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SELF-STRUCTURING OF CELLULAR AND CHANNEL TYPE 
IN COMPLEX SYSTEM DYNAMICS IN THE FRAMEWORK 

OF SCALE RELATIVITY THEORY 

Tudor-Cristian PETRESCU1, Maria-Alexandra PAUN2,3, Mihaela JARCAU4, 
Lenuta CIURCA5, Vladimir-Alexandru PAUN6, Catalin DUMITRAS7, Viorel-

Puiu PAUN8,9, Maricel AGOP9,10 

In the framework of Scale Relativity Theory, by analyzing dynamics of complex 
system structural units based on multifractal curves, both Schrödinger and Madelung 
approaches are functional and complementary. The Madelung selected approach 
involve synchronous modes through SL(2R) transformation group based on a hidden 
symmetry. Moreover, coherence domains through Riemann Manifolds embedded with 
a Poincaré metric based on a parallel transport of direction, in a Levi Civita sense 
are presented. In this last context, stationary-non-stationary dynamics transition 
through harmonic mapping from the usual space to the hyperbolic one is manifested 
as cellular and channel type self-structuring.   
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Both chaos and self-structuring are accepted as one of the most fundamental 
properties of any complex system dynamics. Interactions between the structural 
units of any complex system imply mutual constraints at different scale resolutions, 
so that the universality of the dynamics laws for any complex system must be 
reflected in various theoretical models. In such a context, the regular theoretical 
models are based on the hypothesis that the variables characterizing the complex 
system dynamics are differentiable. This may not always hold true, such that the 
validations of the previously described type of models need to be seen as gradual 
and applicable on restricted domains for differentiability is respected. Since chaos 
and self-structuring are implying predominantly non-differentiable behaviors in the 
description of complex system dynamics, it is necessary to explicitly introduce the 
scale resolution in the dynamic equations. This implies that any variables used to 
describe any complex system have a dual dependence both on the space-time 
coordinates and on the scale resolution. For instance, instead of using variables 
defined by non-differentiable functions, approximations of these complex functions 
will be used at various scale resolutions, which become functional. Thus, all 
variables used to describe the complex system dynamics will work as a limit of 
families of functions. As such, for null scale resolution, they are non-differentiable 
and for non-null scale resolution, they are differentiable. The previous 
mathematical procedures imply adequate geometrical structures and a class of 
models respectively, for which the motion laws are integrated with the scale laws. 
Such geometrical structures are based on the concept of multifractality and the 
equivalent theoretical models are based on the Scale Relativity Theory. The Scale 
Relativity theory can be developed either in the fractal dimension DF = 2 (as in 
Nottale models) or in an arbitrary and constant dimension (as in Multifractal Theory 
of Motion). Since in the Scale Relativity Theory, the complex system’s structural 
unit’s dynamics can be described by continuous but non-differentiable movement 
curves (multifractal motion curves), these curves exhibit self-similarity as their 
main property. In any of the points which are forming the curve, behaviors of 
holographic type emerge (every part reflects the global system). Therefore, a 
complex approach suggests that only holographic implementation can offer 
complete descriptions of the complex system dynamics [1-3].  

In the present paper, by assimilating any complex fluid with a mathematic 
object of fractal type, in the framework of Scale Relativity Theory (SRT) [4, 5] and 
Multifractal Theory of Motion [6-9], various non-linear behaviors through a fractal 
hydrodynamic-type description as well as through a fractal Schrodinger-type 
description, were established. Thus, the fractal hydrodynamic-type description 
implies holographic implementations of dynamics through velocity fields at non-
differentiable scale resolution, via fractal soliton, fractal soliton-kink and fractal 
minimal vortex. In this definition, various operational procedures can become 
functional. We can mention the fractal cubics with fractal SL(2R) group invariance 
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through n-phaser coherence of the structural units dynamics of any complex fluid, 
fractal SL(2R) groups through dynamics synchronization along the complex 
systems structural units, fractal Riemann manifolds induced by fractal cubics and 
embedded with a Poincaré metric through apolar transport of cubics (parallel 
transport of direction, in a Levi Civita sense in a Levi Civita sense, harmonic 
mapping from the usual space to the hyperbolic one. These procedures become 
operational so that several possible scenarios towards chaos (fractal periodic 
doubling scenario) but without fully transitioning into chaos (non-manifest chaos) 
can be obtained.  

In this work, from a multifractal perspective, the nonlinear dynamics of 
complex systems will be analyzed. In such a context, exploring a hidden symmetry 
under the form of synchronization groups of complex system structural units lead 
to the generation of Riemann manifold with hyperbolic type metric via parallel 
transport of direction. Then, accessing of complex systems nonstationary dynamics 
are performed thorough harmonic mapping from the usual space to the hyperbolic 
one.  

