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A MODIFIED SMOOTH HOMOTOPY ALGORITHM FOR SOLVING

MATHEMATICAL PROGRAMS WITH BALL-CONSTRAINED

VARIATIONAL INEQUALITIES

Chuanyang Zhang1, Zhichuan Zhu2, Congting Sun3

Based on the Robinson’s normal equation and Chen-Harker-Kanzow-Smale smooth

function, a smoothing Homotopy equation for solving mathematical programs with ball-

constrained variational inequalities(MPBVI), which is converted to an approximate stan-

dard optimization problem, is constructed. And the existence and global convergence of

the homotopy path, for almost any interior point in the feasible region, is proved to

convergent to the GKKT point of the approximate problems of the MPBVI. Finally,

a numerical experiment is given to illustrate that the constructed homotopy method is

feasible and effective.
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1. Introduction

Given f : Rn+m → R,F : Rn+m → Rm, g : Rn+m → R,Xab = {(x, y) ∈ Rn+m :

g(x, y) ≤ 0}, C(x) = {y ∈ Rm : ‖y‖ ≤ r, r > 0}.
In the paper, we will consider the following mathematical programs with ball-constrained

variational inequalities (MPBVI):

min f(x, y)

s.t. x ∈ Xab,

F (x, y)T (z − y) ≥ 0, ∀z ∈ C(x).

(1)

Throughout the paper, we suppose that the mappings f(·), F (·) and g(·) are three

continuously differentiable.

Problem (1) is a kind of mathematical programs with equilibrium constraints (MPEC),

which plays very important role in many fields such as in designing of transportation net-

works, economic modelling, fixed point problems and shape optimization, see references,

e.g., [11], [21]-[34] and [38]. Because of the nonconvex and nonsmooth of the feasible region

of the MPEC, It is harder to solve this nonlinear programming problems. Many results on

the research and applications of MPEC over the last couple of decades have been appeared.

Upon the success methods for linear and nonlinear programming (NLP), many algorithms

were extend to solve the MPEC, such as interior-point methods and so on, for more details

see, e.g., [6, 9, 12, 13, 17, 19, 26].
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The difficulty of solving MPEC lies in the variational inequalities in the lower level.

Discussed in some studies [3, 4, 7, 14], [33]-[37] and [42, 43], the variational inequalities

were converted to a KKT system. However, this caused extra multiplier variables and the

convergence proof required mapping F with strong monotonicity. In [41], to avoid to add

extra multipliers, we exploited the Robinson’s normal equation to deal with box-constrained

variational inequalities in the mathematical program and obtained the existence and con-

vergence of the smooth homotopy pathway. In this paper, we will use similar approach to

solve the ball-constrained variational inequalities (1).

In this work, we will propose a homotopy method for solving MPBVI base on Robin-

son’s equation and Chen-Harker-Kanzow-Smale smoothing functions. Homotopy method

is a common algorithm for solving nonlinear problem. It has the advantage of global con-

vergence than other interior point algorithms like Newton’s method, that is, for almost

all the initial points in the feasible region, the algorithm is convergent. It has been ap-

plied to solve all kinds of problem, such as zeros and fixed point of mappings and so on

[8, 28, 30, 39, 40, 44]. For a good introduction and a complete survey about this method,

one can see the literatures [1, 10].

An outline of this paper is as follows. In section 2, some definitions and properties are

introduced. In section 3, the variational inequality problem (1) is coverted to an equivalent

nonsmooth Robinson’s normal equation. In order to select the initial point easily for a

equation, a homotopy equation was constructed for the smooth shape of the Robison’s

equation. Then, we get an approximate standard optimization problem. In section 4, for

the above approximate optimization, a combined homotopy equation is constructed and

the existence and convergence of the homotopy path of the approximate optimization for

almost any interior feasible point to the GKKT point of MPBVI are proved. In section

5, numerical test is presented to show its the effectiveness and feasibility of the proposed

homotopy method.

2. Preliminaries

min f(u)

s.t. g(u) ≤ 0,

h(u) = 0,

(2)

where f : Rn → R, g : Rn → Rs, h : Rn → Rm are locally Lipschitz continuous.

