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FIBONACCI REPRESENTATIONS OF SEQUENCES IN HILBERT 
SPACES

J. Sedghi MOGHADDAM1, Abbas NAJATI2, Y. KHEDMATI3

Dynamical sampling deals with frames of the form {Tnϕ}∞n=0, where T ∈ B(H)

belongs to certain classes of linear operators and ϕ ∈ H. The purpose of this paper

is to investigate a new representation, namely, Fibonacci representation of sequences

{fn}∞n=1 in a Hilbert space H; having the form fn+2 = T (fn+fn+1) for all n > 1 and a

linear operator T : span{fn}∞n=1 → span{fn}∞n=1. We apply this kind of representations

for complete sequences and frames. Finally, we present some properties of Fibonacci

representation operators.
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1. Introduction

The concept of frames (discrete frames) in Hilbert spaces has been introduced by

Duffin and Schaefer [8] in 1952 to study some problems in non-harmonic Fourier series and

this is the starting point of frame theory. A frame for a separable Hilbert space H is a

family of vectors in H which provides robust, stable and usually non-unique representations

of vectors in H. Indeed, frames can be viewed as redundant bases which are generalization

of orthonormal bases. Vectors in a Hilbert space H may have different representations each

useful for solving a certain problem. Frames are useful in areas such as coding theory,

communication theory, signal processing and sampling theory, among others.

We recall some definitions and standard results from frame theory.

Definition 1.1. Consider a sequence F = {fi}∞i=1 in H.

(i) F is called a frame for H, if there exist two constants AF , BF > 0 such that

AF ‖f‖2 6
∞∑
i=1

|〈f, fi〉|2 6 BF ‖f‖2, f ∈ H.

(ii) F is called a Bessel sequence with Bessel bound BF if at least the upper frame con-

dition holds.
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(iii) F is called complete in H if span{fi}∞i=1 = H, i.e., span{fi}∞i=1 is dense in H.

(iv) F is called linearly independent if
∑m

k=1 ckfk = 0 for all m ∈ N and some scalar

coefficients {ck}mk=1, then ck = 0 for all k = 1, · · · ,m. We say F is linearly dependent

if F is not linearly independent.

Theorem 1.1. [4, Theorem 5.5.1] A sequence F = {fi}∞i=1 ⊆ H is a frame for H if and

only if

TF : `2 → H, TF ({ci}∞i=1) =

∞∑
i=1

cifi,

is a well-defined mapping from `2 onto H. Moreover, the adjoint of TF is given by

T ∗F : H→ `2, T ∗F f = {〈f, fi〉}∞i=1.

In [2], Aldroubi et al. introduced dynamic sampling which it deals with frame proper-

ties of sequences of the form {Tnϕ}∞n=0, where T ∈ B(H) belongs to certain classes of linear

operators (such as diagonalizable normal operators) and ϕ ∈ H. Various characterizations of

frames having the form {fk}k∈I = {T kϕ}k∈I , where T is a linear (not necessarily bounded)

operator can be found in [1, 3, 5, 6, 7, 9].

Proposition 1.1. [6, Proposition 2.3] Consider a frame sequence F = {fi}∞i=1 in a Hilbert

space H which spans an infinite-dimensional subspace. The following are equivalent:

(i) F is linearly independent.

(ii) There exists a linear operator T : span{fi}∞i=1 → H such that Tfi := fi+1.

Theorem 1.2. [7, Theorem 2.1] Consider a frame F = {fi}∞i=1 in H. Then the following

are equivalent:

(i) F = {T i−1f1}∞i=1 for some T ∈ B(H).

(ii) The kerTF is invariant under the right-shift operator T : `2 → `2 defined by T(c1, c2, · · · ) =

(0, c1, c2, · · · ).

2. Special sequences

It is well known, cf. [4, Example 5.4.6] that if {en}∞n=1 is an orthonormal basis {en}∞n=1

for H, then {en+en+1}∞n=1 is complete and a Bessel sequence but not a frame. This motivates

us to investigate some results concerning the sequences F = {fn}∞n=1, M = {fn + fn+1}∞n=1

and N = {fn − fn−1}∞n=1 in a Hilbert space H.

Proposition 2.1. Let α and β be nonzero scalars and F = {fn}∞n=1 ⊆ H. Then

(i) F is a Bessel sequence for H, if and only if M = {αfn + βfn+1}∞n=1 and N =

{αfn − βfn+1}∞n=1 are Bessel sequences for H.

(ii) Suppose that F is a Bessel sequence for H. Then F is complete, if and only if M =

{αfn + βfn+1}∞n=1 is complete, whenever |α| > |β|.

Proof. (i) Assume that {fn}∞n=1 is a Bessel sequence with Bessel bound BF and µ =

max{|α|2, |β|2}. Then for f ∈ H, we have

∞∑
n=1

|〈f, αfn + βfn+1〉|2 +

∞∑
n=1

|〈f, αfn − βfn+1〉|2 6 4µBF ‖f‖2.
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Then M and N are Bessel sequences. For the opposite implication, let BM and BN

be Bessel bounds for sequences M and N , respectively. Then

2|α|2
∞∑

n=1

|〈f, fn〉|2 6 (BM +BN )‖f‖2, f ∈ H.