2. Mathematical Model 

2.1. Motion Equation 

In what follows, any complex system can be assimilated with a multifractal 
object. Then, since in the framework of Scale relativity Theory [6-9] the dynamics 
of complex system structural units are described through multifractal curves, the 
motion equation becomes (for details see [6-9]): 

𝑑̂𝑑𝑉𝑉� 𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝜕𝜕𝑡𝑡𝑉𝑉� 𝑖𝑖 + 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖 +

1
4

(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝐷𝐷𝑙𝑙𝑙𝑙𝜕𝜕𝑙𝑙𝜕𝜕𝑘𝑘𝑉𝑉� 𝑖𝑖 = 0, 
(1) 

 

where 

𝑉𝑉� 𝑙𝑙 = 𝑉𝑉𝐷𝐷𝑙𝑙 − 𝑉𝑉𝐹𝐹𝑙𝑙 

𝐷𝐷𝑙𝑙𝑙𝑙 = 𝑑𝑑𝑙𝑙𝑙𝑙 − 𝑖𝑖𝑑̂𝑑𝑙𝑙𝑙𝑙 

𝑑𝑑𝑙𝑙𝑙𝑙 = 𝜆𝜆+𝑙𝑙 𝜆𝜆+𝑘𝑘 − 𝜆𝜆−𝑙𝑙 𝜆𝜆−𝑘𝑘  

𝑑̂𝑑𝑙𝑙𝑙𝑙 = 𝜆𝜆+𝑙𝑙 𝜆𝜆+𝑘𝑘 + 𝜆𝜆−𝑙𝑙 𝜆𝜆−𝑘𝑘  

𝜕𝜕𝑡𝑡 =
𝜕𝜕
𝜕𝜕𝜕𝜕

,𝜕𝜕𝑙𝑙 =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

,𝜕𝜕𝑙𝑙𝜕𝜕𝑘𝑘 =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

, 𝑖𝑖 = √−1, 𝑙𝑙,𝑘𝑘 = 1,2,3 

(2) 

In relations (1) and (2), the meaning of the variables and parameters are 
given: 

• 𝑥𝑥𝑙𝑙 is the multifractal spatial coordinate, 
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• 𝑡𝑡 is the non-multifractal time having the role of an affine parameter of the 
motion curves, 

• 𝑉𝑉� 𝑙𝑙 is the multifractal complex velocity, 
• 𝑉𝑉𝐷𝐷𝑙𝑙  is the differentiable velocity independent on the scale resolution, 
• 𝑉𝑉𝐹𝐹𝑙𝑙 is the non-differentiable velocity dependent on the scale resolution, 
• 𝑑𝑑𝑑𝑑 is the scale resolution, 
• 𝑓𝑓(𝛼𝛼) is the singularity spectrum of order 𝛼𝛼, 
• 𝛼𝛼 is the singularity index and is a function of fractal dimension  𝐷𝐷𝑓𝑓, 
• 𝐷𝐷𝑙𝑙𝑙𝑙 is the constant tensor associated with the differentiable–non-

differentiable transition, 
• 𝜆𝜆+𝑙𝑙 (𝜆𝜆+𝑘𝑘 ) is the constant vector associated with the backward differentiable–

non-differentiable dynamic processes, 
• 𝜆𝜆−𝑙𝑙 (𝜆𝜆−𝑘𝑘 ) is the constant vector associated with the forward differentiable–

non-differentiable dynamic processes. 
It should be noted that, by using the singularity spectrum, the following 

patterns in the complex system dynamics can be distinguished:  
i) Monofractal patterns. These imply dynamics in homogenous 

complex systems characterized through a single fractal dimension 
and having the same scaling properties in any time interval. 

ii) Multifractal patterns. These include dynamics in inhomogeneous 
and anisotropic complex systems characterized simultaneously by a 
wide variety of fractal dimensions. 

Consequently, f(α) allows the identification of the universality classes in the 
dynamics of any complex systems even when the strange attractors associated to 
these dynamics have different aspects.  

The relation (1) reveals that, in the generalized case of complex systems 
structural units dynamics, irrespective of the fractalization type, in any point of the 
motion curves, the multifractal inertial, 𝜕𝜕𝑡𝑡𝑉𝑉� 𝑖𝑖, the multifractal convective, 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖, 

the multifractal dissipative effects, 1
4

(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝐷𝐷𝑙𝑙𝑙𝑙𝜕𝜕𝑙𝑙𝜕𝜕𝑘𝑘𝑉𝑉� 𝑖𝑖, are achieving balance.  
     
2.2 Schrodinger and Madelung approaches in the description of complex systems 

dynamics 

For a large temporal scale resolution with respect to the inverse of the 
highest Lyapunov exponent [7-9], the class of deterministic trajectories of any 
complex system structural units can be substituted by the class of virtual 
trajectories. Then, the concept of definite trajectories is replaced by the one of 
density of probability. The multifractality is thus expressed by means of multi-
stochasticity. 



