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MULTI-GRANULATION VARIABLE PRECISION ROUGH SET BASED

ON LIMITED TOLERANCE RELATION

Renxia Wan1, Yonghong Yao2, Hussain Kumar3

In this paper, the combination of the variable precision rough set and the lim-
ited tolerance relation under multi-granularity is explored. As an extension of rough

set model, Multi-granularity variable precision limited tolerance rough set model is con-
structed. Properties of upper and lower approximation operator and detailed structure

of object class through threshold are discussed. Theoretical proofs are given to show the

rationality and superiority of the proposed model.
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1. Introduction

The classical rough set model [11, 12] proposed by polish scholar Pawlak in the early
1980s is a powerful mathematical tool for data analysis. Rough set theory has been broadly
applied in pattern recognition, machine learning, decision analysis, knowledge acquisition
and data mining [7, 9, 17, 20, 27, 30, 31]. In the past few decades, due to the diversity of
data and different requirements of analysis purposes, the extended rough set models, such
as variable precision rough set [32], probability rough set [28, 29], Game-theoretic rough set
[1, 4], fuzzy rough set [10, 23], local neighborhood rough set [22] and so on.

However, the classical rough set model and most of its extensions are basically based
on the indiscernibility relation, actually, the indiscernibility relation is an equivalence rela-
tion which possesses reflexive, symmetric and transitive properties. While the equivalence
relation is relatively strict condition in many practical application, and classes clustering on
this relation cannot well reflect the natural characteristic of overlapping data set.

Many scholars have conducted research works for substitution of the equivalence re-
lation [5, 19, 21, 26], some scholars also describe the concept of target through multiple
indiscernibility relations, and propose a multi-granularity rough set model [14, 16, 24, 25].
In these research works, Skowron and Stepniuk [18] replaced the equivalence relation with
the tolerance relation and proposed the tolerance approximation spaces, and Kryszkiewicz
[8] defined a similarity relation in incomplete information systems. Kryszkiewicz’s similarity
relation is an extension of Skowron’s tolerance relation, therefore, both of them are referred
to as tolerance relation collectively by later researchers. The tolerance relation discards
the transitivity requirement of indiscernibility relation in classical rough set and relaxes the
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symmetry requirement for incomplete information. Hence, the tolerance classes can well
reflect the overlapping relation between groups of objects. Dai [2] defined the fuzzy toler-
ance relation in complete numerical data set and established the fuzzy tolerance rough set,
Kang and Miao [6] proposed an extended version of the variable precision rough set model
based on the granularity of tolerance relation. Xu et.al [24] extended the single-granulation
tolerance rough set model to two types of tolerance multi-granulation rough set models
from a granular computing view. Stefanowski and Tsoukias [19] introduced non symmetric
similarity relation which can refine the results obtained using tolerance relation approach,
they also proposed valued tolerance relation in order to provide more informative results,
however, Wang [21] found that then on symmetric similarity relation may lose some impor-
tant information, and valued tolerance relation requires accurate probability distribution of
all attributes in advance, Wang then proposed the limited tolerance relation. Deris et.al
[3] used conditional entropy to handle flexibility and precisely data classification in limited
tolerance relation.

Combining the advantages of limited tolerance relation and probabilistic variable pre-
cision probabilistic rough set, this paper constructs a model of multi-granularity variable pre-
cision rough set based on limited tolerance relation in incomplete information system.Multi-
granularity variable precision rough set is an effective unified and extended version of variable
precision rough set, probabilistic rough set, tolerance rough set and multi-granularity rough
set. In Section 2, some related concepts will be reviewed. In Section 3, multi-granulation
variable precision rough set based limited tolerance relation is presented and properties of
the proposed rough set model are analyzed. The relationships between the proposed rough
set and others are discussed in Section 4. In Section 5, the method of measuring the un-
certainty of the proposed roughed set model is given, and the superiority of the model is
further verified. Finally, conclusions are made in section 6.

2. Notations and Preliminaries

In this section, some basic concepts such as information system, Pawlak’s rough
set, variable precision rough set, probabilistic rough set, tolerance rough set and multi-
granularity rough set will be reviewed as preliminaries of the follows.

Definition 2.1 ([3, 8]). An information system(IS) is a 4-tuple S = (U, TA, V, f), where
U = {x1, x2, ..., x|U |} is a non-empty finite set of objects, TA = {a1, a2, ..., a|TA|} is a non-
empty finite set of attributes, V =

⋃
a∈TAVa, Va is the value set of attribute, f : U×TA→ V

is a total function such that f(x, a) ∈ V , for every (x, a) ∈ U × TA, called information
function. If U contains at least one object with an unknown or missing value (so-called
null value), then S is called incomplete information system(IIS). The unknown value is
denoted as ”*” in incomplete information system. In this paper, we also use the quadruple
S = (U, TA, V, f) to denote an incomplete information system. If TA = C ∪D, where C is
the set of condition attributes, D is the set of decision attributes, then S is called Decision
Information System.