(ii) Suppose that F is complete and f ∈ H such that 〈f, αfn + βfn+1〉 = 0 for all n ∈ N.

Then α〈f, fn〉 = −β〈f, fn+1〉 for all n ∈ N. Since |α| > |β| and

|〈f, f1〉|2
∞∑

n=0

∣∣α
β

∣∣2n−2 =

∞∑
n=1

|〈f, fn〉|2 6 BF ‖f‖2,

we get 〈f, f1〉 = 0 and consequently 〈f, fn〉 = 0 for n ∈ N. Hence f = 0 and this shows

that {αfn + βfn+1}∞n=1 is complete. In order to show the other implication, assume

that M is complete and f ∈ H such that 〈f, fn〉 = 0 for all n ∈ N. Since

〈f, αfn + βfn+1〉 = α〈f, fn〉+ β〈f, fn+1〉 = 0, n ∈ N,

we conclude that f = 0 and therefore F is complete.

�

Proposition 2.2. Let F = {fn}∞n=1, M = {αfn + βfn+1}∞n=1 and N = {αfn − βfn+1}∞n=1

be sequences in a Hilbert space H and α 6= 0. Then F is a frame for H, if and only if M ∪N
is a frame for H.

Proof. Let µ = max{|α|2, |β|2}. Then the result follows from

|α|2
∞∑

n=1

|〈f, fn〉|2 6 4µ

∞∑
n=1

|〈f, fn〉|2, f ∈ H.

�

Theorem 2.1. Let M = {fn + fn+1}∞n=1 and N = {fn − fn+1}∞n=1 be frames for H. Then

F = {fn}∞n=1 is a frame for H and

4SF f = SMf + SNf + 2〈f, f1〉f1, f ∈ H, (1)

where SF , SM and SN are frame operators for F,M and N , respectively.

Proof. By Proposition 2.1, F is a Bessel sequence for H. Let AM and AN be lower frame

bounds for M and N , respectively. Then we have

(AM +AN )‖f‖2 6 4

∞∑
n=1

|〈f, fn〉|2, f ∈ H.

Therefore, F is a frame for H. Furthermore, since for f ∈ H,

∞∑
n=1

|〈f, fn + fn+1〉|2 +

∞∑
n=1

|〈f, fn − fn+1〉|2 = 2

∞∑
n=1

|〈f, fn〉|2 + 2

∞∑
n=1

|〈f, fn+1〉|2,

we obtain (1), by

〈SMf, f〉+ 〈SNf, f〉 = 4〈SF f, f〉 − 2
〈
〈f, f1〉f1, f

〉
, f ∈ H.

�
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Theorem 2.2. Let M = {fn + fn+1}∞n=1, N = {fn− fn+1}∞n=1 and F = {fn}∞n=1 be Bessel

sequences for H and kerTF be invariant under TR. Then kerTF = kerTM ∩ kerTN .

Proof. Let {cn}∞n=1 ∈ kerTF . Since kerTF is invariant under TR, we get {0, c1, c2, ...} ∈
kerTF . Therefore {c1, c1 + c2, c2 + c3, ...}, {c1, c2 − c1, c3 − c2, ...} ∈ kerTF . Hence

∞∑
n=1

cn(fn − fn+1) =

∞∑
n=1

cn(fn + fn+1) =

∞∑
n=1

(cn + cn+1)fn+1 + c1f1 = 0.

Then we conclude {cn}∞n=1 ∈ kerTM ∩ kerTN . On the other hand, if {cn}∞n=1 ∈ kerTM ∩
kerTN , then we have

0 =

∞∑
n=1

cn(fn − fn+1) +

∞∑
n=1

cn(fn + fn+1) = 2

∞∑
n=1

cnfn.

Therefore, {cn}∞n=1 ∈ kerTF . �

3. Fibonacci representation

In this section we want to consider representation of a sequence {fn}∞n=1 ⊆ H on the

form fn = T (fn−1 + fn−2) for n > 3, where T is a linear operator defined on an appropriate

subspace of H.

Definition 3.1. We say that a sequence F = {fn}∞n=1 has a Fibonacci representation if

there is a linear operator T : span{fn}∞n=1 → span{fn}∞n=1 such that fn = T (fn−1 + fn−2)

for n > 3. In the affirmative case, we say that F is represented by T , and T is called a

Fibonacci representation operator with respect to F .

Throughout this segment, H denotes a Hilbert space and {en}∞n=1 is an orthonormal

basis for H.

Example 3.1. It is clear that F = {fn}∞n=1 = {e1, e1, e2, ...} is a frame for H. We define

the linear operator T : span{en}∞n=1 → span{en}∞n=1 by

Te1 =
e2
2
, T en =

n−2∑
i=0

(−1)ien−i+1 + (−1)n+1 e2
2
, n > 2.