Self-structuring of cellular and channel type in complex system dynamics […] of scale relativity theory   179 

Many modes of multifractalization through stochasticization processes can 
be used. Among the most employed ones, the Markovian and non-Markovian 
stochastic processes are found [10-12]. In what follows, in the description of 
complex system dynamics, only multifractalizations by means of Markovian 
stochastic processes will be discussed. Consequently, the following constraints 
become operational [10-12]: 

𝜆𝜆+𝑖𝑖 𝜆𝜆+𝑙𝑙 = 𝜆𝜆−𝑖𝑖 𝜆𝜆−𝑙𝑙 = 2𝜆𝜆𝛿𝛿𝑖𝑖𝑖𝑖, (3) 

where λ is a constant associated to the differentiable-nondifferentiable transitions 
and δil is the Kronecker pseudo-tensor. Based on constraints (3), the motion 
equation (1) becomes: 

𝑑̂𝑑𝑉𝑉� 𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝜕𝜕𝑡𝑡𝑉𝑉� 𝑖𝑖 + 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖 − 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�

2
𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖 = 0. (4) 

The relations (4) show that in any point of the motion curves, the local 
multifractal complex acceleration, 𝜕𝜕𝑡𝑡𝑉𝑉� 𝑖𝑖, the multifractal complex convection, 

𝑉𝑉� 𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖, and the multifractal complex dissipation 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖 are in 
equilibrium. 

In what follows, let it be admitted that the motions of the entities belonging 
to any complex system are irrotational. Then, the multifractal complex velocity 
fields from (2) take the form: 

𝑉𝑉� 𝑖𝑖 = −2𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖 𝑙𝑙𝑙𝑙 𝛹𝛹,  (5) 

where 

𝜒𝜒 = −2𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1 𝑙𝑙𝑙𝑙𝛹𝛹 (6) 

is the multifractal complex scalar potential of the complex velocity fields from (5) 
and 𝛹𝛹 is the function of states. Further on, substituting (5) in (4) and using the 
mathematical procedures from [6-9] the motion equation (4) takes the form of the 
multifractal Schrödinger equation: 

𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙𝛹𝛹 + 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑡𝑡𝛹𝛹 = 0. (7) 

Therefore, for the complex velocity fields (5), the dynamics of any complex 
system structural units are described through Schrödinger type “regimes” at various 
scale resolutions (Schrödinger’s multifractal description). (7) defines the 
Schrödinger scenario on the holographic implementation of complex system 
dynamics. 

If it is chosen 𝛹𝛹 of the form (Madelung’s type choice):  
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𝛹𝛹 = �𝜌𝜌𝑒𝑒𝑖𝑖𝑖𝑖, (8) 

where �𝜌𝜌 is the amplitude and 𝑠𝑠 is the phase, then the multifractal complex velocity 
fields (5) take the explicit form: 

𝑉𝑉� 𝑖𝑖 = 2𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖𝑠𝑠 − 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖 ln 𝜌𝜌, (9) 

From (9), the real multifractal velocity fields result: 

𝑉𝑉𝐷𝐷𝑖𝑖 = 2𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖𝑠𝑠 (10) 

 

𝑉𝑉𝐹𝐹𝑖𝑖 = 𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖 ln𝜌𝜌. (11) 

In (10), 𝑉𝑉𝐷𝐷𝑖𝑖  is the differential velocity field, while in (11), 𝑉𝑉𝐹𝐹𝑖𝑖 is the non-
differentiable velocity field. 

By means of (9), (10) and (11) and using the mathematical procedures from 
[6-10], the motion equation (4) reduces to the multifractal Madelung equations: 

𝜕𝜕𝑡𝑡𝑉𝑉𝐷𝐷𝑖𝑖 + 𝑉𝑉𝐷𝐷𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉𝐷𝐷𝑖𝑖 = −𝜕𝜕𝑖𝑖𝑄𝑄 (12) 

 

𝜕𝜕𝑡𝑡𝜌𝜌 + 𝜕𝜕𝑙𝑙�𝜌𝜌𝑉𝑉𝐷𝐷𝑙𝑙 � = 0, (13) 

with 𝑄𝑄 the multifractal specific potential: 

𝑄𝑄 = −2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2 𝜕𝜕
𝑙𝑙𝜕𝜕𝑙𝑙�𝜌𝜌
�𝜌𝜌

= −𝑉𝑉𝐹𝐹𝑖𝑖𝑉𝑉𝐹𝐹𝑖𝑖 −
1
2
𝜆𝜆(𝑑𝑑𝑑𝑑)�

2
𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑙𝑙. (14) 

The equation (12) corresponds to the multifractal specific momentum 
conservation law, while equation (13) corresponds to the multifractal states density 
conservation law. The multifractal specific potential (14) implies the multifractal 
specific force: 

𝐹𝐹𝑖𝑖 = −𝜕𝜕𝑖𝑖𝑄𝑄 = −2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2𝜕𝜕𝑖𝑖
𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝜌𝜌

�𝜌𝜌
, (15) 

which is a measure of the multifractality of the motion curves. 
Therefore, for the multifractal complex velocity fields (9), the dynamics of 

any complex system are described through Madelung-type “regimes” at various 
scale resolution (Madelung’s multifractal description). (12)-(14) define the 
Madelung approach on the holographic implementation for complex system 
dynamics. In this context, several important consequences can be observed:  
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i) Any complex system structural units are in a permanent interaction 
with a multifractal medium through the multifractal specific force 
(15). 

ii) All complex system can be identified with a multifractal fluid, the 
dynamics of which is described by the multifractal Madelung’s 
equation (see (12) – (14)). 

iii) The velocity field 𝑉𝑉𝐹𝐹𝑖𝑖 does not represent the contemporary dynamics. 
Since 𝑉𝑉𝐹𝐹𝑖𝑖 is missing from (13) this velocity field contributes to the 
transfer of the multifractal specific momentum and to the 
multifractal energy focus.  

iv) Any analysis of Q should consider the “self” nature of the specific 
momentum transfer of multifractal type. Then, the conservation of 
the multifractal energy and the multifractal momentum that ensure 
the reversibility and the existence of the multifractal eigenstates.  