Each subset of attributesA ⊆ TA determines a binary indiscernibility relation IND(A)
as follows:

IND(A) = {(x, y) ∈ U × U |∀a ∈ A, a(x) = a(y)}.
The relation IND(A) is an equivalence relation since it is reflexive, symmetric and transitive.

Example 2.1. Given descriptions of several cars in Table 2.1 and Table 2.2. They are an
information system and an incomplete information system respectively. From tables, we
have U = {1, 2, 3, 4, 5, 6}, TA = {Car,Price,Mileage,Size,Max− Speed}.
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Table 2.1: An information system of Example 2.1.

Car Price Mileage Size Max-Speed
1 High High Full Low
2 Low Low Full Low
3 High Low Full High
4 High Low Compact High
5 Low High Full High
6 Low High Full High

Table 2.2: An incomplete information system of Example 2.1.

Car Price Mileage Size Max-Speed
1 High High Full Low
2 Low ∗ ∗ Low
3 ∗ ∗ Full High
4 High ∗w Compact High
5 ∗ ∗ Full High
6 Low High ∗ ∗

Definition 2.2 ([11, 12]). Let S = (U, TA, V, f), be an IS, A ⊆ TA, the lower and upper
approximations of an arbitrary subset X of U are defined as A(X) = {x ∈ U : [x]A ⊆ X}
and A(X) = {x ∈ U : [x]A ∩ X 6= ∅} respectively, where [x]A = {y ∈ U(x, y) ∈ IND(A)}
is the -equivalence class containing. The pair

[
A(X), A(X)

]
is referred to as the Pawlak’s

rough set of with respect to the set of attributes A.

Definition 2.3 ([32]). Let S = (U, TA, V, f) be an IS, A ⊆ TA, 0 < β ≤ 0.5, the lower
and upper approximations of an arbitrary subset X of U are defined as A(X) = {x ∈
U |P (X|[x]A) ≥ 1− β} and A

β
(X) = {x ∈ U |P (X|[x]A) > β} respectively, where P (X|[x]A)

is the conditional probability of X given [x]A. The pair
[
Aβ(X), A

β
(X)

]
is referred to as the

variable precision rough set of X with respect to the set of attributes A and the admissible
error β.

Definition 2.4 ([8]). Let S = (U, TA, V, f) be an IIS. For any subset A ⊆ TA, the tolerance
relation is defined as T (A) = {(x, y) ∈ U × U |∀a ∈ A, a(x) = a(y) ∨ a(x) = ∗ ∨ a(y) = ∗}.

Obviously, T is reflexive and symmetric, but not transitive. The tolerance class ITA(x)
of an object with reference to an attribute subset is defined as ITA(x)={y|y ∈ U ∧ TA(x, y)}.

Definition 2.5 ([3]). Let S = (U, TA, V, f) be an IIS, A ⊆ TA. T is a tolerance relation,
the lower and upper approximations of an arbitrary subset X of U with reference to attribute
subset A respectively can defined as are defined as AT (X) = {x|x ∈ U ∧ ITA(x) ⊆ X} and

AT (X) = {x|x ∈ U ∧ ITA(x) ∩ X 6= φ}. The pair
[
AT (X), AT (X)

]
is referred to as the

tolerance rough set of X with respect to the set of attributes A.

Definition 2.6 ([21]). Let S = (U, TA, V, f) be an IIS, A ⊆ TA, and PA(x) = {a|a ∈
A ∧ a(x) 6= ∗}. A binary relation L (limited tolerance relation) defined on U is given as

L(A) = {(x, y) ∈ U × U |∀a∈A(a(x) = a(y) = ∗) ∨ ((PA(x) ∩ PA(y) 6= φ)∧
∀a∈A((a(x) 6= ∗) ∧ (a(y) 6= ∗)→ (a(x) = a(y))))}.



66 Renxia Wan, Yonghong Yao, Hussain Kumar

L is reflexive and symmetric, but not transitive. The limited tolerance class ILA(x) of
an object x with reference to an attribute subset A is defined as

ILA(x)={y|y ∈ U ∧ LA(x, y)}.

Definition 2.7 ([3]). Let S = (U, TA, V, f) be an IIS, A ⊆ TA, L is a limited tolerance
relation, the lower and upper approximations of an arbitrary subset X of U with reference to
attribute subset A respectively can defined as are defined as AL(X) = {x|x ∈ U∧ILA(x) ⊆ X}
and øverlineAL(X) = {x|x ∈ U ∧ ILA(x) ∩ X 6= φ}. The pair

[
AL(X), AL(X)

]
is referred

to as the limited tolerance rough set of X with respect to the set of attributes A.