Definition 2.1 (see [15]). The point u∗ is said to be a generalized stationary point of (2)

if there exists a Karush-Kuhn-Tucker (KKT) mutliplier vector (α, β) ∈ Rs+m such that the

following generalized Karush-Kuhn-Tucker (GKKT) conditions hold:

0 ∈ ∂f(u∗) + ∂g(u∗)Tα+ ∂h(u∗)Tβ,

α ≥ 0, Ag(u∗) ≤ 0,

h(u∗) = 0,

(3)

where ∂ denotes the Clarke generalized gradient for a scalar function and the Clarke gener-

alized Jacobian for a vector-valued function, ([20]), A = diag(α) .

When f, g and h are smooth at u∗, GKKT conditions happens to be usual Karush-

Kuhn-Tucker (KKT) conditions:

∇f(u∗) + ∇g(u∗)α+∇h(u∗)β = 0,

α ≥ 0, Ag(u∗) ≤ 0,

h(u∗) = 0.

(4)
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Under the circumstances,u∗ is called a stationary point or a KKT point of (2).

For convenience, we may assume that in problem (2), the first s1(s1 ≤ s) inequality

constraints are active and the rest are inactive at u∗, i.e.,

gi(u
∗) = 0, i = 1, . . . , s1, 1 ≤ i ≤ si,

gi(u
∗) > 0, i > si

(5)

Set

G(u∗) = (g1(u∗), . . . , gs1(u∗), h1(u∗), . . . , hm(u∗))T . (6)

In the sequence, some well-known regularity conditions associated with the problem (2) will

be recalled, see [15].

Generalized Linear Independence Constraint Qualification (GLICQ): Each element of

the generalized Jacobian ∂G(u∗) has full row rank.

Definition 2.2. Let U ⊂ Rn be an open set, and let φ : U → Rp be a smooth mapping. If

Range [∂φ(x)/∂x] = Rp for all x ∈ φ−1(y), then y ∈ Rp is a regular value and x ∈ Rn is a

regular point.

Lemma 2.1 (see [1]). Let Q, N , P be smooth manifolds of dimensions q, m, p. Respectively,

let φ : Q ×N → P be a Cr map, where r > max{0,m − p}. If 0 ∈ P is a regular value of

φ, then for almost all α ∈ Q, 0 is a regular value of φ(α, ·).

Lemma 2.2 (inverse image theorem; see[16]). If 0 is a regular value of the mapping φα(·)→
φ(α, ·), then φ−1α (0) consists of some smooth manifolds.

Lemma 2.3 (classification theorem of one-dimensional manifold; see [16]). A one-dimensional

smooth manifold is diffeomorphic to a unit circle or a unit interval.

3. Equivalent Reformulations of MPBVI

It is well known that if C(x) is a closed convex subset of Rm, variational inequalities

in problem (1)

F (x, y)T (z − y) ≥ 0, ∀z ∈ C(x) (7)

is equivalent to solving the following Robinson’s normal equation:

Ec(x)(v) = F (x,
∏
c(x)(v)) + v −

∏
c(x)(v) = 0, (8)

where for all v ∈ Rm,
∏
c(x)(v) denote the projection of v onto C(x). In the sense of above,

if v∗ ∈ Rm is the solution of (7), then y∗ =
∏
c(x)(v

∗) is the solution of (8); conversely, if y∗

is the solution of (8), then v∗ = y∗ − F (x, y∗) is the solution of (7), which is defined in [18].

Then, the mathematical programming (1) can be reformed as follows:

min f(x,
∏
c(x)(v))

s.t. x ∈ Xab,

F (x,
∏
c(x)(v)) + v −

∏
c(x)(v) = 0.

(9)

If v ∈ C(x), then the Euclidean projection of v onto C(x) becomes∏
c(x)

(v) =

{ rv
‖v‖ , if ‖ v ‖> r,

v, if ‖ v ‖≤ r.
(10)

and it can be reformed as following:∏
c(x)

(v) =
rv

max{r, ‖ v ‖}
=

rv

r +max{0, ‖ v ‖ −r}
.
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For solving the (9) via smooth method, we choose modified Chen-Harker-Knzow-Smale

function [5]:

f(z, µ) =
z +

√
z2 + 4µ

2
, (z, µ) ∈ R×R++.

Then, the projection function
∏
C(x) can be approximated as follows:

p(v, µ) =
rv

h(v, µ)
, (v, µ) ∈ Rm ×R++

where

h(v, µ) = r + f(‖ v ‖ −r, µ) =
1

2
(r+ ‖ v ‖ +

√
(‖ v ‖ −r)2 + 4µ).