If the multifractal tensor is considered:  

𝜏̂𝜏𝑖𝑖𝑖𝑖 = 2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2𝜌𝜌𝜕𝜕𝑖𝑖𝜕𝜕𝑙𝑙 ln𝜌𝜌,   (16) 

the equation defining the multifractal forces that derive from the multifractal 
specific potential 𝑄𝑄 can be written in the form of a multifractal equilibrium 
equation: 

𝜌𝜌𝜕𝜕𝑖𝑖𝑄𝑄 = 𝜕𝜕𝑙𝑙𝜏̂𝜏𝑖𝑖𝑖𝑖. (17) 

Since 𝜏̂𝜏𝑖𝑖𝑖𝑖 can be also written in the form: 

𝜏̂𝜏𝑖𝑖𝑖𝑖 = 𝜂𝜂�𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑖𝑖 + 𝜕𝜕𝑖𝑖𝑉𝑉𝐹𝐹𝑙𝑙�, (18) 

with 

𝜂𝜂 = 𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜌𝜌 (19) 

a multifractal linear constitutive equation for a multifractal “viscous fluid” can be 
highlighted. In such a context, the coefficient 𝜂𝜂  can be interpreted as a multifractal 
dynamic viscosity coefficient of the multifractal fluid.  

3. Synchronization modes through hidden symmetries 

In such a context, let it be admitted that tensors (19) or (21) become 
fundamental in dynamic processes of any complex system structural units. Then, 
their characteristic equation is given by the cubic: 

𝑎𝑎0𝑋𝑋3 + 3𝑎𝑎1𝑋𝑋2 + 3𝑎𝑎2𝑋𝑋 + 𝑎𝑎3 = 0, 𝑎𝑎0,𝑎𝑎1𝑎𝑎2𝑎𝑎3 ∈ ℝ (20) 

If (20) has real roots [14,15]: 
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𝑋𝑋1 =
ℎ + ℎ�𝑘𝑘
1 + 𝑘𝑘

, 

𝑋𝑋2 =
ℎ + 𝜀𝜀ℎ�𝑘𝑘
1 + 𝜀𝜀𝜀𝜀

,    

𝑋𝑋3 =
ℎ + 𝜀𝜀2ℎ�𝑘𝑘
1 + 𝜀𝜀2𝑘𝑘

    

(21) 

with ℎ, ℎ� the roots of Hessian and 𝜀𝜀 ≡ �−1 + 𝑖𝑖√3�/2 the cubic root of unity 
�𝑖𝑖 = √−1�, the values of variables ℎ, ℎ� and 𝑘𝑘 can be “scanned” by a simple 
transitive group with real parameters. This group can be revealed through Riemann-
type spaces associated with the previous cubic. The basis of this approach is the 
fact that the simply transitive group with real parameters [13-15]: 

𝑋𝑋𝑙𝑙 ↔
𝑎𝑎𝑋𝑋𝑙𝑙 + 𝑏𝑏
𝑐𝑐𝑋𝑋𝑙𝑙 + 𝑑𝑑

 , 𝑙𝑙 = 1,2,3  𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝑅𝑅 (22) 

where 𝑋𝑋𝑙𝑙 are the roots of the cubic (20), induces the simply transitive group in the 
quantities ℎ, ℎ� and 𝑘𝑘, whose actions are: 

ℎ ↔
𝑎𝑎ℎ + 𝑏𝑏
𝑐𝑐ℎ + 𝑑𝑑

, 

ℎ�   ↔
𝑎𝑎ℎ�  + 𝑏𝑏
𝑐𝑐ℎ�  + 𝑑𝑑

, 

𝑘𝑘 ↔
𝑐𝑐ℎ�  + 𝑑𝑑
𝑐𝑐ℎ + 𝑑𝑑

𝑘𝑘 

(23) 

The structure of this group is of SL(2R) type 
[𝐵𝐵1,𝐵𝐵2] = 𝐵𝐵1, 
[𝐵𝐵2,𝐵𝐵3] = 𝐵𝐵3, 

[𝐵𝐵3,𝐵𝐵1] = −2𝐵𝐵2 

(24) 

where 𝐵𝐵𝑙𝑙 are the infinitezimal generators of the group: 

𝐵𝐵1 =
𝜕𝜕
𝜕𝜕ℎ

+
𝜕𝜕
𝜕𝜕ℎ�

 

