FIBONACCI REPRESENTATIONS OF SEQUENCES IN HILBERT SPACES

J. Sedghi MOGHADDAM ${ }^{1}$, Abbas NAJATI ${ }^{2}$, Y. KHEDMATI ${ }^{3}$

Abstract

Dynamical sampling deals with frames of the form $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$, where $T \in B(\mathcal{H})$ belongs to certain classes of linear operators and $\varphi \in \mathcal{H}$. The purpose of this paper is to investigate a new representation, namely, Fibonacci representation of sequences $\left\{f_{n}\right\}_{n=1}^{\infty}$ in a Hilbert space \mathcal{H}; having the form $f_{n+2}=T\left(f_{n}+f_{n+1}\right)$ for all $n \geqslant 1$ and a linear operator $T: \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty} \rightarrow \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$. We apply this kind of representations for complete sequences and frames. Finally, we present some properties of Fibonacci representation operators.

Keywords: Frame, Operator representation, Fibonacci representation, Basis, Perturbation.
MSC2020: 42C 15, 47B 40

1. Introduction

The concept of frames (discrete frames) in Hilbert spaces has been introduced by Duffin and Schaefer [8] in 1952 to study some problems in non-harmonic Fourier series and this is the starting point of frame theory. A frame for a separable Hilbert space \mathcal{H} is a family of vectors in \mathcal{H} which provides robust, stable and usually non-unique representations of vectors in \mathcal{H}. Indeed, frames can be viewed as redundant bases which are generalization of orthonormal bases. Vectors in a Hilbert space \mathcal{H} may have different representations each useful for solving a certain problem. Frames are useful in areas such as coding theory, communication theory, signal processing and sampling theory, among others.

We recall some definitions and standard results from frame theory.
Definition 1.1. Consider a sequence $F=\left\{f_{i}\right\}_{i=1}^{\infty}$ in \mathcal{H}.
(i) F is called a frame for \mathcal{H}, if there exist two constants $A_{F}, B_{F}>0$ such that

$$
A_{F}\|f\|^{2} \leqslant \sum_{i=1}^{\infty}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leqslant B_{F}\|f\|^{2}, \quad f \in \mathcal{H}
$$

(ii) F is called a Bessel sequence with Bessel bound B_{F} if at least the upper frame condition holds.

[^0](iii) F is called complete in \mathcal{H} if $\overline{\operatorname{span}}\left\{f_{i}\right\}_{i=1}^{\infty}=\mathcal{H}$, i.e., $\operatorname{span}\left\{f_{i}\right\}_{i=1}^{\infty}$ is dense in \mathcal{H}.
(iv) F is called linearly independent if $\sum_{k=1}^{m} c_{k} f_{k}=0$ for all $m \in \mathbb{N}$ and some scalar coefficients $\left\{c_{k}\right\}_{k=1}^{m}$, then $c_{k}=0$ for all $k=1, \cdots, m$. We say F is linearly dependent if F is not linearly independent.

Theorem 1.1. [4, Theorem 5.5.1] A sequence $F=\left\{f_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{H}$ is a frame for \mathcal{H} if and only if

$$
T_{F}: \ell^{2} \rightarrow \mathcal{H}, \quad T_{F}\left(\left\{c_{i}\right\}_{i=1}^{\infty}\right)=\sum_{i=1}^{\infty} c_{i} f_{i}
$$

is a well-defined mapping from ℓ^{2} onto \mathcal{H}. Moreover, the adjoint of T_{F} is given by

$$
T_{F}^{*}: \mathcal{H} \rightarrow \ell^{2}, \quad T_{F}^{*} f=\left\{\left\langle f, f_{i}\right\rangle\right\}_{i=1}^{\infty} .
$$

In [2], Aldroubi et al. introduced dynamic sampling which it deals with frame properties of sequences of the form $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$, where $T \in B(\mathcal{H})$ belongs to certain classes of linear operators (such as diagonalizable normal operators) and $\varphi \in \mathcal{H}$. Various characterizations of frames having the form $\left\{f_{k}\right\}_{k \in I}=\left\{T^{k} \varphi\right\}_{k \in I}$, where T is a linear (not necessarily bounded) operator can be found in $[1,3,5,6,7,9]$.

Proposition 1.1. [6, Proposition 2.3] Consider a frame sequence $F=\left\{f_{i}\right\}_{i=1}^{\infty}$ in a Hilbert space \mathcal{H} which spans an infinite-dimensional subspace. The following are equivalent:
(i) F is linearly independent.
(ii) There exists a linear operator $T: \operatorname{span}\left\{f_{i}\right\}_{i=1}^{\infty} \rightarrow \mathcal{H}$ such that $T f_{i}:=f_{i+1}$.

Theorem 1.2. [7, Theorem 2.1] Consider a frame $F=\left\{f_{i}\right\}_{i=1}^{\infty}$ in \mathcal{H}. Then the following are equivalent:
(i) $F=\left\{T^{i-1} f_{1}\right\}_{i=1}^{\infty}$ for some $T \in B(\mathcal{H})$.
(ii) The $\operatorname{ker} T_{F}$ is invariant under the right-shift operator $\mathcal{T}: \ell^{2} \rightarrow \ell^{2}$ defined by $\mathcal{T}\left(c_{1}, c_{2}, \cdots\right)=$ $\left(0, c_{1}, c_{2}, \cdots\right)$.

2. Special sequences

It is well known, cf. [4, Example 5.4.6] that if $\left\{e_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ for \mathcal{H}, then $\left\{e_{n}+e_{n+1}\right\}_{n=1}^{\infty}$ is complete and a Bessel sequence but not a frame. This motivates us to investigate some results concerning the sequences $F=\left\{f_{n}\right\}_{n=1}^{\infty}, M=\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ and $N=\left\{f_{n}-f_{n-1}\right\}_{n=1}^{\infty}$ in a Hilbert space \mathcal{H}.

Proposition 2.1. Let α and β be nonzero scalars and $F=\left\{f_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{H}$. Then
(i) F is a Bessel sequence for \mathcal{H}, if and only if $M=\left\{\alpha f_{n}+\beta f_{n+1}\right\}_{n=1}^{\infty}$ and $N=$ $\left\{\alpha f_{n}-\beta f_{n+1}\right\}_{n=1}^{\infty}$ are Bessel sequences for \mathcal{H}.
(ii) Suppose that F is a Bessel sequence for \mathcal{H}. Then F is complete, if and only if $M=$ $\left\{\alpha f_{n}+\beta f_{n+1}\right\}_{n=1}^{\infty}$ is complete, whenever $|\alpha| \geqslant|\beta|$.