Definition 2.8 ([14, 15]). Let S = (U, TA, V, f) be an IS,A1, A2, · · · , Am ⊆ AT , the opti-
mistic multi-granulation lower and upper approximations of an arbitrary subset X of U are
denoted by Σmi=1A

o
i (X) and Σmi=1A

o
i (X), respectively,

Σmi=1A
o
i (X) = {x ∈ U : [x]A1

⊆ X ∨ [x]A2
⊆ X ∨ . . . ∨ [x]Am ⊆ X},

Σmi=1A
o
i (X) =∼ Σmi=1A

o
i (∼ X)

where [x]Ai(1 ≤ i ≤ m) is the equivalence class of x in terms of set of attributes Ai, and

Σmi=1A
o
i (X) =∼ Σmi=1A

o
i (∼ X) is the complement of X.

The pair
[
Σmi=1A

o
i (X),Σmi=1A

o
i (X)

]
is referred to as the optimistic multi-granulation

rough set.

Definition 2.9 ([13, 14]). Let S = (U, TA, V, f) be an IS, A1, A2, · · · , Am ⊆ AT , the
pessimistic multi-granulation lower and upper approximations of an arbitrary subset X of U

are denoted by Σmi=1A
P
i (X) and Σmi=1A

P
i (X), respectively,

Σmi=1A
p
i (X) = {x ∈ U : [x]A1

⊆ X ∧ [x]A2
⊆ X ∧ . . . ∧ [x]Am ⊆ X},

Σmi=1A
p
i (X) =∼ Σmi=1A

p
i (∼ X).

The pair
[
Σmi=1A

P
i (X),Σmi=1A

P
i (X)

]
is referred to as the pessimistic multi-granulation

rough set.

3. Multi-granulation variable precision rough set based limited tolerance
relation

In this section, multi-granulation variable precision rough set based limited tolerance
relation will be investigated in incomplete system.

Definition 3.1. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT , T is a tolerance
relation, 0.5 < α ≤ 1, the optimistic multi-granulation variable precision tolerance lower
and upper approximations of an arbitrary subset X of U are denoted by Σmi=1A

o
iTα

(X) and

Σmi=1A
o
iTα

(X), respectively,

Σmi=1A
O
iTα(X) = {x ∈ U : P (X|TA1

(X)) ≥ α∨P (X|TA2
(X)) ≥ α∨ . . .∨P (X|TAm(X)) ≥ α}

Σmi=1A
o
iTα

(X) =∼ Σmi=1A
o
iTα(∼ X).

The pair
[
Σmi=1A

O
iTα

(X),Σmi=1A
O
iTα

(X)
]
is referred to as the optimistic multi-granulation vari-

able precision tolerance rough set.
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Definition 3.2. Let S = (U, TA, V, f) be an IIS,A1, A2, · · · , Am ⊆ AT , T is a toler-
ance relation, 0.5 < α ≤ 1, the pessimistic multi-granulation variable precision tolerance
lower and upper approximations of an arbitrary subset of are denoted by Σmi=1A

P
iTα

(X) and

Σmi=1A
P
iTα

(X), respectively,

Σmi=1A
P
iTα(X) = {x ∈ U : P (X|TA1

(X)) ≥ α∧P (X|TA2
(X)) ≥ α∧. . .∧P (X|TAm(X)) ≥ α},

Σmi=1A
P
iTα

(X) = ˜Σmi=1A
P
iTα (̃ X).

The pair
[
Σmi=1A

P
iTα

(X),Σmi=1A
P
iTα

(X)
]

is referred to as the pessimistic multi-granulation

variable precision tolerance rough set.

Theorem 3.1. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT , T is a tolerance
relation. Then ∀X ⊆ U , we have

Σmi=1A
O
iTα

(X) = {x ∈ U : P (X|TA1(X)) > 1− α ∧ P (X|TA2(X))

> 1− α ∧ . . . ∧ P (X|TAm(X))

> 1− α}.

Proof. By Definition 3.1, we have

x ∈ Σmi=1A
O
iTα

(X)⇔ x 6∈ Σmi=1A
O
iTα

(̃ X)

⇔ P (∼ X|TA1
(X)) < α ∧ P (∼ X|TA2

(X)) < α ∧ . . . ∧ P (∼ X|TAm(X)) < α

⇔ |(˜X)∩TA1
(X)|

|TA1
(X)| < α ∧ . . . ∧ |(˜X)∩TAm (X)|

|TAm (X)| < α

⇔ 1− |TA1
(X)∩(X)|
|TA1

(X)| < α ∧ . . . ∧ 1− |TAm (X)∩(X)|
|TAm (X)| < α

⇔ P (X|TA1
(X)) > 1− α ∧ . . . ∧ P (X|TAm(X)) > 1− α}.

The proof is complete. �

Theorem 3.2. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT , T is a tolerance
relation. Then ∀X ⊆ U , we have

Σmi=1A
P
iTα

(X) = {x ∈ U : P (X|TA1
(X)) > 1− α ∨ P (X|TA2

(X))

> 1− α ∨ . . . ∨ P (X|TAm(X))

> 1− α}.