𝐵𝐵2 = ℎ
𝜕𝜕
𝜕𝜕ℎ

+ ℎ�
𝜕𝜕
𝜕𝜕ℎ�

 

𝐵𝐵3 = ℎ2
𝜕𝜕
𝜕𝜕ℎ

+ ℎ�2
𝜕𝜕
𝜕𝜕ℎ�

+ �ℎ − ℎ��𝑘𝑘
𝜕𝜕
𝜕𝜕𝑘𝑘

 

(25) 
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and admit the absolute invariant differentials  

𝜔𝜔1 =
𝑑𝑑ℎ

�ℎ − ℎ��𝑘𝑘
 

𝜔𝜔2 = −𝑖𝑖 �
𝑑𝑑𝑑𝑑
𝑘𝑘
−
𝑑𝑑ℎ + 𝑑𝑑ℎ�

ℎ − ℎ�
� 

𝜔𝜔3 = −
𝑘𝑘𝑘𝑘ℎ�

ℎ − ℎ�
 

(26) 

and the 2-form (the metric): 

𝑑𝑑𝑠𝑠2 = �
𝑑𝑑𝑑𝑑
𝑘𝑘
−
𝑑𝑑ℎ + 𝑑𝑑ℎ�

ℎ − ℎ�
�
2

− 4
𝑑𝑑ℎ𝑑𝑑ℎ�

�ℎ − ℎ��
2 (27) 

In real terms 

ℎ = 𝑢𝑢 + 𝑖𝑖𝑖𝑖,ℎ� = 𝑢𝑢 + 𝑖𝑖𝑖𝑖,𝑘𝑘 = 𝑒𝑒𝑖𝑖𝑖𝑖 (28) 

and for 

Ω1 = 𝜔𝜔2 = 𝑑𝑑𝑑𝑑 +
𝑑𝑑𝑑𝑑
𝑣𝑣

 

Ω2 = cos 𝜃𝜃
𝑑𝑑𝑑𝑑
𝑣𝑣

+ sin𝜃𝜃
𝑑𝑑𝑑𝑑
𝑣𝑣

 

Ω3 = − sin𝜃𝜃
𝑑𝑑𝑑𝑑
𝑣𝑣

+ cos 𝜃𝜃
𝑑𝑑𝑑𝑑
𝑣𝑣

, 

(29) 

the connection with Poincaré representation of the Lobachevsky plane can be 
obtained. Indeed, the metric is a three-dimensional Lorentz structure: 

𝑑𝑑𝑠𝑠2 = −(Ω1)2 + (Ω2)2 + (Ω3)2 = −�𝑑𝑑𝑑𝑑 +
𝑑𝑑𝑑𝑑
𝑣𝑣
�
2

+
𝑑𝑑𝑢𝑢2 + 𝑑𝑑𝑣𝑣2

𝑣𝑣2
 (30) 

This metric reduces to that of Poincaré in case where Ω1 ≡ 0 which defines 
the variable 𝜃𝜃 as the „angle of parallelism” of the hyperbolic planes (the 
connection). In fact, recalling that  

𝑑𝑑𝑑𝑑
𝑘𝑘
−
𝑑𝑑ℎ + 𝑑𝑑ℎ�

ℎ − ℎ�
= 0 ↔ 𝑑𝑑𝑑𝑑 = −

𝑑𝑑𝑑𝑑
𝑣𝑣

 (31) 

represent the connection form of the hyperbolic plane, the relation (29) then 
represents the general Bäcklund transformations in that plane [16-19]. In such a 
conjecture it is noted that, if the cubic is assumed to have distinct roots, the 
condition (31) is satisfied, if, and only if, the differential forms Ω1 is null [20]. 
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Therefore, for the metric (27) with restriction (31), the relation becomes: 

𝑑𝑑𝑠𝑠2 =
𝑑𝑑ℎ𝑑𝑑ℎ�

�ℎ − ℎ��
2 =

𝑑𝑑𝑢𝑢2 + 𝑑𝑑𝑣𝑣2

𝑣𝑣2
 (32) 

The parallel transport of the hyperbolic plane actually represents the apolar 
transport of the cubics (20). 

Therefore, the group (23) can be assimilated with a “synchronization” group 
between the different structural units of the complex system, process in which 
participates, obviously, the amplitudes of each of them, in the sense that they are 
correlated, not only their phases. The usual synchronization, manifested through the 
phase shift of the complex system structural units, is, in this case, only a very 
particular case. 

As a justification of the present theory, we can cite reference papers in the 
field of plasma plume characterization and laser ablation studies [21-32]. The same 
results were obtained in the medical field, when investigating by fractal analysis the 
images obtained with X-rays, on the human brain and on the lungs [33-35]. The 
advantage of interpreting the pictures is to establish a pixel topology and, depending 
on the calculation of the fractal dimension and the lacunarity, to determine the 
diseases that affect these vital organs, as well as their temporal evolution. 