Then F is represented by T . Note that F is not linearly independent, and so by [6, Propo-

sition 2.3], there does not exist a linear operator S : span{en}∞n=1 → span{en}∞n=1 such that

Se1 = e1 and Sen−1 = en, n > 2.

Example 3.2. The frame F = {fn}∞n=1 = {e1, e2, e3, e1, e4, e5, e6, ...} is represented by T ,

where T : span{fn}∞n=1 → span{fn}∞n=1 is defined by

Te1 =
1

2
(e4 + e3 − e1), T e2 =

1

2
(−e4 + e3 + e1), T e3 =

1

2
(e4 − e3 + e1),

T e4 = e5 − Te1, T en = en+1 − Ten−1, n > 5.

Proposition 3.1. A sequence F = {fn}∞n=1 is represented by T , if and only if M = {fn +

fn+1}∞n=1 and N = {fn − fn+1}∞n=1 are represented by T .
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Proof. First, let F be represented by T . For every n ∈ N, we have

T
(
(fn ± fn+1) + (fn+1 ± fn+2)

)
= fn+2 ± fn+3,

Then M and N are represented by T . Conversely, if M and N are represented by T , then

for all n ∈ N, we have

T (fn + fn+1) =
1

2
T (fn + fn+1 + fn − fn+1 + fn+1 + fn+2 + fn+1 − fn+2) = fn+2.

Hence F is represented by T . �

A frame may have more than one Fibonacci representation and a frame may not have

any.

Example 3.3. The frame G = {fn}∞n=1 = {e1, e2, e1, e3, e4, ...} does not have any Fibonacci

representations. Indeed, if G is represented by T , then

Te1 + Te2 = e1, T e2 + Te1 = e3,

which is a contradiction. We note that {fn + fn+1}∞n=1 is not linearly independent.

Example 3.4. Consider the frame E = {en}∞n=1 ⊆ H and let T, S : span{en}∞n=1 →
span{en}∞n=1 be linear operators defined by

Te1 = Te2 =
1

2
e3, T en =

(−1)n

2
e3 −

n+1∑
i=4

(−1)n+i−1ei, n > 3,

Se1 = 0, Se2 = e3, Se3 = e4 − e3, Sen = e3 −
n+1∑
i=4

(−1)n+iei, n > 4.

Then it is easy to see that E is represented by T and S. We note that {en + en+1}∞n=1 is

linearly independent.

In general if {fn}∞n=1 ⊆ H is linearly independent with a Fibonacci representation T ,

then for each g ∈ span{fn}∞n=1 the linear operator S : span{fn}∞n=1 → span{fn}∞n=1 defined

by

S
( k∑

i=1

cifi

)
=

k∑
i=1

ciTfi +

k∑
i=1

(−1)icig

is a Fibonacci representation for {fn}∞n=1.

Now, we want to get a sufficient condition for a frame F = {fn}∞n=1 to have a Fibonacci

representation. We need the following lemma.

Lemma 3.1. Consider a sequence {fn}∞n=1 in H. Then the following hold:

(i) For n > 2, we have

fn =

m−1∑
i=0

(−1)i(fn−i−1 + fn−i) + (−1)mfn−m, 1 6 m 6 n− 1.

(ii) span{fn}∞n=1 = span
{
{f1} ∪ {fn + fn+1}∞n=1

}
.

(iii) If {fn}∞n=1 is linearly independent, then {fn + fn+1}∞n=1 is linearly independent.

(iv) If {f1}∪{fn +fn+1}∞n=1 is linearly independent, then {fn}∞n=1 is linearly independent.
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Proof. (i) Let n > 2 and 1 6 m 6 n− 1. Then we have

m−1∑
i=0

(−1)i(fn−i−1 + fn−i) =

m−1∑
i=1

(−1)i−1fn−i + (−1)m−1fn−m + fn +

m−1∑
i=1

(−1)ifn−i

= (−1)m−1fn−m + fn.

For the proof of (ii), it is clear that span{{fn + fn+1}∞n=1 ∪ {f1}} ⊆ span{fn}∞n=1. On the

other hand, by (i) (for m = n − 1) we infer span{fn}∞n=1 ⊆ span{{fn + fn+1}∞n=1 ∪ {f1}}.
This proves (ii). To prove (iii), let {cn}kn=1 ⊆ C such that

∑k
n=1 cn(fn + fn+1) = 0. Then

we have c1f1 +
∑k

n=2(cn−1 + cn)fn + ckfk+1 = 0. Since {fn}∞n=1 is linearly independent, we

get c1 = ck = 0 and cn−1 + cn = 0 for all 2 6 n 6 k. Therefore, cn = 0 for all 1 6 n 6 k.

This completes the proof of (iii).