Proof. The proof of the theorem is similar to Theorem 3.1. �

Proposition 3.1. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT , T is a tolerance
relation, 0.5 < α ≤ 1, X ⊆ U . Then the following properties hold:
(1) Σmi=1A

o
iTα

(∅) = Σmi=1A
o
iTα

(∅) = ∅.
(2) Σmi=1A

o
iTα

(∼ X) =∼ Σmi=1A
o
iTα

(X).

(3) Σmi=1A
o
iTα

(U) = Σmi=1A
o
iα

(U) = U .

(4) Σmi=1A
o
iTα

(∼ X) =∼ Σmi=1A
o
iTα

(X).

(5) if X ⊆ Y , then Σmi=1A
o
iTα

(X) ⊆ Σmi=1A
o
iTα

(Y ) and Σmi=1A
o
iTα

(X) ⊆ Σmi=1A
o
iTα

(Y ).

(6) if α1 ≥ α2 , thenΣmi=1A
o
iTα1

(X) ⊆ Σmi=1A
o
iTα2

(Y ) andΣmi=1A
o
iTα1

(X) ⊆ Σmi=1A
o
iTα2

(Y ).

Proof. (1a) From Definition 3.1, we can easily know that Σmi=1A
o
iTα

(∅) ⊆ ∅, and ∅ ⊆
Σmi=1A

o
iTα

(∅) because the empty set is included in every set. Therefore, Σmi=1A
o
iTα

(∅)=∅.
(1b) SupposeΣmi=1A

o
iα

(∅) 6= ∅. Then, there exists such that x ∈ Σmi=1A
o
iβ(∅) 6= ∅. For

every i ∈ {1, 2, · · · ,m}, ITAi(x) ∩ ∅ 6= ∅. But ITAi(x) ∩ ∅ 6= ∅. It contradicts the assumption.

So, Σmi=1A
o
iα

(∅)=∅.
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(2) From Definition 3.1, we know that, Σmi=1A
o
iα

(∼ X) =∼ Σmi=1A
o
iα

(X). Let X =∼
X, then ∼ Σmi=1A

o
iTα

(∼ X) = Σmi=1A
o
iTα

(X), namely, Σmi=1A
o
iTα

(∼ X) =∼ Σmi=1A
o
iTα

(X).

(3) Let X = ∅, then ˜X=U. From (2), Σmi=1A
o
iTα

(U) = ˜Σmi=1A
o
iTα

(∅) = ∅̃=U .

(4) From (2), Σmi=1A
o
iTα

(̃ Y ) = ˜Σmi=1A
o
iTα

(Y )holds, then Σmi=1A
o
iTα

(Y ) = ˜Σmi=1A
o
iTα

(̃ Y ).

Let X=˜Y , then we have Σmi=1A
o
iTα

(∼ X) =∼ Σmi=1A
o
iTα

(X).

(5) ∀x ∈ Σmi=1A
o
iTα

(X), From Definition 3.1, there exists Ai ∈ {A1, A2, · · · , An} such

that P (X|TA1(X)) ≥ α. Since X ⊆ Y , then P (X|TAi(X)) ⊆ P (X|TAi(Y )) ≥ α, hence
x ∈ Σmi=1A

o
iTα

(Y ). Therefore, Σmi=1A
o
iTα

(X) ⊆ Σmi=1A
o
iTα

(Y ).

Similarly, it is not difficult to prove that Σmi=1A
o
iTα

(X) ⊆ Σmi=1A
o
iTα

(Y ).

(6) ∀x ∈ Σmi=1A
o
iTα2

(X), From Definition 3.2, there exists Ai ∈ {A1, A2, · · · , An} such

that P (X|TAi(X)) ≥ α2. Since α1 > α2, then P (X|TAi(X)) ≥ α1, i.e.x ∈ Σmi=1A
o
iTα1

(X).

Therefore, Σmi=1A
o
iTα1

(X) ⊇ Σmi=1A
o
iTα2

(Y ).

Similarly, it is not difficult to prove that Σmi=1A
o
iTα1

(X) ⊆ Σmi=1A
o
iTα2

(Y ). �

Proposition 3.2. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT . L is a tolerance
relation, 0.5 < α ≤ 1, X ⊆ U . Then the following properties hold:

(1) Σmi=1A
P
iTα

(U) = Σmi=1A
P
iα

(U) = U .

(2) Σmi=1A
P
iTα

(∅) = Σmi=1A
P
iTα

(∅) = ∅.
(3) Σmi=1A

P
iTα

(̃ X) = ˜Σmi=1A
P
iTα

(X).

(4) Σmi=1A
P
iTα

(̃ X) = ˜Σmi=1A
P
iTα

(X).

(5) If X ⊆ Y , then Σmi=1A
P
iTα

(X) ⊆ Σmi=1A
P
iTα

(Y ) and Σmi=1A
P
iTα

(X) ⊆ Σmi=1A
P
iTα

(Y ).