It is obvious that for any µ > 0, the function p(v, µ) is continuously differentiable.

We are in a position to verify that the function p(v, µ) is a smooth approximation of

the projection function
∏
C(x) . Since

(z)+ =
z + |z|

2
< f(z, µ) =

z +
√
z2 + 4µ

2
≤
z + |z|+ 2

√
µ

2
= (z)+ +

√
µ,

we have

h(v, µ) = r + f(
√
‖ v ‖ −r, µ) ≤ r + (‖ v ‖ −r)+ +

√
µ ≤ max{r, ‖ v ‖}+ 2

√
µ,

and

h(v, µ) = r + f(‖ v ‖2 −r, µ) ≥ r + (‖ v ‖ −r)+ ≥ max{r, ‖ v ‖}.

From the above derivation, we yield

|h(v, µ)−max{r, ‖ v ‖}| ≤ 2
√
µ.

Hence,

‖ p(v, µ)−
∏
C(x)(v) ‖ = r‖v‖|h(v,µ)−max{r,‖v‖}|

h(v,µ)max{r,‖v‖}
≤ ‖h(v, µ)−max{r, ‖ v ‖}‖ ≤ 2

√
µ.

The above result implies that p(v, µ)→
∏
C(x)(v) when µ→ 0.

In conclusion, the problem (9) becomes the following form:

min f(x, p(y, u))

s.t. x ∈ Xab,

F (x, p(y, u)) + y − p(y, u) = 0,

(11)

For convenience of getting initial points, for given x ∈ Xad, we construct the following

smooth equation:

q(x, y, µ) = (1− µ)[F (x, p(y, µ)) + y − p(y, µ)] + µ(y − y(0)) = 0. (12)

Meanwhile, we definite f(x, y, µ) = f(x, p(y, µ)). Then, we define the following optimization

problem

minf(x, y, µ)

s.t. x ∈ Xab,

q(x, y, µ) = 0.

(13)

Problem (13) may be viewed as a perturbation of (9) with the parameter µ. For any µ 6= 0,

(13) is a smooth optimization problem. When µ = 0, (13) coincides with (9). We denote

the feasible set of Problem (13) by E.
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Lemma 3.1 ([8]). Let F ∈ C2. Then, for fixed x ∈ Xad, for almost all y(0) ∈ C(x), the

homotopy equation (12) determines a smooth curve Γ ⊂ Rm × (0, 1], starting from (y(0), 1)

and approaches the hyperplane at µ = 0. When µ→ 0 , the limit set T ⊂ Rm × {0} of Γ is

nonempty, and the the y-componentwise y∗ of any point (y∗, 0) ∈ T is the solution of (12)

and
∏
C(x)(y

∗)is a solution of the variational inequalities problem (7).

The proof is omitted here, for its rigorous proof, the reader is referred to see reference

[8].

4. Main Results

Let θ = (x, y), then problem (13) is rewritten as follows:

min f(θ)

s.t. g(θ) ≤ 0,

h(θ, µ) = 0.

(14)

For convenience, the notions are given as follows:

Ω1(µ) = {θ ∈ Rn+m : g(θ) < 0, h(θ, µ) = 0},
Ω2(µ) = {θ ∈ Rn+m : g(θ) ≤ 0, h(θ, µ) = 0},

∂Ω2(µ) = {θ ∈ Ω2(µ) :
s∏
i=1

gi(θ) = 0},

I(θ) = {i ∈ {1, . . . , s} : gi(θ) = 0}.

Assumptions

(A.1) For any µ ∈ [0, 1], Ω1(µ) is nonempty;

(A.2) For any θ ∈ Ω2(µ), µ ∈ (0, 1]

{θ +
∑
i∈I(θ)

αi∇gi(θ) +∇hθ(θ, 1)β : αi ≥ 0, i ∈ I(θ);β ∈ Rm}
⋂

Ω2(1) = {θ};

(A.3) For any µ ∈ (0, 1], θ ∈ Ω2(µ), (∇gi(θ), i ∈ I(θ),∇θh(θ, µ)) is full column rank ;

(A.4) When µ = 0, θ ∈ Ω2(µ), {∇gi(θ), i ∈ I(θ), ∂θh(θ, µ)T } satisfy generalized linear

independence constraint qualification.