To prove (iv), let {cn}Nn=1 ⊆ C such that
∑N

n=1 cnfn = 0. Then by (i), we have

0 =

N∑
n=1

cnfn = c1f1 +

N∑
n=2

cn

( n−2∑
i=0

(−1)i(fn−i−1 + fn−i) + (−1)n−1f1

)

=
(
c1 +

N∑
n=2

cn(−1)n−1
)
f1 +

N∑
n=2

cn

n−2∑
i=0

(−1)i(fn−i−1 + fn−i)

=
(
c1 +

N∑
n=2

cn(−1)n−1
)
f1 +

N−2∑
i=0

N∑
n=i+2

cn(−1)i(fn−i−1 + fn−i)

=
(
c1 +

N∑
n=2

cn(−1)n−1
)
f1 +

N∑
i=2

N−i∑
n=0

ci+n(−1)i(fn+1 + fn+2)

=
(
c1 +

N∑
n=2

cn(−1)n−1
)
f1 +

N−2∑
n=0

(N−n∑
i=2

ci+n(−1)i
)

(fn+1 + fn+2).

Since {f1} ∪ {fn + fn+1}∞n=1 is linearly independent, we get

c1 +

N∑
k=2

ck(−1)k−1 = 0,

N−n∑
i=2

ci+n(−1)i = 0, 0 6 n 6 N − 2.

Hence we conclude that cn = 0 for all n = 1, 2, .., N. Then {fn}∞n=1 is linearly independent.

�

In the following, we give a sufficient condition for a sequence F = {fn}∞n=1 to have a

Fibonacci representation.

Theorem 3.1. Let F = {fn}∞n=1 be a sequence in H. If {fn + fn+1}∞n=1 is linearly inde-

pendent, then F has a Fibonacci representation.

Proof. First we assume that f1 ∈ span{fn + fn+1}∞n=1. Then by (ii) of Lemma 3.1, we

have span{fn + fn+1}∞n=1 = span{fn}∞n=1. We define a linear operator T : span{fn}∞n=1 →
span{fn}∞n=1 by

T (fn + fn+1) = fn+2; n > 2. (2)

Since {fn+fn+1}∞n=1 is linearly independent sequence, T is well-defined and F is represented

by T . If f1 /∈ span{fn+fn+1}∞n=1, then {f1}∪{fn+fn+1}∞n=1 is linearly independent and so
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by Lemma 3.1 (iv), {fn}∞n=1 is linearly independent. Hence we can define a linear operator

T : span{fn}∞n=1 → span{fn}∞n=1 by Tfn =
∑n

i=0(−1)ifn+1−i, n ∈ N. We show that F is

represented by T . Indeed,

Tfn + Tfn+1 =

n∑
i=0

(−1)ifn+1−i +

n∑
i=0

(−1)i+1fn+1−i + fn+2 = fn+2.

�

The following example shows that the converse of Theorem 3.1 is not satisfied in

general.

Example 3.5. The frame F = {fn}∞n=1 = {e1, e2, e3, e2, e2, e4, e5, e6, ...} is represented by

the linear operator T : span{fn}∞n=1 → span{fn}∞n=1 given by

Te1 = e3 −
e4
2
, T e2 =

e4
2
, T e3 = e2 −

e4
2
,

T en =

n−4∑
i=0

(−1)ien−i+1 + (−1)n−3
e4
2
, n > 4.

But {fn + fn+1}∞n=1 = {e1 + e2, e2 + e3, e3 + e2, 2e2, ...} is not linearly independent.

Corollary 3.1. Let F = {fn}∞n=1 be a linear independent sequence in H. Then F has a

Fibonachi representation.

Proof. It follows from Lemma 3.1 (iii) and Theorem 3.1. �

Now, we provide sufficient conditions to make the converse of Theorem 3.1 become

true.

Theorem 3.2. Let F = {fn}∞n=1 be a complete sequence in an infinite dimensional Hilbert

space H which has the Fibonacci representation operator T . If there exists m ∈ N such that

fm+1, T f1 ∈ span{fn}mn=1, then {fn + fn+1}∞n=1 is linearly independent.

Proof. Suppose that {fn + fn+1}∞n=1 is not linearly independent. Then there exists n0 ∈ N
such that fn0 + fn0+1 =

∑n0−1
n=1 cn(fn + fn+1). Hence

fn0+2 = T (fn0 + fn0+1) =

n0−1∑
n=1

cnfn+2 ∈ span{fn}n0+1
n=1 . (3)

Let V = span{fn}ln=1, where l = max{n0 + 1,m}. By (3) and fm+1 ∈ span{fn}mn=1, we get

fl+1 ∈ V . We show V is invariant under T . Suppose that f =
∑l

n=1 cnfn ∈ V . By using

(i) of Lemma 3.1, we have

Tf = c1Tf1 +

l∑
n=2

cnT
( n∑

i=0

(−1)i(fn−i−1 + fn−i) + (−1)n−1f1

)

=
(
c1 +

l∑
n=2

cn(−1)n−1
)
Tf1 +

l∑
n=2

cn

n∑
i=0

(−1)ifn−i+1.