(6) If α1 ≥ α2, then Σmi=1A
P
iTα1

(X) ⊆ Σmi=1A
P
iTα2

(Y ) and Σmi=1A
P
iTα1

(X) ⊆ Σmi=1A
P
iTα2

(Y ).

Proof. The proofs of these terms are similar to Proposition 3.1. �

Definition 3.3. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT . L is the limited
tolerance relation, 0.5 < α ≤ 1, the optimistic multi-granulation variable precision limited
tolerance lower and upper approximations of an arbitrary subset X of U are denoted by
Σmi=1A

o
iLα

(X) and Σmi=1A
o
iLα

(X), respectively,

Σmi=1A
O
iLα(X) = {x ∈ U : P (X|LA1

(X)) ≥ α∨P (X|LA2
(X)) ≥ α∨. . .∨P (X|LAm(X)) ≥ α},

Σmi=1A
o
iLα

(X) = ˜Σmi=1A
o
iLα (̃ X).

The pair
[
Σmi=1A

O
iLα

(X),Σmi=1A
O
iLα

(X)
]

is referred to as the optimistic multi-granulation

variable precision limited tolerance rough set.

Definition 3.4. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT . L is the tolerance
relation, 0.5 < α ≤ 1, the pessimistic multi-granulation variable precision limited tolerance
lower and upper approximations of an arbitrary subset X of U are denoted by Σmi=1A

P
iLα

(X)

and Σmi=1A
P
iLα

(X), respectively,

Σmi=1A
P
iLα(X) = {x ∈ U : P (X|LA1(X)) ≥ α∨P (X|LA2(X)) ≥ α∨. . .∨P (X|LAm(X)) ≥ α},

Σmi=1A
P
iLα

(X) = ˜Σmi=1A
P
iLα (̃ X).

The pair
[
Σmi=1A

P
iLα

(X),Σmi=1A
P
iLα

(X)
]

is referred to as the pessimistic multi-granulation

variable precision limited tolerance rough set.
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Theorem 3.3. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT . L is a limited
tolerance relation, 0.5 < α ≤ 1. Then ∀X ⊆ U , we have

Σmi=1A
O
iLα

(X) = {x ∈ U : P (X|LA1
(X)) > 1− α ∧ P (X|LA2

(X))

> 1− α ∧ . . . ∧ P (X|LAm(X))

> 1− α}.

Proof. From Definition 3.3, we have

x ∈ Σmi=1A
O
iLα

(X)⇔ x 6∈ Σmi=1A
O
iLα (̃ X)

⇔ P (̃ X|LA1
(X)) < α ∧ P (̃ X|LA2

(X)) < α ∧ . . . ∧ P (̃ X|LAm(X)) < α

⇔ |(̃ X) ∩ LA1(X)|
|LA1(X)|

< α ∧ . . . ∧ |(̃ X) ∩ LAm(X)|
|LAm(X)|

< α

⇔ 1− |LA1
(X) ∩ (X)|
|LA1

(X)|
< α ∧ . . . ∧ 1− |LAm(X) ∩ (X)|

|LAm(X)|
< α

⇔ P (X|LA1(X)) > 1− α ∧ . . . ∧ P (X|LAm(X)) > 1− α}.

The proof is complete. �

Theorem 3.4. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT . L is the limited
tolerance relation, 0.5 < α ≤ 1. Then ∀X ⊆ U , we have

Σmi=1A
P
iLα

(X) = {x ∈ U : P (X|LA1
(X)) > 1− α ∨ P (X|LA2

(X))

> 1− α ∨ . . . ∨ P (X|LAm(X))

> 1− α}.

Proof. From Definition 3.4, we have

x ∈ Σmi=1A
P
iLα

(X)⇔ x 6∈ Σmi=1A
P
iLα (̃ X)

⇔ P (̃ X|LA1
(X)) < α ∨ P (̃ X|LA2

(X)) < α ∨ . . . ∨ P (̃ X|LAm(X)) < α

⇔ |(̃ X) ∩ LA1
(X)|

|LA1(X)|
< α ∨ . . . ∨ |(̃ X) ∩ LAm(X)|

|LAm(X)|
< α

⇔ 1− |LA1(X) ∩ (X)|
|LA1

(X)|
< α ∨ . . . ∨ 1− |LAm(X) ∩ (X)|

|LAm(X)|
< α

⇔ P (X|LA1
(X)) > 1− α ∨ . . . ∨ P (X|LAm(X)) > 1− α}.

The proof is complete. �

Proposition 3.3. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT . L is the limited
tolerance relation, 0.5 < α ≤ 1, ∀X,Y ⊆ U . Then the following properties hold:
(1) Σmi=1A

o
iLα

(X) ⊆ X ⊆ Σmi=1A
o
iLα

(X).

(2) Σmi=1A
o
iLα

(∅) = Σmi=1A
o
iLα

(∅) = ∅.
(3) Σmi=1A

o
iLα

(U) = Σmi=1A
o
iLα

(U) = U .