4. Self-structuring through harmonic mappings 

In the following non-stationary dynamics in complex systems through 
harmonic map generation will be discussed. Indeed, let it be assumed that the 
complex system dynamics are described by the variables �𝑌𝑌𝑗𝑗�, for which the 
following multifractal metric was discovered: 

ℎ𝑖𝑖𝑖𝑖𝑑𝑑𝑌𝑌𝑖𝑖𝑑𝑑𝑌𝑌𝑗𝑗  (33) 

in an ambient space of multifractal metric: 

𝛾𝛾𝛼𝛼𝛼𝛼𝑑𝑑𝑋𝑋𝛼𝛼𝑑𝑑𝑋𝑋𝛽𝛽 (34) 

In this situation, the field equations of the complex system dynamics are 
derived from a variational principle, connected to the multifractal Lagrangian: 

𝐿𝐿 = 𝛾𝛾𝛼𝛼𝛼𝛼ℎ𝑖𝑖𝑖𝑖
𝑑𝑑𝑌𝑌𝑖𝑖𝑑𝑑𝑌𝑌𝑗𝑗

𝜕𝜕𝑋𝑋𝛼𝛼𝜕𝜕𝑋𝑋𝛽𝛽
 (35) 

In the current case, (33) is given by (32) with the constraint (31), the field 
multifractal variables being ℎ and ℎ� or, equivalently, the real and imaginary part of 
h. Therefore, if the variational principle: 
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𝛿𝛿 �𝐿𝐿�𝛾𝛾𝑑𝑑3𝑥𝑥 (36) 

is accepted as a starting point where 𝛾𝛾 = �𝛾𝛾𝛼𝛼𝛼𝛼�, the main purpose of the complex 
system dynamics research would be to produce multifractal metrics of the 
multifractal Lobachevski plane (or relate to them). In such a context, the 
multifractal Euler equations corresponding to the variational principle (36) are: 

�ℎ − ℎ��∇(∇h) = 2(∇h)2 

�𝑧𝑧 − ℎ��∇�∇ℎ�� = 2�∇ℎ��
2
 

(37) 

which admits the solution: 

ℎ =
cosh�Φ 2� � − sinh�Φ 2� �𝑒𝑒−𝑖𝑖𝛼𝛼

cosh�Φ 2� � + sinh�Φ 2� �𝑒𝑒−𝑖𝑖𝛼𝛼
,𝛼𝛼 ∈ ℝ (38) 

with 𝛼𝛼 real and arbitrary, as long as �Φ 2� � is the solution of a Laplace-type equation 
for the free space, such that ∇2�Φ 2� � = 0. For a choice of the form 𝛼𝛼 = 2𝛺𝛺𝛺𝛺, in 
which case a temporal dependency was introduced in the complex system 
dynamics, (38) becomes: 

ℎ =
𝑖𝑖[𝑒𝑒2Φ sin(2𝛺𝛺𝛺𝛺) − sin(2𝛺𝛺𝛺𝛺) − 2𝑖𝑖 𝑒𝑒Φ]
𝑒𝑒2Φ[cos(2𝛺𝛺𝑡𝑡) + 1] − cos(2𝛺𝛺𝛺𝛺) + 1

 (39) 

In Figs. (1-3) multiple nonlinear behaviors of complex dynamics at scale 
resolutions in dimensionless coordinates are presented:  

i) nonlinear behaviors at a global scale resolution (Figs. 1a, b), 
ii) nonlinear behaviors at a differentiable scale resolution (Figs. 2a, b), 
iii) nonlinear behaviors at a non-differentiable scale resolution (Figs. 3a, 

b). 
Let it be noted that, whatever the scale resolution, complex system dynamics 

prove themselves to be reducible to self-structuring patterns. The structures are 
present in pairs of two large patterns that are intercommunicated in an intermittent 
way. In the 0-20 range for Ω and t the resulting structures are communicating with 
each other via a channel created along the symmetry axis for t ~ 10. This channel 
is also seen for different (Ω;t) coordinates, which is interpreted as an intermittency 
in the structure bonding.  
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Fig. 1.a. 3D dynamics at global scale resolution of ℎ(𝛺𝛺, 𝑡𝑡) with Φ = 3. 

 

 
Fig. 1.b. 2D dynamics at global scale resolution of ℎ(𝛺𝛺, 𝑡𝑡) with Φ = 3. 
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Fig. 2.a. 3D dynamics at differentiable scale resolution of 𝑅𝑅𝑅𝑅[ℎ(𝛺𝛺, 𝑡𝑡)] with  Φ = 3. 

 
Fig. 2.b. 2D dynamics at differentiable scale resolution of 𝑅𝑅𝑅𝑅[ℎ(𝛺𝛺, 𝑡𝑡)] with  Φ = 3 
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Fig. 3.a. 3D dynamics at non-differentiable scale resolution of 𝐼𝐼𝐼𝐼[ℎ(𝛺𝛺, 𝑡𝑡)] with  Φ = 3. 

 
Fig. 3.b. 2D dynamics at non-differentiable scale resolution of 𝐼𝐼𝐼𝐼[ℎ(𝛺𝛺, 𝑡𝑡)] with  Φ = 3. 