Proof. (i) Assume that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a Bessel sequence with Bessel bound B_{F} and $\mu=$ $\max \left\{|\alpha|^{2},|\beta|^{2}\right\}$. Then for $f \in \mathcal{H}$, we have

$$
\sum_{n=1}^{\infty}\left|\left\langle f, \alpha f_{n}+\beta f_{n+1}\right\rangle\right|^{2}+\sum_{n=1}^{\infty}\left|\left\langle f, \alpha f_{n}-\beta f_{n+1}\right\rangle\right|^{2} \leqslant 4 \mu B_{F}\|f\|^{2}
$$

Then M and N are Bessel sequences. For the opposite implication, let B_{M} and B_{N} be Bessel bounds for sequences M and N, respectively. Then

$$
2|\alpha|^{2} \sum_{n=1}^{\infty}\left|\left\langle f, f_{n}\right\rangle\right|^{2} \leqslant\left(B_{M}+B_{N}\right)\|f\|^{2}, \quad f \in \mathcal{H}
$$

(ii) Suppose that F is complete and $f \in \mathcal{H}$ such that $\left\langle f, \alpha f_{n}+\beta f_{n+1}\right\rangle=0$ for all $n \in \mathbb{N}$. Then $\bar{\alpha}\left\langle f, f_{n}\right\rangle=-\bar{\beta}\left\langle f, f_{n+1}\right\rangle$ for all $n \in \mathbb{N}$. Since $|\alpha| \geqslant|\beta|$ and

$$
\left|\left\langle f, f_{1}\right\rangle\right|^{2} \sum_{n=0}^{\infty}\left|\frac{\alpha}{\beta}\right|^{2 n-2}=\sum_{n=1}^{\infty}\left|\left\langle f, f_{n}\right\rangle\right|^{2} \leqslant B_{F}\|f\|^{2},
$$

we get $\left\langle f, f_{1}\right\rangle=0$ and consequently $\left\langle f, f_{n}\right\rangle=0$ for $n \in \mathbb{N}$. Hence $f=0$ and this shows that $\left\{\alpha f_{n}+\beta f_{n+1}\right\}_{n=1}^{\infty}$ is complete. In order to show the other implication, assume that M is complete and $f \in \mathcal{H}$ such that $\left\langle f, f_{n}\right\rangle=0$ for all $n \in \mathbb{N}$. Since

$$
\left\langle f, \alpha f_{n}+\beta f_{n+1}\right\rangle=\bar{\alpha}\left\langle f, f_{n}\right\rangle+\bar{\beta}\left\langle f, f_{n+1}\right\rangle=0, \quad n \in \mathbb{N}
$$

we conclude that $f=0$ and therefore F is complete.

Proposition 2.2. Let $F=\left\{f_{n}\right\}_{n=1}^{\infty}, M=\left\{\alpha f_{n}+\beta f_{n+1}\right\}_{n=1}^{\infty}$ and $N=\left\{\alpha f_{n}-\beta f_{n+1}\right\}_{n=1}^{\infty}$ be sequences in a Hilbert space \mathcal{H} and $\alpha \neq 0$. Then F is a frame for \mathcal{H}, if and only if $M \cup N$ is a frame for \mathcal{H}.

Proof. Let $\mu=\max \left\{|\alpha|^{2},|\beta|^{2}\right\}$. Then the result follows from

$$
|\alpha|^{2} \sum_{n=1}^{\infty}\left|\left\langle f, f_{n}\right\rangle\right|^{2} \leqslant 4 \mu \sum_{n=1}^{\infty}\left|\left\langle f, f_{n}\right\rangle\right|^{2}, \quad f \in \mathcal{H} .
$$

Theorem 2.1. Let $M=\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ and $N=\left\{f_{n}-f_{n+1}\right\}_{n=1}^{\infty}$ be frames for \mathcal{H}. Then $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ is a frame for \mathcal{H} and

$$
\begin{equation*}
4 S_{F} f=S_{M} f+S_{N} f+2\left\langle f, f_{1}\right\rangle f_{1}, \quad f \in \mathcal{H} \tag{1}
\end{equation*}
$$

where S_{F}, S_{M} and S_{N} are frame operators for F, M and N, respectively.
Proof. By Proposition 2.1, F is a Bessel sequence for \mathcal{H}. Let A_{M} and A_{N} be lower frame bounds for M and N, respectively. Then we have

$$
\left(A_{M}+A_{N}\right)\|f\|^{2} \leqslant 4 \sum_{n=1}^{\infty}\left|\left\langle f, f_{n}\right\rangle\right|^{2}, \quad f \in \mathcal{H}
$$

Therefore, F is a frame for \mathcal{H}. Furthermore, since for $f \in \mathcal{H}$,

$$
\sum_{n=1}^{\infty}\left|\left\langle f, f_{n}+f_{n+1}\right\rangle\right|^{2}+\sum_{n=1}^{\infty}\left|\left\langle f, f_{n}-f_{n+1}\right\rangle\right|^{2}=2 \sum_{n=1}^{\infty}\left|\left\langle f, f_{n}\right\rangle\right|^{2}+2 \sum_{n=1}^{\infty}\left|\left\langle f, f_{n+1}\right\rangle\right|^{2}
$$

we obtain (1), by

$$
\left\langle S_{M} f, f\right\rangle+\left\langle S_{N} f, f\right\rangle=4\left\langle S_{F} f, f\right\rangle-2\left\langle\left\langle f, f_{1}\right\rangle f_{1}, f\right\rangle, \quad f \in \mathcal{H} .
$$

Theorem 2.2. Let $M=\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}, N=\left\{f_{n}-f_{n+1}\right\}_{n=1}^{\infty}$ and $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ be Bessel sequences for \mathcal{H} and $\operatorname{ker} T_{F}$ be invariant under \mathcal{T}_{R}. Then $\operatorname{ker} T_{F}=\operatorname{ker} T_{M} \cap \operatorname{ker} T_{N}$.

Proof. Let $\left\{c_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{F}$. Since $\operatorname{ker} T_{F}$ is invariant under \mathcal{T}_{R}, we get $\left\{0, c_{1}, c_{2}, \ldots\right\} \in$ $\operatorname{ker} T_{F}$. Therefore $\left\{c_{1}, c_{1}+c_{2}, c_{2}+c_{3}, \ldots\right\},\left\{c_{1}, c_{2}-c_{1}, c_{3}-c_{2}, \ldots\right\} \in \operatorname{ker} T_{F}$. Hence

$$
\sum_{n=1}^{\infty} c_{n}\left(f_{n}-f_{n+1}\right)=\sum_{n=1}^{\infty} c_{n}\left(f_{n}+f_{n+1}\right)=\sum_{n=1}^{\infty}\left(c_{n}+c_{n+1}\right) f_{n+1}+c_{1} f_{1}=0
$$

Then we conclude $\left\{c_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{M} \cap \operatorname{ker} T_{N}$. On the other hand, if $\left\{c_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{M} \cap$ $\operatorname{ker} T_{N}$, then we have

$$
0=\sum_{n=1}^{\infty} c_{n}\left(f_{n}-f_{n+1}\right)+\sum_{n=1}^{\infty} c_{n}\left(f_{n}+f_{n+1}\right)=2 \sum_{n=1}^{\infty} c_{n} f_{n}
$$

Therefore, $\left\{c_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{F}$.

3. Fibonacci representation

In this section we want to consider representation of a sequence $\left\{f_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{H}$ on the form $f_{n}=T\left(f_{n-1}+f_{n-2}\right)$ for $n \geqslant 3$, where T is a linear operator defined on an appropriate subspace of \mathcal{H}.

Definition 3.1. We say that a sequence $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ has a Fibonacci representation if there is a linear operator $T: \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty} \rightarrow \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$ such that $f_{n}=T\left(f_{n-1}+f_{n-2}\right)$ for $n \geqslant 3$. In the affirmative case, we say that F is represented by T, and T is called a Fibonacci representation operator with respect to F.

Throughout this segment, \mathcal{H} denotes a Hilbert space and $\left\{e_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis for \mathcal{H}.