Remark 4.1. From a geometric point of view, (A.2) satisfies the normal cone condition.

When µ = 0, the problem (14) is nonsmooth optimization and its GKKT system can

be written as follows:
0 ∈ ∂f(θ) +∇g(θ)α+ ∂θh(θ, µ)Tβ,

h(θ, µ) = 0,

α ≥ 0, g(θ) ≤ 0, Ag(θ) = 0,

(15)

where α ∈ Rs+, β ∈ Rm are multipliers, ∂θh(θ, µ) is a Jacobian matrix of h at point θ,

A = diag(α).

When µ 6= 0, the GKKT system (15) is the following KKT system, i.e.,

∇f(θ) +∇g(θ)α+∇θh(θ, µ)β = 0,

h(θ, µ) = 0,

α ≥ 0, g(θ) ≤ 0, Ag(θ) = 0.

(16)

For solving the KKT system (16), we construct the following homotopy equation:

H(w,w(0), µ) =

 (1− µ)(∇f(θ) +∇g(θ)α) +∇θh(θ, µ)β + µ(θ − θ(0))
h(θ, µ)

Ag(θ)− µA(0)g(θ(0))

 = 0, (17)
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where w(0) = (θ(0), α(0), β(0))T ∈ Ω1(1)×Rs++×{0}, w = (θ, α, β)T ∈ Rn+m×Rs+×Rm, A =

diag(α), A(0) = diag(α(0)), µ ∈ (0, 1].

When µ = 1, it is obvious that homotopy equation (17 )becomes

∇θh(θ, 1)β + θ − θ(0) = 0,

h(θ, 1) = 0,

Ag(θ)−A(0)g(θ(0)) = 0.

(18)

According to (A.2), it is known thatθ = θ(0), β = 0. Because of g(θ(0)) < 0, it follows that

A = A(0). Then, when µ = 1, w(0) = (θ(0), α(0), 0)T ∈ Ω1(1) × Rs++ × {0} is the unique

solution of homotopy equation (17); When µ = 0, the homotopy equation H(w,w(0), µ) = 0

is coincide with the GKKT of problem (9).

We denote that Hw(0)(w, µ) = H(w,w(0), µ), and the zero-point set of H is H−1
w(0) =

{(w, µ) ∈ Ω1(µ)×Rs+ ×Rm × (0, 1] : Hw(0)(w, µ) = 0}.
By the reference [41], under the same assumptions (A.1)-(A.4) on the functions f , h

and g, and the feasible set of homotopy equation (17) used in [41], we can get the following

Theorem 4.1 and Theorem 4.2, whose proof is the same as reference [41]. Therefore, it is

omit here.

Theorem 4.1. Let Hw(0)(w, µ) be defined as (17), Assumptions (A.1)-(A.3) hold, then for

almost all initial points in the feasible set w(0) = (θ(0), α(0), 0)T ∈ Ω1(1)×Rs++ ×Rm, 0 is

a regular value of H, and H−1
w(0)(0) contains a smooth curve Γw(0) starting from (w(0), 1).

Theorem 4.2. Let f, g, F be three times continuous differentiable, suppose assumptions

(A.1)-(A.4) hold. For almost any initial point in the feasible set w(0) = (θ(0), α(0), β(0))T ∈
Ω1(1)×Rs++×{0}, if 0 is a regular value of H, then the curve Γw(0) ⊂ Ω1(µ)×Rs+×Rm×(0, 1]

is bounded.

Theorem 4.3. Let f, g and F are three times continuously differentiable, suppose (A.1)-

(A.4) hold. Then, when µ → 0, the KKT solution of the problem (14) exists, and for

almost any initial point w(0) ∈ Ω1(1) × Rs++ × {0}, H−1w(0) contains a smooth path starting

from (w(0), 1), which is defined by Γw(0) . When µ → 0, the limit point set Ξ × {0} ⊆
Ω2(1) × Rs+ × Rm × {0} of Γw(0) is nonempty, and every point in Ξ is the solution of

homotopy equation (17). If Γw(0) is bounded, (w∗, 0) is the terminus of Γw(0) , then w∗ is a

GKKT solution of the approximate problem (14). And (x∗,
∏
C(x)) is a GKKT solution of

the MPBVI(1).