(4) If X ⊆ Y , then Σmi=1A
o
iLα

(X) ⊆ Σmi=1A
o
iLα

(Y ) and Σmi=1A
o
iLα

(X) ⊆ Σmi=1A
o
iLα

(Y ).

(5) If α1 ≥ α2 , then Σmi=1A
o
iLα1

(X) ⊆ Σmi=1A
o
iLα2

(Y ) and Σmi=1A
o
iLα1

(X) ⊆ Σmi=1A
o
iLα2

(Y ).

Proof. (1) ∀x ∈ Σmi=1A
o
iLα

(X), from Definition 3.3, ∃Ai ∈ {A1, · · · , Am}, with P (X|LAi(X)) ≥
α, i.e., for eachα:0.5 < α ≤ 1, it holds |X ∩ ILAi(x)| ≥ α|ILAi(x)|. Hence, ILAi(x) ⊆ X.
Thus x ∈ X. Therefore, Σmi=1A

o
iLα

(X) ⊆ X; ∀x ∈ X, since limited tolerance relation

is reflexive, then we have x ∈ ILAi(x). For each Ai ∈ {A1, · · · , Am}, according to the
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above conclusion, it follows |X ∩ ILAi(x)| ≥ α|ILAi(x)|, since 0.5 < α ≤ 1, then it holds

|X ∩ ILAi(x)| ≥ (1− α)|ILAi(x)|, thus, x ∈ Σmi=1A
o
iLα

(X).

Therefore X ⊆ Σmi=1A
o
iLα

(X)
(2) We can easily know that Σmi=1A

o
iLα

(∅) ⊆ ∅. Since the empty set is included in every

set, then ∅ ⊆ Σmi=1A
o
iLα

(∅). Therefore, ∅ ⊆ Σmi=1A
o
iLα

(∅); ∅ ⊆ Σmi=1A
o
iα

(∅) holds obviously

since the empty set is included in every set . SupposeΣmi=1A
o
iα

(∅) 6= ∅. Then, there exists x

such that x ∈ Σmi=1A
o
iβ(∅) 6= ∅. Hence, according to Theorem 3.3, for eachi ∈ {1, 2, · · · ,m}

and each α:0.5 < α ≤ 1, |∅ ∩ ILAi(x)| ≥ (1 − α)|ILAi(x)|, since ∅ ∩ ILAi(x) = ∅, then we have

ILAi(x) = ∅. Since limited tolerance relation is reflexive, thus, x ∈ ILAi(x) = ∅, it contradicts
the assumption.

Therefore, Σmi=1A
o
iα

(∅)=∅.
(3) Similar to (2), we can easily to prove the conclusion.
(4) ∀x ∈ Σmi=1A

o
iLα

(X), from Definition 3.3, ∃Ai ∈ {A1, · · · , Am}, with P (X|LAi(X)) ≥
α, i.e. for each α:0.5 < α ≤ 1, it holds |X ∩ ILAi(x)| ≥ α|ILAi(x)|. Hence, ILAi(x) ⊆ X. Since

X ⊆ Y , then ILAi(x) ⊆ Y , it holds |Y ∩ILAi(x)| ≥ α|ILAi(x)|, it means that ∀x ∈ Σmi=1A
o
iLα

(Y ).

Therefore, Σmi=1A
o
iLα

(X) ⊆ Σmi=1A
o
iLα

(Y ).

Similarly, it is not difficult to prove that Σmi=1A
o
iLα

(X) ⊆ Σmi=1A
o
iLα

(Y ).
(5) ∀x ∈ Σmi=1A

o
iLα

2

(X), ∃Ai ∈ {A1, · · · , Am}, such that P (X|LAi(X)) ≥ α2, sinceα1 ≤
α2, then we haveP (X|LAi(X)) ≥ α1. Hence, ∀x ∈ Σmi=1A

o
iLα

1

(X).

Therefore , Σmi=1A
o
iLα1

(X) ⊆ Σmi=1A
o
iLα2

(X).

Similarly, it is not difficult to prove that Σmi=1A
o
iLα

1

(X) ⊆ Σmi=1A
o
iLα

2

(Y ). �

Proposition 3.4. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT . Lis the limited
tolerance relation, 0.5 < α ≤ 1, ∀X,Y ⊆ U . Then the following properties hold:

(1) Σmi=1A
P
iLα

(X) ⊆ X ⊆ Σmi=1A
P
iLα

(X).

(2) Σmi=1A
P
iLα

(∅) = Σmi=1A
P
iLα

(∅) = ∅.
(3) Σmi=1A

P
iLα

(U) = Σmi=1A
P
iLα

(U) = U .

(4) If X ⊆ Y , then Σmi=1A
P
iLα

(X) ⊆ Σmi=1A
P
iLα

(Y ) and Σmi=1A
P
iLα

(X) ⊆ Σmi=1A
P
iLα

(Y ).

(5) If α1 ≥ α2 , thenΣmi=1A
P
iLα1

(X) ⊆ Σmi=1A
P
iLα2

(Y ) and Σmi=1A
P
iLα1

(X) ⊆ Σmi=1A
P
iLα2

(Y ).

