Dv = 0. Set

ek(v, λ) = v − PSk
(v − λFk(v)), λ > 0, k = 0, 1, · · ·.
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From Lemma 2.2, Lemma 3.1 and equation (15), we have

lim
i→∞

‖eki(vki , 1)‖ ≤ lim
i→∞

‖vki − vki ‖
min{1, λki}

≤ lim
i→∞

‖vki − vki‖
min{1, λ}

= 0,

(17)

where λ = µβ
L .

Based on Lemma 2.1 and v∗ ∈ Ski , we obtain

〈vki − Fki(vki)− PSki
(vki − λkiFki(vki)), v∗ − PSki

(vki − λkiFki(vki))〉 ≤ 0,

i.e.,

〈eki(vki , 1)− Fki(vki), vki − v∗ − eki(vki , 1)〉 ≥ 0.

Hence

〈eki(vki , 1), vki − v∗〉 − ‖eki(vki , 1)‖2 − 〈Fki(vki), vki − v∗〉+ 〈Fki(vki), eki(vki , 1)〉 ≥ 0.

Consequently, we obtain

〈vki − v∗, eki(vki , 1)〉

≥‖eki(vki , 1)‖2 − 〈Fki(vki), eki(vki , 1)〉+ 〈Fki(vki), vki − v∗〉

=‖eki(vki , 1)‖2 − 〈Fki(vki), eki(vki , 1)〉+ 〈Fki(vki)− Fki(v∗), vki − v∗〉

=‖eki(vki , 1)‖2 − 〈Fki(vki), eki(vki , 1)〉+ 〈DTDvki −DTDv∗, vki − v∗〉

=‖eki(vki , 1)‖2 − 〈Fki(vki), eki(vki , 1)〉+ 〈Dvki −Dv∗, Dvki −Dv∗〉

=‖eki(vki , 1)‖2 − 〈Fki(vki), eki(vki , 1)〉+ ‖Dvki −Dv∗‖2

=‖eki(vki , 1)‖2 − 〈Fki(vki), eki(vki , 1)〉+ ‖Dvki‖2,

(18)

Owing to

‖Fki(vki)‖ = ‖Fki(vki)− Fki(v∗)‖ ≤ L‖vki − v∗‖, ∀i = 0, 1, · · ·.

and {vki} is bounded, the sequence {Fki(vki)} is bounded, too. Hence, from (17) and (18),

we can deduce

lim
i→∞

‖Dvki‖ = 0,

that is

lim
i→∞

Dvki = 0,

so we get Dv = 0.

Assume that the {vkn} converges to v and Dv = 0. Since ‖vk − vk+1‖ → 0, we know

that vk is asymptotically regular. Owing to vkn+1 ∈ Skn , we obtain

〈ζkn , vkn+1 − vkn〉+ l(vkn) ≤ 0,

thus

l(vkn) ≤ −〈ζkn , vkn+1 − vkn〉 ≤ ζ‖vkn+1 − vkn‖.

From the lower semi-continuity of l(v) and the asymptotic regularity of {vk}, we obtain

l(v) ≤ lim inf
n→∞

l(vkn) ≤ 0.
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Hence, v ∈ S and the sequence {‖v − vk‖} converges to 0. Thus, we use v to replace v∗ in

‖vk+1− v∗‖ and {‖ vk − v ‖} is convergent. Since the subsequent {‖ vki − v ‖} converges to

0, vk → v as k →∞. This completes the proof. �

4. Conclusion

In this paper, we proposed a new iterative algorithm with Armijo-like search for

solving the split equality problem. The algorithm doesn’t require computing the matrix

inverse and the largest eigenvalue of the matrix ATA. Convergent analysis of the suggested

algorithm is proved under some suitable conditions.
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