Example 3.1. It is clear that $F=\left\{f_{n}\right\}_{n=1}^{\infty}=\left\{e_{1}, e_{1}, e_{2}, \ldots\right\}$ is a frame for \mathcal{H}. We define the linear operator $T: \operatorname{span}\left\{e_{n}\right\}_{n=1}^{\infty} \rightarrow \operatorname{span}\left\{e_{n}\right\}_{n=1}^{\infty}$ by

$$
T e_{1}=\frac{e_{2}}{2}, \quad T e_{n}=\sum_{i=0}^{n-2}(-1)^{i} e_{n-i+1}+(-1)^{n+1} \frac{e_{2}}{2}, \quad n \geqslant 2
$$

Then F is represented by T. Note that F is not linearly independent, and so by $[6$, Proposition 2.3], there does not exist a linear operator $S: \operatorname{span}\left\{e_{n}\right\}_{n=1}^{\infty} \rightarrow \operatorname{span}\left\{e_{n}\right\}_{n=1}^{\infty}$ such that $S e_{1}=e_{1}$ and $S e_{n-1}=e_{n}, n \geqslant 2$.

Example 3.2. The frame $F=\left\{f_{n}\right\}_{n=1}^{\infty}=\left\{e_{1}, e_{2}, e_{3}, e_{1}, e_{4}, e_{5}, e_{6}, \ldots\right\}$ is represented by T, where $T: \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty} \rightarrow \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$ is defined by

$$
\begin{aligned}
& T e_{1}=\frac{1}{2}\left(e_{4}+e_{3}-e_{1}\right), \quad T e_{2}=\frac{1}{2}\left(-e_{4}+e_{3}+e_{1}\right), \quad T e_{3}=\frac{1}{2}\left(e_{4}-e_{3}+e_{1}\right), \\
& T e_{4}=e_{5}-T e_{1}, \quad T e_{n}=e_{n+1}-T e_{n-1}, \quad n \geqslant 5 .
\end{aligned}
$$

Proposition 3.1. A sequence $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ is represented by T, if and only if $M=\left\{f_{n}+\right.$ $\left.f_{n+1}\right\}_{n=1}^{\infty}$ and $N=\left\{f_{n}-f_{n+1}\right\}_{n=1}^{\infty}$ are represented by T.

Proof. First, let F be represented by T. For every $n \in \mathbb{N}$, we have

$$
T\left(\left(f_{n} \pm f_{n+1}\right)+\left(f_{n+1} \pm f_{n+2}\right)\right)=f_{n+2} \pm f_{n+3}
$$

Then M and N are represented by T. Conversely, if M and N are represented by T, then for all $n \in \mathbb{N}$, we have

$$
T\left(f_{n}+f_{n+1}\right)=\frac{1}{2} T\left(f_{n}+f_{n+1}+f_{n}-f_{n+1}+f_{n+1}+f_{n+2}+f_{n+1}-f_{n+2}\right)=f_{n+2}
$$

Hence F is represented by T.
A frame may have more than one Fibonacci representation and a frame may not have any.

Example 3.3. The frame $G=\left\{f_{n}\right\}_{n=1}^{\infty}=\left\{e_{1}, e_{2}, e_{1}, e_{3}, e_{4}, \ldots\right\}$ does not have any Fibonacci representations. Indeed, if G is represented by T, then

$$
T e_{1}+T e_{2}=e_{1}, \quad T e_{2}+T e_{1}=e_{3}
$$

which is a contradiction. We note that $\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is not linearly independent.
Example 3.4. Consider the frame $E=\left\{e_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{H}$ and let $T, S: \operatorname{span}\left\{e_{n}\right\}_{n=1}^{\infty} \rightarrow$ $\operatorname{span}\left\{e_{n}\right\}_{n=1}^{\infty}$ be linear operators defined by

$$
\begin{aligned}
& T e_{1}=T e_{2}=\frac{1}{2} e_{3}, \quad T e_{n}=\frac{(-1)^{n}}{2} e_{3}-\sum_{i=4}^{n+1}(-1)^{n+i-1} e_{i}, \quad n \geqslant 3, \\
& S e_{1}=0, S e_{2}=e_{3}, S e_{3}=e_{4}-e_{3}, \quad S e_{n}=e_{3}-\sum_{i=4}^{n+1}(-1)^{n+i} e_{i}, \quad n \geqslant 4 .
\end{aligned}
$$

Then it is easy to see that E is represented by T and S. We note that $\left\{e_{n}+e_{n+1}\right\}_{n=1}^{\infty}$ is linearly independent.

In general if $\left\{f_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{H}$ is linearly independent with a Fibonacci representation T, then for each $g \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$ the linear operator $S: \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty} \rightarrow \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$ defined by

$$
S\left(\sum_{i=1}^{k} c_{i} f_{i}\right)=\sum_{i=1}^{k} c_{i} T f_{i}+\sum_{i=1}^{k}(-1)^{i} c_{i} g
$$

is a Fibonacci representation for $\left\{f_{n}\right\}_{n=1}^{\infty}$.
Now, we want to get a sufficient condition for a frame $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ to have a Fibonacci representation. We need the following lemma.

Lemma 3.1. Consider a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ in \mathcal{H}. Then the following hold:
(i) For $n \geqslant 2$, we have

$$
f_{n}=\sum_{i=0}^{m-1}(-1)^{i}\left(f_{n-i-1}+f_{n-i}\right)+(-1)^{m} f_{n-m}, \quad 1 \leqslant m \leqslant n-1 .
$$

(ii) $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}=\operatorname{span}\left\{\left\{f_{1}\right\} \cup\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}\right\}$.
(iii) If $\left\{f_{n}\right\}_{n=1}^{\infty}$ is linearly independent, then $\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is linearly independent.
(iv) If $\left\{f_{1}\right\} \cup\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is linearly independent, then $\left\{f_{n}\right\}_{n=1}^{\infty}$ is linearly independent.

Proof. (i) Let $n \geqslant 2$ and $1 \leqslant m \leqslant n-1$. Then we have

$$
\begin{aligned}
\sum_{i=0}^{m-1}(-1)^{i}\left(f_{n-i-1}+f_{n-i}\right) & =\sum_{i=1}^{m-1}(-1)^{i-1} f_{n-i}+(-1)^{m-1} f_{n-m}+f_{n}+\sum_{i=1}^{m-1}(-1)^{i} f_{n-i} \\
& =(-1)^{m-1} f_{n-m}+f_{n}
\end{aligned}
$$

For the proof of $(i i)$, it is clear that $\operatorname{span}\left\{\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty} \cup\left\{f_{1}\right\}\right\} \subseteq \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$. On the other hand, by (i) (for $m=n-1$) we infer $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty} \subseteq \operatorname{span}\left\{\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty} \cup\left\{f_{1}\right\}\right\}$. This proves (ii). To prove (iii), let $\left\{c_{n}\right\}_{n=1}^{k} \subseteq \mathbb{C}$ such that $\sum_{n=1}^{k} c_{n}\left(f_{n}+f_{n+1}\right)=0$. Then we have $c_{1} f_{1}+\sum_{n=2}^{k}\left(c_{n-1}+c_{n}\right) f_{n}+c_{k} f_{k+1}=0$. Since $\left\{f_{n}\right\}_{n=1}^{\infty}$ is linearly independent, we get $c_{1}=c_{k}=0$ and $c_{n-1}+c_{n}=0$ for all $2 \leqslant n \leqslant k$. Therefore, $c_{n}=0$ for all $1 \leqslant n \leqslant k$. This completes the proof of (iii).