Since Tf1 ∈ span{fn}mn=1 ⊆ V and fl+1 ∈ V , the above argument proves that V is invariant

under T . Therefore fn ∈ V for all n > l + 1 and consequently span{fn}∞n=1 = V . Since
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{fn}∞n=1 is complete in H, we have H = span{fn}∞n=1 = V = V which is in contradiction to

dimH =∞. �

Proposition 3.2. Let {fn}∞n=1 be a complete and linearly dependent sequence with f1 6=
0 in an infinite dimensional Hilbert space H. Then there exists m > 2 such that fm ∈
span{fn}m−1n=1 and fm+1 /∈ span{fn}mn=1.

Proof. Since {fn}∞n=1 is linearly dependent, there exists k > 2 such that fk ∈ span{fn}k−1n=1.

We claim that there exists an integer l > k such that fl /∈ span{fn}l−1n=1. If fl ∈ span{fn}l−1n=1

for each l > k, then fk+1 ∈ span{fn}k−1n=1 because fk ∈ span{fn}k−1n=1 and fk+1 ∈ span{fn}kn=1.

Hence by induction we get fl ∈ span{fn}k−1n=1 for each l > k. Therefore span{fn}∞n=1 =

span{fn}k−1n=1. Since {fn}∞n=1 is complete and dimH = ∞, the contradiction is achieved.

Now, let i ∈ N be the smallest number such that fk+i /∈ span{fn}k+i−1
n=1 . Putting m =

k + i− 1, we get fm ∈ span{fn}m−1n=1 and fm+1 /∈ span{fn}mn=1. �

Proposition 3.3. Let F = {fn}∞n=1 be a sequence in H which is represented by T . Suppose

that fm ∈ span{fn}m−1n=1 and fm+1 /∈ span{fn}m−1n=1 for some integer m > 2. Then Tfi ∈
span{fn}m+1

n=3 for 1 6 i 6 m.

Proof. By the assumption, we have fm =
∑m−1

n=1 cnfn, so

m−2∑
n=1

( n−1∑
i=0

(−1)icn−i

)
(fn + fn+1)

=

m−2∑
n=1

( n−1∑
i=0

(−1)icn−i

)
fn +

m−1∑
n=2

( n−2∑
i=0

(−1)icn−i−1

)
fn

= c1f1 +

m−2∑
n=2

(
cn +

n−1∑
i=1

(−1)icn−i +

n−1∑
i=1

(−1)i−1cn−i

)
fn +

(m−3∑
i=0

(−1)icm−i−2

)
fm−1

= c1f1 +

m−2∑
n=2

cnfn +
(m−3∑

i=0

(−1)icm−i−2

)
fm−1

= fm +
(
− cm−1 +

m−3∑
i=0

(−1)icm−i−2

)
fm−1 = fm +

(m−2∑
i=0

(−1)i−1cm−i−1

)
fm−1,

thus

fm−1 + fm =

m−2∑
n=1

( n−1∑
i=0

(−1)icn−i

)
(fn + fn+1) +

(
1−

m−2∑
i=0

(−1)i−1cm−i−1

)
fm−1. (4)

Since F is represented by T , the equality (4) implies that

fm+1 =

m−2∑
n=1

( n−1∑
i=0

(−1)icn−i

)
fn+2 +

(
1−

m−2∑
i=0

(−1)i−1cm−i−1

)
Tfm−1. (5)

If 1 −
∑m−2

i=0 (−1)i−1cm−i−1 = 0, then fm+1 ∈ span{fn}mn=3 ⊆ span{fn}m−1n=1 which is a

contradiction. Hence (5) implies that

Tfm−1 =
fm+1 −

∑m−2
n=1

(∑n−1
i=0 (−1)icn−i

)
fn+2

1−
∑m−2

i=0 (−1)i−1cm−i−1
∈ span{fn}m+1

n=3 . (6)
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Also, by (i) of Lemma 3.1, for 1 6 j 6 m− 1, we have

fm+1 = Tfm + Tfm−1 =

j−1∑
i=0

(−1)ifm−i+1 + (−1)jTfm−j + Tfm−1.

Therefore

Tfm−j = (−1)j
(
fm+1 − Tfm−1 −

j−1∑
i=0

(−1)ifm−i+1

)
. (7)

Hence it follows from (6) and (7) that Tfi ∈ span{fn}m+1
n=3 for each 1 6 i 6 m− 1. �

Corollary 3.2. Let F = {fn}∞n=1 be a sequence in H which is represented by T . Suppose

that fm ∈ span{fn}m−1n=1 and fm+1 /∈ span{fn}m−1n=1 for some m ∈ N. Then, Tfm+i ∈
span{fn}m+i+1

n=3 for each i ∈ N.

Proof. Since Tfm+i = fm+i+1 − Tfm+i−1, the result follows by induction on i and Propo-

sition 3.3. �

Corollary 3.3. Let F = {fn}∞n=1 be a complete sequence in an infinite dimensional Hilbert

space H.