5. Conclusions 
The main conclusions of the present paper are the following: 
i) By considering that any complex system dynamics can be assimilated with 

a mathematical object of multifractal type, various non-linear behaviors in the 
framework of the Multifractal Theory of Motion are developed.  
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ii) Schrödinger’s and Madelung’s multifractal description of any complex 
systems dynamics become operational through the multifractal motion curves. 

iii) Exploring at various scale resolutions some hidden symmetries of stationary 
dynamics on the Madelung description, synchronization modes are seen forming 
through the SL (2R) group between the complex system structural units.  

iv) The space associated to cubics was structured at various scale resolution as 
Riemann’s manifolds (multifractal Riemann’s manifold).  

v) When a parallel transport of direction in Levi-Civita sense became 
functional, the metric was reduced to that of Poincare with the angle of parallelism 
of the hyperbolic plane defining the connections. 

vi) In the presented framework, access to non-stationary dynamics at various 
scale resolutions became possible via harmonic mapping from the usual space to 
the hyperbolic one. Then self-structuring of cellular and channel types are 
produced.  

R E F E R E N C E S 
[1].   R. Djebali, F. Mebarek-Oudina, C. Rajashekhar, “Similarity solution analysis of dynamic and 

thermal boundary layers: further formulation along a vertical flat plate”, in Phys. Scr., vol. 96, 2021, 
085206 

[2].   S. Hamrelaine, F. Mebarek-Oudina and M. R. Sari, “Analysis of MHD Jeffery Hamel Flow with 
Suction/Injection by Homotopy Analysis Method”, in J. Adv. Res. Fluid Mech. Ther. Sci., vol. 58, 
no. 2, 2020, pp. 173-186  

[3].   M. Alkasassbeh, Z. Omar, F. Mebarek-Oudina, J. Raza and A. Chamkha, “Heat transfer study of 
convective fin with temperature-dependent internal heat generation by hybrid block method”, in 
Heat Transf. Asian Res., vol. 48, no. 4, 2019, pp. 1225-1224 

[4]. A. Saviuc, M. Gîrțu, L. Topliceanu, T.-C. Petrescu and M. Agop, “Holographic Implementations, 
Complex Fluid Dynamics through a Fractal Paradigm”, in Mathematics, vol. 9, 2021, 2273  

[5].   L. Nottale, Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and 
Quantum Mechanics, Imperial College Press, London, UK, 2011. 

[6].   I. Merches, M. Agop, Differentiability and Fractality in Dynamics of Physical Systems, World 
Scientific: Hackensack, NJ, USA, 2016. 

[7].  M. A. Paun, M. R. N. Avanaki, G. Dobre et al., “Wavefront aberration correction in single mode fibre 
systems”, in Journal of Optoelectronics and Advanced Materials, vol. 11, no. 11, 2009, pp. 1681-
1685 

[8].   N. Mazilu, M. Agop, I. Merches, Scale Transitions as Foundations of Physics, World Scientific, 
Singapore, 2021.  

[9].   N. Mazilu, M. Agop, I. Merches, The mathematical principles of scale relativity theory. The concept 
of Interpretation, CRC Press, Taylor and Francis Group, NW, USA 2020. 

[10]. S. H. Strogatz, Nonlinear Dynamics and Chaos, 2nd Edition, CRC Press, Boca Raton, USA, 2015.  
[11]. C.P. Cristescu, Nonlinear dynamics and chaos. In Theoretical Fundaments and Applications; 

Romanian Academy Publishing House, Bucharest, Romania, 2008. 
[12]. B.B. Mandelbrot, Fractal and Chaos, Springer, Berlin/Heidelberg, Germany, 2004. 
[13]. I.M. Isaacs, Finite Group Theory, American Mathematical Soc., Providence, Rhode Island, USA, 

2008. 
[14]. P. Ramadevi, V. Dubey, Group Theory for Physicists with Applications, Cambridge University 

Press, Cambridge, UK, 2019. 
[15]. I. Cartan, Riemannian Geometry in an Orthogonal Frame, World Scientific, Singapore, 2001. 



190     T.C. Petrescu, M.-Al. Paun, M. Jarcau, L. Ciurca, V.-Al. Paun, C. Dumitras, V.-P. Paun, M. Agop 

[16]. H. Flanders, Differential Forms with Applications to the Physical Sciences, Dover Publication, Inc., 
New York, USA, 2012.  