To prove (iv), let $\left\{c_{n}\right\}_{n=1}^{N} \subseteq \mathbb{C}$ such that $\sum_{n=1}^{N} c_{n} f_{n}=0$. Then by (i), we have

$$
\begin{aligned}
0=\sum_{n=1}^{N} c_{n} f_{n} & =c_{1} f_{1}+\sum_{n=2}^{N} c_{n}\left(\sum_{i=0}^{n-2}(-1)^{i}\left(f_{n-i-1}+f_{n-i}\right)+(-1)^{n-1} f_{1}\right) \\
& =\left(c_{1}+\sum_{n=2}^{N} c_{n}(-1)^{n-1}\right) f_{1}+\sum_{n=2}^{N} c_{n} \sum_{i=0}^{n-2}(-1)^{i}\left(f_{n-i-1}+f_{n-i}\right) \\
& =\left(c_{1}+\sum_{n=2}^{N} c_{n}(-1)^{n-1}\right) f_{1}+\sum_{i=0}^{N-2} \sum_{n=i+2}^{N} c_{n}(-1)^{i}\left(f_{n-i-1}+f_{n-i}\right) \\
& =\left(c_{1}+\sum_{n=2}^{N} c_{n}(-1)^{n-1}\right) f_{1}+\sum_{i=2}^{N} \sum_{n=0}^{N-i} c_{i+n}(-1)^{i}\left(f_{n+1}+f_{n+2}\right) \\
& =\left(c_{1}+\sum_{n=2}^{N} c_{n}(-1)^{n-1}\right) f_{1}+\sum_{n=0}^{N-2}\left(\sum_{i=2}^{N-n} c_{i+n}(-1)^{i}\right)\left(f_{n+1}+f_{n+2}\right) .
\end{aligned}
$$

Since $\left\{f_{1}\right\} \cup\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is linearly independent, we get

$$
c_{1}+\sum_{k=2}^{N} c_{k}(-1)^{k-1}=0, \quad \sum_{i=2}^{N-n} c_{i+n}(-1)^{i}=0, \quad 0 \leqslant n \leqslant N-2
$$

Hence we conclude that $c_{n}=0$ for all $n=1,2, . ., N$. Then $\left\{f_{n}\right\}_{n=1}^{\infty}$ is linearly independent.

In the following, we give a sufficient condition for a sequence $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ to have a Fibonacci representation.

Theorem 3.1. Let $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence in \mathcal{H}. If $\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is linearly independent, then F has a Fibonacci representation.

Proof. First we assume that $f_{1} \in \operatorname{span}\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$. Then by (ii) of Lemma 3.1, we have $\operatorname{span}\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}=\operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$. We define a linear operator $T: \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty} \rightarrow$ $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$ by

$$
\begin{equation*}
T\left(f_{n}+f_{n+1}\right)=f_{n+2} ; \quad n \geqslant 2 \tag{2}
\end{equation*}
$$

Since $\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is linearly independent sequence, T is well-defined and F is represented by T. If $f_{1} \notin \operatorname{span}\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$, then $\left\{f_{1}\right\} \cup\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is linearly independent and so
by Lemma $3.1(i v),\left\{f_{n}\right\}_{n=1}^{\infty}$ is linearly independent. Hence we can define a linear operator $T: \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty} \rightarrow \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$ by $T f_{n}=\sum_{i=0}^{n}(-1)^{i} f_{n+1-i}, n \in \mathbb{N}$. We show that F is represented by T. Indeed,

$$
T f_{n}+T f_{n+1}=\sum_{i=0}^{n}(-1)^{i} f_{n+1-i}+\sum_{i=0}^{n}(-1)^{i+1} f_{n+1-i}+f_{n+2}=f_{n+2}
$$

The following example shows that the converse of Theorem 3.1 is not satisfied in general.

Example 3.5. The frame $F=\left\{f_{n}\right\}_{n=1}^{\infty}=\left\{e_{1}, e_{2}, e_{3}, e_{2}, e_{2}, e_{4}, e_{5}, e_{6}, \ldots\right\}$ is represented by the linear operator $T: \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty} \rightarrow \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$ given by

$$
\begin{aligned}
& T e_{1}=e_{3}-\frac{e_{4}}{2}, \quad T e_{2}=\frac{e_{4}}{2}, \quad T e_{3}=e_{2}-\frac{e_{4}}{2} \\
& T e_{n}=\sum_{i=0}^{n-4}(-1)^{i} e_{n-i+1}+(-1)^{n-3} \frac{e_{4}}{2}, \quad n \geqslant 4
\end{aligned}
$$

But $\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}=\left\{e_{1}+e_{2}, e_{2}+e_{3}, e_{3}+e_{2}, 2 e_{2}, \ldots\right\}$ is not linearly independent.
Corollary 3.1. Let $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ be a linear independent sequence in \mathcal{H}. Then F has a Fibonachi representation.

Proof. It follows from Lemma 3.1 (iii) and Theorem 3.1.
Now, we provide sufficient conditions to make the converse of Theorem 3.1 become true.

Theorem 3.2. Let $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ be a complete sequence in an infinite dimensional Hilbert space \mathcal{H} which has the Fibonacci representation operator T. If there exists $m \in \mathbb{N}$ such that $f_{m+1}, T f_{1} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m}$, then $\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is linearly independent.

Proof. Suppose that $\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is not linearly independent. Then there exists $n_{0} \in \mathbb{N}$ such that $f_{n_{0}}+f_{n_{0}+1}=\sum_{n=1}^{n_{0}-1} c_{n}\left(f_{n}+f_{n+1}\right)$. Hence

$$
\begin{equation*}
f_{n_{0}+2}=T\left(f_{n_{0}}+f_{n_{0}+1}\right)=\sum_{n=1}^{n_{0}-1} c_{n} f_{n+2} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{n_{0}+1} . \tag{3}
\end{equation*}
$$

Let $V=\operatorname{span}\left\{f_{n}\right\}_{n=1}^{l}$, where $l=\max \left\{n_{0}+1, m\right\}$. By (3) and $f_{m+1} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m}$, we get $f_{l+1} \in V$. We show V is invariant under T. Suppose that $f=\sum_{n=1}^{l} c_{n} f_{n} \in V$. By using (i) of Lemma 3.1, we have

$$
\begin{aligned}
T f & =c_{1} T f_{1}+\sum_{n=2}^{l} c_{n} T\left(\sum_{i=0}^{n}(-1)^{i}\left(f_{n-i-1}+f_{n-i}\right)+(-1)^{n-1} f_{1}\right) \\
& =\left(c_{1}+\sum_{n=2}^{l} c_{n}(-1)^{n-1}\right) T f_{1}+\sum_{n=2}^{l} c_{n} \sum_{i=0}^{n}(-1)^{i} f_{n-i+1} .
\end{aligned}
$$

Since $T f_{1} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m} \subseteq V$ and $f_{l+1} \in V$, the above argument proves that V is invariant under T. Therefore $f_{n} \in V$ for all $n \geqslant l+1$ and consequently $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}=V$. Since
$\left\{f_{n}\right\}_{n=1}^{\infty}$ is complete in \mathcal{H}, we have $\mathcal{H}=\overline{\operatorname{span}}\left\{f_{n}\right\}_{n=1}^{\infty}=\bar{V}=V$ which is in contradiction to $\operatorname{dim} \mathcal{H}=\infty$.

Proposition 3.2. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a complete and linearly dependent sequence with $f_{1} \neq$ 0 in an infinite dimensional Hilbert space \mathcal{H}. Then there exists $m \geqslant 2$ such that $f_{m} \in$ $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}$ and $f_{m+1} \notin \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m}$.