Proof. The proofs of these terms are similar to Proposition 3.3. �

4. The relationship between the proposed rough set and others

From Definition 3.3 and Definition 3.4 we can see that, if the disjunctive condition
is replaced with the conjunctive condition, the lower approximation of optimistic multi-
granulation variable precision limited tolerance rough set will be converted to the lower
approximation of pessimistic multi-granulation variable precision limited tolerance rough
set. Conversely, if the conjunctive condition is replaced with the disjunctive condition,
the upper approximation of optimistic multi-granulation variable precision limited tolerance
rough set will be converted to the upper approximation of pessimistic multi-granulation
variable precision limited tolerance rough set.

Theorem 4.1. Let S = (U, TA, V, f) be an IIS,A1, A2, · · · , Am ⊆ AT . Lis the limited
tolerance relation, 0.5 < α ≤ 1. Then ∀X ⊆ U , we have

(1) Σmi=1A
p
iLα

(X) ⊆ Σmi=1A
o
iLα

(X).

(2) Σmi=1A
o
iLα

(X) ⊆ Σmi=1A
p
iLα

(X).
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(3) Σmi=1A
p
iLα

(X) ⊆ Σmi=1A
o
iLα

(X).

(4) Σmi=1A
o
iLα

(X) ⊆ Σmi=1A
p
iLα

(X).

Proof. (1) ∀x ∈ Σmi=1A
P
iLα

(X), from Definition 3.4, ∀Ai ∈ {A1, · · · , Am}, with P (X|LAi(X)) ≥
α, according to Definition 3.3, we can say x ∈ Σmi=1A

o
iLα

(X), hence, Σmi=1A
p
iLα

(X) ⊆
Σmi=1A

o
iLα

(X).

(2) Similar to (1), we can easily to prove the conclusion.
(3) ∀x ∈ Σmi=1A

p
iLα

(X), from Definition 3.4, ∀Ai ∈ {A1, · · · , Am}, with P (X|LAi(X)) ≥
α, Since 0.5 < α ≤ 1, then P (X|LAi(X)) ≥ 1 − α. Thus x ∈ Σmi=1A

o
iLα

(X). Therefore,

Σmi=1A
p
iLα

(X) ⊆ Σmi=1A
o
iLα

(X).

(4) Similar to (3), we can easily to prove the conclusion. �

From Theorem 4.1, we can easily produce the following corollary.

Corollary 4.1. Σmi=1A
p
iLα

(X) ⊆ Σmi=1A
p
iLα

(X).

Theorem 4.2. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT . L is the limited
tolerance relation, 0.5 < α ≤ 1. Then ∀X ⊆ U , we have

(1) Σmi=1A
o
i (X) ⊆ Σmi=1A

o
iLα

(X).

(2) Σmi=1A
o
i (X) ⊆ Σmi=1A

o
iLα

(X).

(3) Σmi=1A
p
i (X) ⊆ Σmi=1A

p
iLα

(X).

(4) Σmi=1A
p
i (X) ⊆ Σmi=1A

p
iLα

(X).

Proof. The proofs of these terms are similar to Theorem 4.1. �

Let S = (U, TA, V, f)be an IIS,A1, A2, · · · , Am ⊆ AT . Lis the limited tolerance
relation, for any X ⊆ U , then when α = 1, for the optimistic multi-granulation variable
precision limited tolerance rough set, we have

Σmi=1A
o
iLα(X) = {x ∈ U : P (X|LA1

(X)) ≥ α ∨ . . . ∨ P (X|LAm(X)) ≥ α}
⇔ {x ∈ U : P (X|LA1(X)) ≥ 1 ∨ . . . ∨ P (X|LAm(X)) ≥ 1}
⇔ {x ∈ U : LA1

(X) ⊆ X ∨ . . . ∨ LAm(X) ⊆ X} = Σmi=1A
o
iL(X)

and
Σmi=1A

o
iLα

(X) = ˜Σmi=1A
o
iLα (̃ X)⇔ Σmi=1A

o
iL(X) = ˜Σmi=1A

o
iL(̃ X).

For the pessimistic multi-granulation variable precision limited tolerance rough set, we also
have

Σmi=1A
p
iLα

(X) = {x ∈ U : P (X|LA1
(X)) ≥ α ∧ . . . ∧ P (X|LAm(X)) ≥ α}

⇔ {x ∈ U : P (X|LA1(X)) ≥ 1 ∧ . . . ∧ P (X|LAm(X)) ≥ 1}
⇔ {x ∈ U : LA1(X) ⊆ X ∧ . . . ∧ LAm(X) ⊆ X} = Σmi=1A

p
iT (X)

and
Σmi=1A

p
iLα

(X) = ˜Σmi=1A
p
iLα

(̃ X)⇔ Σmi=1A
p
iL(X) = ˜Σmi=1A

p
iL(̃ X).