[17]. B. Felsager, Geometry, Particle and Fields, Springer, New York, USA, 1998. 
[18]. D.G. Dimitriu, S. A. Irimiciuc, S. Popescu, M. Agop, C. Ionita and R.W. Schrittwieser, “On the 

interaction between two fireballs in low-temperature plasma”, in Phys. Plasmas, vol. 22, 2015, 
113511 

[19]. N. A. Volkov, “Splitting of laser-induced neutral and plasma plumes: hydrodynamic origin of 
bimodal distributions of vapor density and plasma emission intensity”, in J. Phys. D., vol. 54, 2021, 
37LT01  

[20]. S. A. Irimiciuc, B. C. Hodoroaba, G. Bulai, S. Gurlui and V. Craciun, “Multiple structure formation 
and molecule dynamics in transient plasmas generated by laser ablation of graphite”, in 
Spectrochim. Acta - Part B At. Spectrosc., vol. 165, 2020, 105774 

[21]. R. Kumar, “Self-structuring in Laser-Blow-Off Plasma Plume”, in International Journal of Scientific 
& Engineering Research, vol. 3, 2012, pp. 1-9 

[22]. S. A. Irimiciuc, S. Chertopalov, V. Craciun, M. Novotný and J Lancok, “Investigation of laser-
produced plasma multistructuring by floating probe measurements and optical emission 
spectroscopy”, in Plasma Process. Polym., vol. 11, 2020, pp. 1-9 

[23]. A. A. Morozov, A. B. Evtushenko and A. V. Bulgakov, “Gas-dynamic acceleration of laser-ablation 
plumes: Hyperthermal particle energies under thermal vaporization”, in Appl. Phys. Lett., vol. 106, 
2015, 054107 

[24]. G. Baraldi, A. Perea and C. N. Afonso, “Dynamics of ions produced by laser ablation of several 
metals at 193 nm”, in J. Appl. Phys., vol. 109, 2011, 043302 

[25]. K. H. Leitz, B. Redlingsshofer, Y. Reg, A. Otto and M. Schmidt, “Metal Ablation with Short and 
Ultrashort Laser Pulses”, in Physics Procedia, vol. 12, 2011, pp. 230-238 

[26]. K. K. Anoop, M. P. Polek, R. Bruzzese, S. Amoruso and S. S. Harilal, “Multidiagnostic analysis of 
ion dynamics in ultrafast laser ablation of metals over a large fluence range”, in J. Appl. Phys., vol. 
117, 2015, 083108 

[27]. A. Irimiciuc, S. Gurlui, P.  Nica, C.  Focsa and M. Agop, “A compact non-differential approach for 
modeling laser ablation plasma dynamics”, in J. Appl. Phys., vol. 121, 2017, 083301 

[28]. G. O. Williams, G. M. O’Connor, P. T. Mannion and T. J. Glynn, “Langmuir probe investigation of 
surface contamination effects on metals during femtosecond laser ablation”, in Appl. Surf. Sci., vol. 
254, 2008, pp. 5921-5926 

[29]. M. Skočić, D. Dojić and S. Bukvić, “Formation of double-layer in the early stage of nanosecond laser 
ablation”, in J. Quant. Spectrosc. Radiat. Transf., vol. 227, 2019, pp. 57-62 

[30]. S. Eliezer, N. Nissim, J. M. Martínez Val, K. Mima and H. Hora, “Double layer acceleration by laser 
radiation”, in Laser Part. Beams, vol. 32, 2014, pp. 211-216 

[31]. I. Beilis, “Modeling of the plasma produced by moderate energy laser beam interaction with metallic 
targets”, in Physics of the phenomena, Laser Part. Beams, vol. 30, no. 3, 2012, pp. 341-356 

[32]. F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka and S. Iijima, “Shadowgraphic and emission 
imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere”, in Appl. 
Phys. A Mater. Sci. Process., vol. 69, 1999, pp. 223-227 

[33]. D. Bordescu, M.A. Paun, V.A. Paun and V.P. Paun, “Fractal analysis of Neuroimagistic. Lacunarity 
degree, a precious indicator in the detection of Alzheimer’s disease”, in University POLITEHNICA 
of Bucharest Scientific Bulletin, Series A-Applied Mathematics and Physics, vol. 80, no. 4, 2018, 
pp. 309-320 

[34]. P. Postolache, Z. Borsos, V.A. Paun and V.P. Paun, “New Way in Fractal Analysis of Pulmonary 
Medical Images”, in University Politehnica of Bucharest Scientific Bulletin-Series A-Applied 
Mathematics and Physics, vol. 80, no.1, 2018, pp. 313-322 

[35]. M.V. Nichita, M.A. Paun, V.A. Paun and V.P. Paun, “Fractal Analysis of Brain Glial Cells. Fractal 
Dimension and Lacunarity”, in University Politehnica of Bucharest Scientific Bulletin-Series A-
Applied Mathematics and Physics, vol. 81, no. 1, 2019, pp. 273-284 


	SELF-STRUCTURING OF CELLULAR AND CHANNEL TYPE IN COMPLEX SYSTEM DYNAMICS IN THE FRAMEWORK OF SCALE RELATIVITY THEORY
	Tudor-Cristian PETRESCU0F , Maria-Alexandra PAUN2,3, Mihaela JARCAU4, Lenuta CIURCA5, Vladimir-Alexandru PAUN6, Catalin DUMITRAS7, Viorel-Puiu PAUN8,9, Maricel AGOP9,10
	In the framework of Scale Relativity Theory, by analyzing dynamics of complex system structural units based on multifractal curves, both Schrödinger and Madelung approaches are functional and complementary. The Madelung selected approach involve synch...