(i) If F is linearly independent, then it has a Fibonacci representation T such that R(T ) =

span{fn}∞n=3.

(ii) If F is linearly dependent, then for every Fibonacci representation T of F we have

R(T ) = span{fn}∞n=3.

Proof. First we note that if F is represented by T , then fn = T (fn−1 + fn−2) ∈ R(T ) for

every n > 3, and consequently span{fn}∞n=3 ⊆ R(T ).

To prove (i), consider the linear operator T : span{fn}∞n=1 → span{fn}∞n=1 defined

by

Tf1 = Tf2 =
1

2
f3, T fn =

n−3∑
i=0

(−1)ifn+1−i +
(−1)n

2
f3, n > 3.

Then Tf1 + Tf2 = f3, Tf2 + Tf3 = f4 and

Tfn + Tfn+1 =

n−3∑
i=0

(−1)ifn−i+1 +

n−2∑
i=0

(−1)ifn−i+2 = fn+2, n > 3.

Hence F is represented by T and it is obvious that R(T ) ⊆ span{fn}∞n=3. In order to

prove (ii), by Proposition 3.2 there exists m > 2 such that fm ∈ span{fn}m−1n=1 and fm+1 /∈
span{fn}m−1n=1 . If F is represented by T , then by Proposition 3.3 and Corollary 3.2 we have

R(T ) ⊆ span{fn}∞n=3. �

In Theorem 3.2, we showed that {fn + fn+1}∞n=1 is linearly independent under some

conditions. In the following, we show that (under some conditions) by removing finitely

many elements of {fn + fn+1}∞n=1 the remaining elements will be linearly independent.

Theorem 3.3. Let F = {fn}∞n=1 be a complete sequence in an infinite dimensional Hilbert

space H which is represented by T . Then there exists m ∈ N such that {fm+n +fm+n+1}∞n=1

is linearly independent.
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Proof. If F is linearly independent, then the result follows by (iii) of Lemma 3.1. Suppose

that F is linearly dependent. Then by Proposition 3.2 and Proposition 3.3, there exists

m > 2 such that fm ∈ span{fn}m−1n=1 , fm+1 /∈ span{fn}m−1n=1 and Tf1 ∈ span{fn}m+1
n=3 .

We prove {fm+n + fm+n+1}∞n=1 is linearly independent. Suppose by contradiction that

{fm+n +fm+n+1}∞n=1 is not linearly independent. Then there exists j ∈ N such that fm+j +

fm+j+1 =
∑j−1

n=1 cn(fm+n + fm+n+1). Hence we have

fm+j+2 = T (fm+j + fm+j+1) =

j−1∑
n=1

cnfm+n+2 ∈ span{fn}m+j+1
n=1 . (8)

Let V = span{fn}m+j+1
n=1 . We show that V is invariant under T . Let f =

∑m+j+1
n=1 cnfn ∈ V .

Then by (i) of Lemma 3.1, we have

Tf =
(
c1 +

m+j+1∑
n=2

cn(−1)n−1
)
Tf1 +

j+m+1∑
n=2

cn

n−2∑
i=0

(−1)ifn−i+1.

Using Tf1 ∈ span{fn}m+1
n=3 ⊆ V and (8), we get Tf ∈ V . Then we conclude fn ∈ V for

all n > m + j + 2. Thus, span{fn}∞n=1 = V and since {fn}∞n=1 is complete in H, we have

H = span{fn}∞n=1 = V = V which is a contradiction. �

4. Fibonacci Representation Operators

In a frame that indeed has the form {Tnϕ}∞n=0, where T ∈ B(H) and ϕ ∈ H, all

sequence members are represented by iterative actions of T on ϕ. In the case where {fn}∞n=1

has a Fibonacci representation operator T , we expect (Theorem 4.1) all members of the

sequence {fn}∞n=1 to be identified in terms of iterative actions of T on elements f1 and f2.

In this section, we present some results concerning Fibonacci representation operators. One

of the results characterizes types of frame which can be represented in terms of a bounded

operator T .

Notation. [x] denotes the integer part of x ∈ R and

(
n

k

)
:= n!

k!(n−k)! for integers

0 6 k 6 n. We let

(
n

k

)
:= 0 when k > n or k < 0.

Theorem 4.1. Let T : span{fn}∞n=1 → span{fn}∞n=1 be a linear operator, then the following

statements are equivalent:

(i) F = {fn}∞n=1 is represented by T .

(ii) Tf1 + Tf2 = f3 and for an = [n−12 ] , bn = n− 2an − 2,

fn =

2an∑
i=an

(( i+ bn

2i− 2an + bn

)
T i+bnf2 +

(
i+ bn

2i− 2an + bn + 1

)
T i+bn+1f1

)
, n > 4. (9)

Proof. (i) ⇒ (ii) We prove (9) by induction on n. For n = 4, we have a4 = 1 and b4 = 0.