Proof. Since $\left\{f_{n}\right\}_{n=1}^{\infty}$ is linearly dependent, there exists $k \geqslant 2$ such that $f_{k} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{k-1}$. We claim that there exists an integer $l>k$ such that $f_{l} \notin \operatorname{span}\left\{f_{n}\right\}_{n=1}^{l-1}$. If $f_{l} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{l-1}$ for each $l>k$, then $f_{k+1} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{k-1}$ because $f_{k} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{k-1}$ and $f_{k+1} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{k}$. Hence by induction we get $f_{l} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{k-1}$ for each $l>k$. Therefore $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}=$ $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{k-1}$. Since $\left\{f_{n}\right\}_{n=1}^{\infty}$ is complete and $\operatorname{dim} \mathcal{H}=\infty$, the contradiction is achieved. Now, let $i \in \mathbb{N}$ be the smallest number such that $f_{k+i} \notin \operatorname{span}\left\{f_{n}\right\}_{n=1}^{k+i-1}$. Putting $m=$ $k+i-1$, we get $f_{m} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}$ and $f_{m+1} \notin \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m}$.

Proposition 3.3. Let $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence in \mathcal{H} which is represented by T. Suppose that $f_{m} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}$ and $f_{m+1} \notin \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}$ for some integer $m \geqslant 2$. Then $T f_{i} \in$ $\operatorname{span}\left\{f_{n}\right\}_{n=3}^{m+1}$ for $1 \leqslant i \leqslant m$.

Proof. By the assumption, we have $f_{m}=\sum_{n=1}^{m-1} c_{n} f_{n}$, so

$$
\begin{aligned}
& \sum_{n=1}^{m-2}\left(\sum_{i=0}^{n-1}(-1)^{i} c_{n-i}\right)\left(f_{n}+f_{n+1}\right) \\
& =\sum_{n=1}^{m-2}\left(\sum_{i=0}^{n-1}(-1)^{i} c_{n-i}\right) f_{n}+\sum_{n=2}^{m-1}\left(\sum_{i=0}^{n-2}(-1)^{i} c_{n-i-1}\right) f_{n} \\
& =c_{1} f_{1}+\sum_{n=2}^{m-2}\left(c_{n}+\sum_{i=1}^{n-1}(-1)^{i} c_{n-i}+\sum_{i=1}^{n-1}(-1)^{i-1} c_{n-i}\right) f_{n}+\left(\sum_{i=0}^{m-3}(-1)^{i} c_{m-i-2}\right) f_{m-1} \\
& =c_{1} f_{1}+\sum_{n=2}^{m-2} c_{n} f_{n}+\left(\sum_{i=0}^{m-3}(-1)^{i} c_{m-i-2}\right) f_{m-1} \\
& =f_{m}+\left(-c_{m-1}+\sum_{i=0}^{m-3}(-1)^{i} c_{m-i-2}\right) f_{m-1}=f_{m}+\left(\sum_{i=0}^{m-2}(-1)^{i-1} c_{m-i-1}\right) f_{m-1},
\end{aligned}
$$

thus

$$
\begin{equation*}
f_{m-1}+f_{m}=\sum_{n=1}^{m-2}\left(\sum_{i=0}^{n-1}(-1)^{i} c_{n-i}\right)\left(f_{n}+f_{n+1}\right)+\left(1-\sum_{i=0}^{m-2}(-1)^{i-1} c_{m-i-1}\right) f_{m-1} . \tag{4}
\end{equation*}
$$

Since F is represented by T, the equality (4) implies that

$$
\begin{equation*}
f_{m+1}=\sum_{n=1}^{m-2}\left(\sum_{i=0}^{n-1}(-1)^{i} c_{n-i}\right) f_{n+2}+\left(1-\sum_{i=0}^{m-2}(-1)^{i-1} c_{m-i-1}\right) T f_{m-1} . \tag{5}
\end{equation*}
$$

If $1-\sum_{i=0}^{m-2}(-1)^{i-1} c_{m-i-1}=0$, then $f_{m+1} \in \operatorname{span}\left\{f_{n}\right\}_{n=3}^{m} \subseteq \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}$ which is a contradiction. Hence (5) implies that

$$
\begin{equation*}
T f_{m-1}=\frac{f_{m+1}-\sum_{n=1}^{m-2}\left(\sum_{i=0}^{n-1}(-1)^{i} c_{n-i}\right) f_{n+2}}{1-\sum_{i=0}^{m-2}(-1)^{i-1} c_{m-i-1}} \in \operatorname{span}\left\{f_{n}\right\}_{n=3}^{m+1} . \tag{6}
\end{equation*}
$$

Also, by (i) of Lemma 3.1 , for $1 \leqslant j \leqslant m-1$, we have

$$
f_{m+1}=T f_{m}+T f_{m-1}=\sum_{i=0}^{j-1}(-1)^{i} f_{m-i+1}+(-1)^{j} T f_{m-j}+T f_{m-1}
$$

Therefore

$$
\begin{equation*}
T f_{m-j}=(-1)^{j}\left(f_{m+1}-T f_{m-1}-\sum_{i=0}^{j-1}(-1)^{i} f_{m-i+1}\right) \tag{7}
\end{equation*}
$$

Hence it follows from (6) and (7) that $T f_{i} \in \operatorname{span}\left\{f_{n}\right\}_{n=3}^{m+1}$ for each $1 \leqslant i \leqslant m-1$.
Corollary 3.2. Let $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence in \mathcal{H} which is represented by T. Suppose that $f_{m} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}$ and $f_{m+1} \notin \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}$ for some $m \in \mathbb{N}$. Then, $T f_{m+i} \in$ $\operatorname{span}\left\{f_{n}\right\}_{n=3}^{m+i+1}$ for each $i \in \mathbb{N}$.

Proof. Since $T f_{m+i}=f_{m+i+1}-T f_{m+i-1}$, the result follows by induction on i and Proposition 3.3.

Corollary 3.3. Let $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ be a complete sequence in an infinite dimensional Hilbert space \mathcal{H}.
(i) If F is linearly independent, then it has a Fibonacci representation T such that $\mathcal{R}(T)=$ $\operatorname{span}\left\{f_{n}\right\}_{n=3}^{\infty}$.
(ii) If F is linearly dependent, then for every Fibonacci representation T of F we have $\mathcal{R}(T)=\operatorname{span}\left\{f_{n}\right\}_{n=3}^{\infty}$.

Proof. First we note that if F is represented by T, then $f_{n}=T\left(f_{n-1}+f_{n-2}\right) \in \mathcal{R}(T)$ for every $n \geqslant 3$, and consequently $\operatorname{span}\left\{f_{n}\right\}_{n=3}^{\infty} \subseteq \mathcal{R}(T)$.

To prove (i), consider the linear operator $T: \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty} \rightarrow \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$ defined by

$$
T f_{1}=T f_{2}=\frac{1}{2} f_{3}, \quad T f_{n}=\sum_{i=0}^{n-3}(-1)^{i} f_{n+1-i}+\frac{(-1)^{n}}{2} f_{3}, \quad n \geqslant 3
$$

Then $T f_{1}+T f_{2}=f_{3}, T f_{2}+T f_{3}=f_{4}$ and

$$
T f_{n}+T f_{n+1}=\sum_{i=0}^{n-3}(-1)^{i} f_{n-i+1}+\sum_{i=0}^{n-2}(-1)^{i} f_{n-i+2}=f_{n+2}, \quad n \geqslant 3
$$

Hence F is represented by T and it is obvious that $\mathcal{R}(T) \subseteq \operatorname{span}\left\{f_{n}\right\}_{n=3}^{\infty}$. In order to prove (ii), by Proposition 3.2 there exists $m \geqslant 2$ such that $f_{m} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}$ and $f_{m+1} \notin$ $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}$. If F is represented by T, then by Proposition 3.3 and Corollary 3.2 we have $\mathcal{R}(T) \subseteq \operatorname{span}\left\{f_{n}\right\}_{n=3}^{\infty}$.