It can be seen that, when α = 1, the multi-granulation variable precision limited
tolerance rough set will be converted into the multi-granularity limited tolerance rough set

Σmi=1A
o
iLα(X) = {x ∈ U : P (X|LA1

(X)) ≥ α ∨ . . . ∨ P (X|LAm(X)) ≥ α}
⇔ {x ∈ U : P (X|LA1(X)) ≥ 1− β ∨ . . . ∨ P (X|LAm(X)) ≥ 1− β} = Σmi=1A

o
iLβ

(X)

and
Σmi=1A

o
iLα

(X) = ˜Σmi=1A
o
iLα (̃ X)⇔ Σmi=1A

o
iLβ

(X) = ˜Σmi=1A
o
iLβ

(̃ X).
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Σmi=1A
P
iLα(X) = {x ∈ U : P (X|LA1

(X)) ≥ α ∧ . . . ∧ P (X|LAm(X)) ≥ α}

⇔ {x ∈ U : P (X|LA1(X)) ≥ 1− β ∧ . . . ∧ P (X|LAm(X)) ≥ 1− β} = Σmi=1A
P
iβ

(X)

and
Σmi=1A

p
iLα

(X) = ˜Σmi=1A
p
iLα

(̃ X)⇔ Σmi=1A
p
iLβ

(X) = ˜Σmi=1A
p
iLβ

(̃ X).

It can be seen that, when β = 1− α, the multi-granulation variable precision limited
tolerance rough set will be converted into the multi-granularity variable precision probability
limited tolerance rough set.

5. Measurements for the proposed rough set

In this section, we will investigate several elementary measures in multi-granulation
limited tolerance rough set and their properties. Uncertainty of a set (category) is due to
the existence of a borderline region. The greater the borderline region of set, the lower is the
accuracy of the set. In order to express this idea more precisely, similar to reference [15, 24],
we introduce the accuracy measures to the multi-granulation limited tolerance rough set.

Definition 5.1. Let S∗ = (U, TA, V∗, f) be an IIS, A1, A2, · · · , Am ⊆ AT . Lis the tolerance
relation, 0.5 < α ≤ 1, ∀X ⊆ U X 6= ∅. The accuracy measures of X by Σmi=1AiL(X),
Σmi=1AiLα(X) are respectively defined as

αo(Σmi=1Ai, X) =

∣∣∣Σmi=1A
o
iL(X)

∣∣∣∣∣Σmi=1A
o
iL(X)

∣∣ .
αp(Σmi=1Ai, X) =

∣∣∣Σmi=1A
p
iL(X)

∣∣∣∣∣∣Σmi=1A
p
iL(X)

∣∣∣ .
αoα(Σmi=1Ai, X) =

∣∣∣Σmi=1A
o
iLα(X)

∣∣∣∣∣Σmi=1A
o
iLα(X)

∣∣ .
αpα(Σmi=1Ai, X) =

∣∣∣Σmi=1A
p
iLα(X)

∣∣∣∣∣∣Σmi=1A
p
iLα(X)

∣∣∣ .
Theorem 5.1. Let S = (U, TA, V, f) be an IIS, A1, A2, · · · , Am ⊆ AT . L is the limited
tolerance relation,0.5 < α ≤ 1. Then ∀X ⊆ U , we have

αo(Σmi=1Ai, X) ≤ αoα(Σmi=1Ai, X)

and
αp(Σmi=1Ai, X) ≤ αpα(Σmi=1Ai, X).

Proof. From previous definitions and 0.5 < α ≤ 1, we know that Σmi=1A
o
iL(X) ⊆ Σmi=1A

o
iLα(X)

and Σmi=1A
o
iLα(X) ⊆ Σmi=1A

o
iL(X), hence∣∣∣Σmi=1A

o
iL(X)

∣∣∣ ≤ ∣∣∣Σmi=1A
o
iLα(X)

∣∣∣
and ∣∣Σmi=1A

o
iLα(X)

∣∣ ≤ ∣∣Σmi=1A
o
iL(X)

∣∣
hold.

Thus, ∣∣∣Σmi=1A
o
iL(X)

∣∣∣∣∣Σmi=1A
o
iL(X)

∣∣ ≤
∣∣∣Σmi=1A

o
iLα(X)

∣∣∣∣∣Σmi=1A
o
iLα(X)

∣∣ .
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Therefore,

αo(Σmi=1Ai, X) ≤ αoα(Σmi=1Ai, X).

Similarly, we can easily to prove the conclusion αp(Σmi=1Ai, X) ≤ αpα(Σmi=1Ai, X). �

6. Conclusions

In this paper, we propose a combined rough set model of the limited tolerance relation
and the variable precision rough set under multi-granulation. The proposed rough set not
only inherits the merits of the limited tolerance relation and the variable precision rough
set, but also provides a more detailed multi-granulation structure of object class through
threshold. Theoretical proofs show the rationality and superiority of the proposed model.
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