Then (
1

0

)
Tf2 +

(
1

1

)
T 2f1 +

(
2

2

)
T 2f2 +

(
2

3

)
T 3f1 = f4.
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Now, assume that k > 4 and (9) holds for all n 6 k and we prove (9) for n = k+ 1. If k+ 1

is even, then bk = −1, bk−1 = bk+1 = 0 and ak+1 = ak = 1 + ak−1. Hence

fk+1 = Tfk + Tfk−1 =

2ak∑
i=ak

(( i− 1

2i− 2ak − 1

)
T if2 +

(
i− 1

2i− 2ak

)
T i+1f1

)

+

2ak∑
i=ak

(( i− 1

2i− 2ak

)
T if2 +

(
i− 1

2i− 2ak + 1

)
T i+1f1

)

=

2ak∑
i=ak

(( i

2i− 2ak

)
T if2 +

(
i

2i− 2ak + 1

)
T i+1f1

)
.

Since bk+1 = 0 and ak+1 = ak, we obtain (9). If k+1 is odd, then bk = 0, bk−1 = bk+1 = −1

and 1 + ak−1 = 1 + ak = ak+1. Hence

fk+1 = Tfk + Tfk−1 =

2ak+1∑
i=ak+1

(( i− 1

2i− 2ak+1 − 1

)
T i−1f2 +

(
i− 1

2i− 2ak+1

)
T if1

)
.

Hence we get (9). To prove (ii) ⇒ (i), there are two possibilities. If n > 4 is odd, then

bn = −1, bn−1 = bn+1 = 0 and an+1 = an = 1 + an−1. Hence

Tfn =

2an∑
i=an

(( i− 1

2i− 2an − 1

)
T if2 +

(
i− 1

2i− 2an

)
T i+1f1

)
,

T fn−1 =

2an∑
i=an

(( i− 1

2i− 2an

)
T if2 +

(
i− 1

2i− 2an + 1

)
T i+1f1

)
.

Therefore,

Tfn + Tfn−1 =

2an∑
i=an

(( i

2i− 2an

)
T if2 +

(
i

2i− 2an + 1

)
T i+1f1

)
= fn+1.

If n > 4 is even, the argument is similar to the previous case. �

Remark 4.1. We recall that

`2(H) :=
{
{fn}∞n=1 ⊆ H :

∞∑
n=1

‖fn‖2 <∞
}
,

and TL,TR : `2(H)→ `2(H) are bounded linear operators defined by

TL{fn}∞n=1 = {fn+1}∞n=1, TR{fn}∞n=1 = {0, f1, f2, f3, ...}.

Proposition 4.1. Let F = {fn}∞n=1 be a Bessel sequence in H which is represented by T0

and let M = {fn + fn+1}∞n=1 be a frame for H. Then kerTM ⊆ kerTT2
LF if and only if

T := T0|span{fn+fn+1}∞n=1
is bounded with ‖T‖ 6

√
BF

AM
, where BF is a Bessel bound for F

and AM is a lower frame bound for M .

Proof. Let kerTM ⊆ kerTT2
LF and f =

∑k
n=1 cn(fn+fn+1), where {cn}∞n=1 ∈ `2 with cn = 0

for n > k + 1. Then

Tf =

k∑
n=1

cnT (fn + fn+1) =

∞∑
n=1

cnfn+2 =

∞∑
n=1

dnfn+2 +

∞∑
n=1

rnfn+2,
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where {dn}∞n=1 ∈ kerTM ⊆ kerTT2
LF and {rn}∞n=1 ∈ (kerTM )⊥. Since {dn}∞n=1 ∈ kerTT2

LF ,

we have
∑∞

n=1 dnfn+2 = 0 and consequently Tf =
∑∞

n=1 rnfn+2. Therefore by applying [4,

Lemma 5.5.5], we have

‖Tf‖2 6 BF

AM

∥∥∥ ∞∑
n=1

rn(fn + fn+1)
∥∥∥2 =

BF

AM

∥∥∥ k∑
n=1

cn(fn + fn+1)
∥∥∥2 =

BF

AM
‖f‖2.

For the other implication, let {cn}∞n=1 ∈ kerTM . Since
∑∞

n=1 cn(fn + fn+1) = 0 and T is

bounded, we have
∑∞

n=1 cnfn+2 = 0, that means {cn}∞n=1 ∈ kerTT2
LF . �

Remark 4.2. In Theorem 1.2, the invariance of kerTF under the right-shift operator T is a

sufficient condition for the boundedness of T . It is obvious that the invariance of kerTF under

T is equivalent to kerTF ⊆ kerTTLF . In fact, for {cn}∞n=1 ∈ `2 we have T({cn}∞n=1) ∈ kerTF

if and only if {cn}∞n=1 ∈ kerTTLF .