In Theorem 3.2, we showed that $\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is linearly independent under some conditions. In the following, we show that (under some conditions) by removing finitely many elements of $\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ the remaining elements will be linearly independent.

Theorem 3.3. Let $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ be a complete sequence in an infinite dimensional Hilbert space \mathcal{H} which is represented by T. Then there exists $m \in \mathbb{N}$ such that $\left\{f_{m+n}+f_{m+n+1}\right\}_{n=1}^{\infty}$ is linearly independent.

Proof. If F is linearly independent, then the result follows by (i iii) of Lemma 3.1. Suppose that F is linearly dependent. Then by Proposition 3.2 and Proposition 3.3, there exists $m \geqslant 2$ such that $f_{m} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}, f_{m+1} \notin \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m-1}$ and $T f_{1} \in \operatorname{span}\left\{f_{n}\right\}_{n=3}^{m+1}$. We prove $\left\{f_{m+n}+f_{m+n+1}\right\}_{n=1}^{\infty}$ is linearly independent. Suppose by contradiction that $\left\{f_{m+n}+f_{m+n+1}\right\}_{n=1}^{\infty}$ is not linearly independent. Then there exists $j \in \mathbb{N}$ such that $f_{m+j}+$ $f_{m+j+1}=\sum_{n=1}^{j-1} c_{n}\left(f_{m+n}+f_{m+n+1}\right)$. Hence we have

$$
\begin{equation*}
f_{m+j+2}=T\left(f_{m+j}+f_{m+j+1}\right)=\sum_{n=1}^{j-1} c_{n} f_{m+n+2} \in \operatorname{span}\left\{f_{n}\right\}_{n=1}^{m+j+1} \tag{8}
\end{equation*}
$$

Let $V=\operatorname{span}\left\{f_{n}\right\}_{n=1}^{m+j+1}$. We show that V is invariant under T. Let $f=\sum_{n=1}^{m+j+1} c_{n} f_{n} \in V$. Then by (i) of Lemma 3.1, we have

$$
T f=\left(c_{1}+\sum_{n=2}^{m+j+1} c_{n}(-1)^{n-1}\right) T f_{1}+\sum_{n=2}^{j+m+1} c_{n} \sum_{i=0}^{n-2}(-1)^{i} f_{n-i+1}
$$

Using $T f_{1} \in \operatorname{span}\left\{f_{n}\right\}_{n=3}^{m+1} \subseteq V$ and (8), we get $T f \in V$. Then we conclude $f_{n} \in V$ for all $n \geqslant m+j+2$. Thus, $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}=V$ and since $\left\{f_{n}\right\}_{n=1}^{\infty}$ is complete in \mathcal{H}, we have $\mathcal{H}=\overline{\operatorname{span}}\left\{f_{n}\right\}_{n=1}^{\infty}=\bar{V}=V$ which is a contradiction.

4. Fibonacci Representation Operators

In a frame that indeed has the form $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$, where $T \in B(\mathcal{H})$ and $\varphi \in \mathcal{H}$, all sequence members are represented by iterative actions of T on φ. In the case where $\left\{f_{n}\right\}_{n=1}^{\infty}$ has a Fibonacci representation operator T, we expect (Theorem 4.1) all members of the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ to be identified in terms of iterative actions of T on elements f_{1} and f_{2}. In this section, we present some results concerning Fibonacci representation operators. One of the results characterizes types of frame which can be represented in terms of a bounded operator T.

Notation. $[x]$ denotes the integer part of $x \in \mathbb{R}$ and $\binom{n}{k}:=\frac{n!}{k!(n-k)!}$ for integers $0 \leqslant k \leqslant n$. We let $\binom{n}{k}:=0$ when $k>n$ or $k<0$.

Theorem 4.1. Let $T: \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty} \rightarrow \operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$ be a linear operator, then the following statements are equivalent:
(i) $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ is represented by T.
(ii) $T f_{1}+T f_{2}=f_{3}$ and for $a_{n}=\left[\frac{n-1}{2}\right], b_{n}=n-2 a_{n}-2$,

$$
\begin{equation*}
f_{n}=\sum_{i=a_{n}}^{2 a_{n}}\left(\binom{i+b_{n}}{2 i-2 a_{n}+b_{n}} T^{i+b_{n}} f_{2}+\binom{i+b_{n}}{2 i-2 a_{n}+b_{n}+1} T^{i+b_{n}+1} f_{1}\right), n \geqslant 4 \tag{9}
\end{equation*}
$$

Proof. $(i) \Rightarrow(i i)$ We prove (9) by induction on n. For $n=4$, we have $a_{4}=1$ and $b_{4}=0$. Then

$$
\binom{1}{0} T f_{2}+\binom{1}{1} T^{2} f_{1}+\binom{2}{2} T^{2} f_{2}+\binom{2}{3} T^{3} f_{1}=f_{4}
$$

Now, assume that $k>4$ and (9) holds for all $n \leqslant k$ and we prove (9) for $n=k+1$. If $k+1$ is even, then $b_{k}=-1, b_{k-1}=b_{k+1}=0$ and $a_{k+1}=a_{k}=1+a_{k-1}$. Hence

$$
\begin{aligned}
f_{k+1}= & T f_{k}+T f_{k-1}=\sum_{i=a_{k}}^{2 a_{k}}\left(\binom{i-1}{2 i-2 a_{k}-1} T^{i} f_{2}+\binom{i-1}{2 i-2 a_{k}} T^{i+1} f_{1}\right) \\
& +\sum_{i=a_{k}}^{2 a_{k}}\left(\binom{i-1}{2 i-2 a_{k}} T^{i} f_{2}+\binom{i-1}{2 i-2 a_{k}+1} T^{i+1} f_{1}\right) \\
= & \sum_{i=a_{k}}^{2 a_{k}}\left(\binom{i}{2 i-2 a_{k}} T^{i} f_{2}+\binom{i}{2 i-2 a_{k}+1} T^{i+1} f_{1}\right) .
\end{aligned}
$$

Since $b_{k+1}=0$ and $a_{k+1}=a_{k}$, we obtain (9). If $k+1$ is odd, then $b_{k}=0, b_{k-1}=b_{k+1}=-1$ and $1+a_{k-1}=1+a_{k}=a_{k+1}$. Hence

$$
f_{k+1}=T f_{k}+T f_{k-1}=\sum_{i=a_{k+1}}^{2 a_{k+1}}\left(\binom{i-1}{2 i-2 a_{k+1}-1} T^{i-1} f_{2}+\binom{i-1}{2 i-2 a_{k+1}} T^{i} f_{1}\right) .
$$

Hence we get (9). To prove $(i i) \Rightarrow(i)$, there are two possibilities. If $n>4$ is odd, then $b_{n}=-1, b_{n-1}=b_{n+1}=0$ and $a_{n+1}=a_{n}=1+a_{n-1}$. Hence

$$
\begin{aligned}
T f_{n} & =\sum_{i=a_{n}}^{2 a_{n}}\left(\binom{i-1}{2 i-2 a_{n}-1} T^{i} f_{2}+\binom{i-1}{2 i-2 a_{n}} T^{i+1} f_{1}\right), \\
T f_{n-1} & =\sum_{i=a_{n}}^{2 a_{n}}\left(\binom{i-1}{2 i-2 a_{n}} T^{i} f_{2}+\binom{i-1}{2 i-2 a_{n}+1} T^{i+1} f_{1}\right) .
\end{aligned}
$$

Therefore,

$$
T f_{n}+T f_{n-1}=\sum_{i=a_{n}}^{2 a_{n}}\left(\binom{i}{2 i-2 a_{n}} T^{i} f_{2}+\binom{i}{2 i-2 a_{n}+1} T^{i+1} f_{1}\right)=f_{n+1}
$$

If $n \geqslant 4$ is even, the argument is similar to the previous case.
Remark 4.1. We recall that

$$
\ell^{2}(\mathcal{H}):=\left\{\left\{f_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{H}: \sum_{n=1}^{\infty}\left\|f_{n}\right\|^{2}<\infty\right\}
$$

and $\mathcal{T}_{L}, \mathcal{T}_{R}: \ell^{2}(\mathcal{H}) \rightarrow \ell^{2}(\mathcal{H})$ are bounded linear operators defined by

$$
\mathcal{T}_{L}\left\{f_{n}\right\}_{n=1}^{\infty}=\left\{f_{n+1}\right\}_{n=1}^{\infty}, \quad \mathcal{T}_{R}\left\{f_{n}\right\}_{n=1}^{\infty}=\left\{0, f_{1}, f_{2}, f_{3}, \ldots\right\}
$$

Proposition 4.1. Let $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ be a Bessel sequence in \mathcal{H} which is represented by T_{0} and let $M=\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ be a frame for \mathcal{H}. Then $\operatorname{ker} T_{M} \subseteq \operatorname{ker} T_{\mathcal{T}_{L}^{2} F}$ if and only if $T:=\left.T_{0}\right|_{\operatorname{span}\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}}$ is bounded with $\|T\| \leqslant \sqrt{\frac{B_{F}}{A_{M}}}$, where B_{F} is a Bessel bound for F and A_{M} is a lower frame bound for M.

Proof. Let $\operatorname{ker} T_{M} \subseteq \operatorname{ker} T_{\mathcal{T}_{L}^{2} F}$ and $f=\sum_{n=1}^{k} c_{n}\left(f_{n}+f_{n+1}\right)$, where $\left\{c_{n}\right\}_{n=1}^{\infty} \in \ell^{2}$ with $c_{n}=0$ for $n \geqslant k+1$. Then

$$
T f=\sum_{n=1}^{k} c_{n} T\left(f_{n}+f_{n+1}\right)=\sum_{n=1}^{\infty} c_{n} f_{n+2}=\sum_{n=1}^{\infty} d_{n} f_{n+2}+\sum_{n=1}^{\infty} r_{n} f_{n+2}
$$

where $\left\{d_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{M} \subseteq \operatorname{ker} T_{\mathcal{T}_{L}^{2} F}$ and $\left\{r_{n}\right\}_{n=1}^{\infty} \in\left(\operatorname{ker} T_{M}\right)^{\perp}$. Since $\left\{d_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{\mathcal{T}_{L}^{2} F}$, we have $\sum_{n=1}^{\infty} d_{n} f_{n+2}=0$ and consequently $T f=\sum_{n=1}^{\infty} r_{n} f_{n+2}$. Therefore by applying [4, Lemma 5.5.5], we have

$$
\|T f\|^{2} \leqslant \frac{B_{F}}{A_{M}}\left\|\sum_{n=1}^{\infty} r_{n}\left(f_{n}+f_{n+1}\right)\right\|^{2}=\frac{B_{F}}{A_{M}}\left\|\sum_{n=1}^{k} c_{n}\left(f_{n}+f_{n+1}\right)\right\|^{2}=\frac{B_{F}}{A_{M}}\|f\|^{2} .
$$

For the other implication, let $\left\{c_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{M}$. Since $\sum_{n=1}^{\infty} c_{n}\left(f_{n}+f_{n+1}\right)=0$ and T is bounded, we have $\sum_{n=1}^{\infty} c_{n} f_{n+2}=0$, that means $\left\{c_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{\mathcal{T}_{L}^{2} F}$.

Remark 4.2. In Theorem 1.2, the invariance of $\operatorname{ker} T_{F}$ under the right-shift operator \mathcal{T} is a sufficient condition for the boundedness of T. It is obvious that the invariance of $\operatorname{ker} T_{F}$ under \mathcal{T} is equivalent to $\operatorname{ker} T_{F} \subseteq \operatorname{ker} T_{\mathcal{J}_{L} F}$. In fact, for $\left\{c_{n}\right\}_{n=1}^{\infty} \in \ell^{2}$ we have $\mathcal{T}\left(\left\{c_{n}\right\}_{n=1}^{\infty}\right) \in \operatorname{ker} T_{F}$ if and only if $\left\{c_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{\mathcal{T}_{L} F}$.

Proposition 4.2. Let $F=\left\{f_{n}\right\}_{n=1}^{\infty}$ be a Bessel sequence in \mathcal{H} which is represented by $T \in B(\mathcal{H})$ and $M=\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ be a frame for \mathcal{H}. Then T is injective if and only if $\operatorname{ker} T_{\mathcal{T}_{L}^{2} F} \subseteq \operatorname{ker} T_{M}$

Proof. Let T be injective and $\left\{c_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{\mathcal{T}_{L}^{2} F}$. Then

$$
T\left(\sum_{n=1}^{\infty} c_{n}\left(f_{n}+f_{n+1}\right)\right)=\sum_{n=1}^{\infty} c_{n} f_{n+2}=0
$$

Since T is injective, we get $\sum_{n=1}^{\infty} c_{n}\left(f_{n}+f_{n+1}\right)=0$ and consequently $\left\{c_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{M}$. Conversely, assume that $f \in \mathcal{H}$ and $T f=0$. Since $M=\left\{f_{n}+f_{n+1}\right\}_{n=1}^{\infty}$ is a frame for \mathcal{H}, we have $f=\sum_{n=1}^{\infty} c_{n}\left(f_{n}+f_{n+1}\right)$ for some $\left\{c_{n}\right\}_{n=1}^{\infty} \in \ell^{2}$. Then $\sum_{n=1}^{\infty} c_{n} f_{n+2}=0$, and so $\left\{c_{n}\right\}_{n=1}^{\infty} \in \operatorname{ker} T_{\mathcal{T}_{L}^{2} F} \subseteq \operatorname{ker} T_{M}$. This means $f=\sum_{n=1}^{\infty} c_{n}\left(f_{n}+f_{n+1}\right)=0$ and the proof is completed.

Proposition 4.3. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be represented by T. Then the following hold:
(i) If $K \in B(\mathcal{H})$ is injective and has closed range, then $\left\{K f_{n}\right\}_{n=1}^{\infty}$ has a Fibonacci representation.
(ii) If $K \in B(\mathcal{H})$ is surjective, then $\left\{K^{*} f_{n}\right\}_{n=1}^{\infty}$ and $\left\{K K^{*} f_{n}\right\}_{n=1}^{\infty}$ have Fibonacci representations.

Proof. (i) By Open Mapping Theorem, there exists a bounded linear operator $S: \mathcal{R}(K) \rightarrow \mathcal{H}$ such that $S K=I_{\mathcal{H}}$. Therefore

$$
K T S\left(K f_{n}+K f_{n-1}\right)=K T\left(f_{n}+f_{n-1}\right)=K f_{n+1}, \quad n \geqslant 2 .
$$

To prove (ii), by [4, Lemma 2.4.1], K^{*} is injective and has closed range. Also $K K^{*}$ is invertible. Then (i) implies (ii).