Proposition 4.2. Let F = {fn}∞n=1 be a Bessel sequence in H which is represented by

T ∈ B(H) and M = {fn + fn+1}∞n=1 be a frame for H. Then T is injective if and only if

kerTT2
LF ⊆ kerTM

Proof. Let T be injective and {cn}∞n=1 ∈ kerTT2
LF . Then

T
( ∞∑

n=1

cn(fn + fn+1)
)

=

∞∑
n=1

cnfn+2 = 0.

Since T is injective, we get
∑∞

n=1 cn(fn + fn+1) = 0 and consequently {cn}∞n=1 ∈ kerTM .

Conversely, assume that f ∈ H and Tf = 0. Since M = {fn + fn+1}∞n=1 is a frame for H,

we have f =
∑∞

n=1 cn(fn + fn+1) for some {cn}∞n=1 ∈ `2. Then
∑∞

n=1 cnfn+2 = 0, and so

{cn}∞n=1 ∈ kerTT2
LF ⊆ kerTM . This means f =

∑∞
n=1 cn(fn + fn+1) = 0 and the proof is

completed. �

Proposition 4.3. Let {fn}∞n=1 be represented by T . Then the following hold:

(i) If K ∈ B(H) is injective and has closed range, then {Kfn}∞n=1 has a Fibonacci repre-

sentation.

(ii) If K ∈ B(H) is surjective, then {K∗fn}∞n=1 and {KK∗fn}∞n=1 have Fibonacci repre-

sentations.

Proof. (i) By Open Mapping Theorem, there exists a bounded linear operator S : R(K)→ H

such that SK = IH. Therefore

KTS(Kfn +Kfn−1) = KT (fn + fn−1) = Kfn+1, n > 2.

To prove (ii), by [4, Lemma 2.4.1], K∗ is injective and has closed range. Also KK∗ is

invertible. Then (i) implies (ii). �

Proposition 4.4. Let {fn}∞n=1 be a frame for H and represented by T ∈ B(H). If Tf1 ∈
span{fn}∞n=3, then R(T ) is closed and R(T ) = span{Tfn}∞n=1 = span{fn}∞n=3.

Proof. For each f ∈ H, there exists {cn}∞n=1 ∈ `2 such that f =
∑∞

n=1 cnfn. Then Tf =∑∞
n=1 cnTfn ∈ span{Tfn}∞n=1, and therefore R(T ) ⊆ span{Tfn}∞n=1. On the other hand,
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for g ∈ span{fn}∞n=3 there exists {cn}∞n=1 ∈ `2 such that

g =

∞∑
n=1

cnfn+2 =

∞∑
n=1

cnT (fn + fn+1) = T
( ∞∑

n=1

cn(fn + fn+1)
)
∈ R(T ).

Then span{fn}∞n=3 ⊆ R(T ). Since Tf1 ∈ span{fn}∞n=3, we can now apply (ii) of Lemma 3.1

to conclude that

span{Tfn}∞n=1 = span
{
{Tf1} ∪ {Tfn + Tfn+1}∞n=1

}
= span{fn}∞n=3.

Therefore R(T ) = span{Tfn}∞n=1 = span{fn}∞n=3. �

Proposition 4.5. Let {fn}∞n=1 be a linearly dependent frame sequence represented by T ∈
B(K), where K = span{fn}∞n=1 is an infinite dimensional Hilbert space. Then R(T ) is closed

and R(T ) = span{fn}∞n=3.

Proof. Let T0 be the restriction of T on span{fn}∞n=1. Then by (ii) of Corollary 3.3, we

have R(T0) = span{fn}∞n=3, and therefore R(T ) ⊆ span{fn}∞n=3. On the other hand, Since

{fn}∞n=1 is a frame sequence, for each f ∈ span{fn}∞n=3, there exists {cn}∞n=1 ∈ `2 such that

f =

∞∑
n=1

cnfn+2 =

∞∑
n=1

cn(Tfn + Tfn+1) = T
( ∞∑

n=1

cn(fn + fn+1)
)
∈ R(T ).

Hence span{fn}∞n=3 ⊆ R(T ) and this completes the proof. �

Theorem 4.2. Let {fn}∞n=1 be represented by T and S. If Tf1 = Sf1, then T = S on

span{fn}∞n=1.

Proof. Since Tf1 = Sf1 and T (fn + fn+1) = fn+2 = S(fn + fn+1) for all n ∈ N, we

get Tfn = Sfn for all n ∈ N (we can use (i) of Lemma 3.1). This proves T = S on

span{fn}∞n=1. �

Corollary 4.1. Let {fn}∞n=1 be represented by T and S. If f1 ∈ span{fn + fn+1}∞n=k for

some k ∈ N, then T = S.

Proof. Since f1 ∈ span{fn + fn+1}∞n=k, we have f1 =
∑m

n=k cn(fn + fn+1) for some scalars

ck, · · · , cm. Then

Tf1 =

m∑
n=k

cnT (fn + fn+1) =

m∑
n=k

cnfn+2 =

m∑
n=k

cnS(fn + fn+1) = Sf1.

Therefore T = S by Theorem 4.2. �
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