Proposition 4.4. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a frame for \mathcal{H} and represented by $T \in B(\mathcal{H})$. If $T f_{1} \in$ $\operatorname{span}\left\{f_{n}\right\}_{n=3}^{\infty}$, then $\mathcal{R}(T)$ is closed and $\mathcal{R}(T)=\overline{\operatorname{span}}\left\{T f_{n}\right\}_{n=1}^{\infty}=\overline{\operatorname{span}}\left\{f_{n}\right\}_{n=3}^{\infty}$.

Proof. For each $f \in \mathcal{H}$, there exists $\left\{c_{n}\right\}_{n=1}^{\infty} \in \ell^{2}$ such that $f=\sum_{n=1}^{\infty} c_{n} f_{n}$. Then $T f=$ $\sum_{n=1}^{\infty} c_{n} T f_{n} \in \overline{\operatorname{span}}\left\{T f_{n}\right\}_{n=1}^{\infty}$, and therefore $\mathcal{R}(T) \subseteq \overline{\operatorname{span}}\left\{T f_{n}\right\}_{n=1}^{\infty}$. On the other hand,
for $g \in \operatorname{span}\left\{f_{n}\right\}_{n=3}^{\infty}$ there exists $\left\{c_{n}\right\}_{n=1}^{\infty} \in \ell^{2}$ such that

$$
g=\sum_{n=1}^{\infty} c_{n} f_{n+2}=\sum_{n=1}^{\infty} c_{n} T\left(f_{n}+f_{n+1}\right)=T\left(\sum_{n=1}^{\infty} c_{n}\left(f_{n}+f_{n+1}\right)\right) \in \mathcal{R}(T)
$$

Then $\overline{\operatorname{span}}\left\{f_{n}\right\}_{n=3}^{\infty} \subseteq \mathcal{R}(T)$. Since $T f_{1} \in \operatorname{span}\left\{f_{n}\right\}_{n=3}^{\infty}$, we can now apply (ii) of Lemma 3.1 to conclude that

$$
\operatorname{span}\left\{T f_{n}\right\}_{n=1}^{\infty}=\operatorname{span}\left\{\left\{T f_{1}\right\} \cup\left\{T f_{n}+T f_{n+1}\right\}_{n=1}^{\infty}\right\}=\operatorname{span}\left\{f_{n}\right\}_{n=3}^{\infty}
$$

Therefore $\mathcal{R}(T)=\overline{\operatorname{span}}\left\{T f_{n}\right\}_{n=1}^{\infty}=\overline{\operatorname{span}}\left\{f_{n}\right\}_{n=3}^{\infty}$.
Proposition 4.5. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a linearly dependent frame sequence represented by $T \in$ $B(\mathcal{K})$, where $\mathcal{K}=\overline{\operatorname{span}}\left\{f_{n}\right\}_{n=1}^{\infty}$ is an infinite dimensional Hilbert space. Then $\mathcal{R}(T)$ is closed and $\mathcal{R}(T)=\overline{\operatorname{span}}\left\{f_{n}\right\}_{n=3}^{\infty}$.

Proof. Let T_{0} be the restriction of T on $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$. Then by (ii) of Corollary 3.3, we have $\mathcal{R}\left(T_{0}\right)=\operatorname{span}\left\{f_{n}\right\}_{n=3}^{\infty}$, and therefore $\mathcal{R}(T) \subseteq \overline{\operatorname{span}}\left\{f_{n}\right\}_{n=3}^{\infty}$. On the other hand, Since $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a frame sequence, for each $f \in \overline{\operatorname{span}}\left\{f_{n}\right\}_{n=3}^{\infty}$, there exists $\left\{c_{n}\right\}_{n=1}^{\infty} \in \ell^{2}$ such that

$$
f=\sum_{n=1}^{\infty} c_{n} f_{n+2}=\sum_{n=1}^{\infty} c_{n}\left(T f_{n}+T f_{n+1}\right)=T\left(\sum_{n=1}^{\infty} c_{n}\left(f_{n}+f_{n+1}\right)\right) \in \mathcal{R}(T)
$$

Hence $\overline{\operatorname{span}}\left\{f_{n}\right\}_{n=3}^{\infty} \subseteq \mathcal{R}(T)$ and this completes the proof.
Theorem 4.2. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be represented by T and S. If $T f_{1}=S f_{1}$, then $T=S$ on $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$.

Proof. Since $T f_{1}=S f_{1}$ and $T\left(f_{n}+f_{n+1}\right)=f_{n+2}=S\left(f_{n}+f_{n+1}\right)$ for all $n \in \mathbb{N}$, we get $T f_{n}=S f_{n}$ for all $n \in \mathbb{N}$ (we can use (i) of Lemma 3.1). This proves $T=S$ on $\operatorname{span}\left\{f_{n}\right\}_{n=1}^{\infty}$.

Corollary 4.1. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be represented by T and S. If $f_{1} \in \operatorname{span}\left\{f_{n}+f_{n+1}\right\}_{n=k}^{\infty}$ for some $k \in \mathbb{N}$, then $T=S$.

Proof. Since $f_{1} \in \operatorname{span}\left\{f_{n}+f_{n+1}\right\}_{n=k}^{\infty}$, we have $f_{1}=\sum_{n=k}^{m} c_{n}\left(f_{n}+f_{n+1}\right)$ for some scalars c_{k}, \cdots, c_{m}. Then

$$
T f_{1}=\sum_{n=k}^{m} c_{n} T\left(f_{n}+f_{n+1}\right)=\sum_{n=k}^{m} c_{n} f_{n+2}=\sum_{n=k}^{m} c_{n} S\left(f_{n}+f_{n+1}\right)=S f_{1} .
$$

Therefore $T=S$ by Theorem 4.2.

Acknowledgements

We wish to thank the referee for his/her detailed and very helpful report.

REFERENCES

[1] A. Aldroubi, C. Cabrelli, A. F. Cakmak, U. Molter and A. Petrosyan, Iterative actions of normal operators, J. Funct. Anal., 272 (2017), 1121-1146.
[2] A. Aldroubi, C. Cabrelli, U. Molter and S. Tang, Dynamical sampling, Appl. Comput. Harmon. Anal., 42 (2017), 378-401.
[3] A. Aldroubi and A. Petrosyan, Dynamical sampling and systems from iterative actions of operators, Frames and other bases in abstract and function spaces, 15-26, Appl. Numer. Harmon. Anal., Birkhuser/Springer, Cham, 2017.
[4] Ole Christensen, An introduction to frames and Riesz bases. Second expanded edition. Birkhäuser, 2016.
[5] O. Christensen and M. Hasannasab, Operator representations of frames: boundedness, duality, and stability, Integr. Equ. Oper. Theory 88 (2017), 483-499.
[6] O. Christensen and M. Hasannasab, Frames propertys of systems arising via iterative actions of operators, Appl. Comput. Harmon. Anal., 46 (2019), No. 3, 664-673.
[7] O. Christensen, M. Hasannasab and E. Rashidi, Dynamical sampling and frame representations with bounded operators, J. Math. Anal. Appl., 463 (2018), 634-644.
[8] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Am. Math. Soc., 72 (1952), 341-366.
[9] E. Rashidi , A. Najati and E. Osgooei, Dynamical sampling: mixed frame operators, representations and perturbations, arXiv:1904.00697v1.

[^0]: ${ }^{1}$ Lecturer, Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran, e-mail: j.smoghaddam@uma.ac.ir
 ${ }^{2}$ Professor, Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran, e-mail: a.nejati@yahoo.com
 ${ }^{3}$ Dr., Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran, e-mail: khedmati.y@uma.ac.ir