Proof. According to Theorem 4.1, we know that, for almost any initial point w(0) = (θ(0)

, α(0), 0)T ∈ Ω1(1) × Rs++ × Rm, 0 is a regular value of H, and H−1
w(0) contains a smooth

curve starting from (w(0), 1) defined by Γw(0) . Because of Lemma 2.3, Γw(0) is diffeomorphic

to a unit circle or unit interval. According to

∂Hw(0)(w, 1)

∂w
|w=w(0) =

 Im+n 0 ∇h(θ(0), 1)

∇h(θ(0), 1)T 0 0

A(0)∇g(θ(0))T diag(g(θ(0))) 0


and g(θ(0)) < 0, it is easy to know that ∂Hw(0)(w, 1)/∂w is nonsingular. It shows that Γw(0)

is diffeomorphic to a unit interval. Let (w∗, µ∗) be the limit of Γw(0) , the following three

cases are possible:

(i) (w∗, µ∗) ∈ Ω1(µ∗)×Rs+ ×Rm × {1};
(ii) (w∗, µ∗) ∈ ∂Ω2(µ∗)×Rs+ ×Rm × (0, 1];

(iii) (w∗, µ∗) ∈ ∂Ω2(µ∗)×Rs+ ×Rm × {0}.
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Since Hw(0)(w, 1) = 0 has a unique solution (w(0), 1) , case (i) is not possible. Next,

we shall exclude case(ii). When case (ii) is true, we have A(0) > 0, g(θ(0)) < 0. Then there

exists a sequence {(w(k), µk)} ⊂ Γw(0) such that 1 ≤ i ≤ s, gi(θ
(k)) → 0. According to the

third equation of (17), it is easy to know that ‖α(k)
i ‖ → ∞. It is a contradiction to Theorem

4.2, case (ii) will not happen. Then, case (iii) is the unique possible case and w∗ is the

solution of the GKKT system (15). (x∗,
∏
C(x)) is a GKKT solution of the MPBVI(1). The

proof is completed. �

On the basis of Theorem 4.3, for almost all initial points in the feasible w(0) =

(θ(0), α(0), 0)T ∈ Ω1(1) × Rs++ × Rm, homotopy equation (17) produce a smooth curve,

which is called homotopy path. When µ→ 0, through homotopy path, we get a solution of

GKKT system (15). For the sake of tracing homotopy path. Let s denote the arc length

parameter of Γw(0) , then there exists a smooth function (w(s), µ(s)) such that{
Hw(0)(w(s), µ(s)) = 0,

w(0) = w(0), µ(0) = 1.
(19)

Base on the differential of the first equation of (19) with respect to s, we can get limit point

of Γw(0) , which is a solution of the GKKT system (15). This is made precise in the following

theorem.

Theorem 4.4. We can confirm the homotopy path Γw(0) by the following initial value prob-

lem of the ordinary differential equation, H ′(w,w(0), µ)

(
ẇ(s)

µ̇(s)

)
= 0,

w(0) = w(0), µ(0) = 1.

(20)

There exists s∗ such that µ(s∗) = 0, and (w(s∗), µ(s∗)) is a solution of GKKT system

(15).

On the basis of the Theorem 4.3 and Theorem 4.4, taking account of (19) and (20), we

use a predictor-corrector (Euler-Newton method), which is the same as [41], for numerically

tracing homotopy path Γw(0) . about the details of the predictor-corrector, one can refer to

[2].

Remark 4.2. The tangent vector of every point on the homotopy path Γw(0) has two direc-

tion. For tracing the homotopy path, Γw(0) , positive direction will be used, and the sign of

the tangent vector is determined by the following theorem.

5. Numerical experiments

In this section, a constructed numerical test will be implemented. The numerical

experiments were done by running MATLAB on a PC with CPU of 2.00 GHz and RAM

2.0GB, and four starting points are chosen as (x(0), y(0)) ∈ Xab × C(x), some parameters

are set as ε1 = 10−6, ε2 = 10−5,α(0) = (1, 1, 1, 1)T , β(0) = (0, 0)T .

Example 5.1.

n = 1,m = 1, l = 1

f(x, y) = x21 − 2x1 + x22 − 2x2 + y1 + y2,

Xab = [0, 2]× [0, 2],

F (x, y) =

(
2(y1 − x1)

2(y2 − x2)

)
,

C(x) = {y ∈ R2 : y21 + y22 ≤ 16, i = 1, 2}.
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For Example 5.1, let (x∗, y∗) denote the KKT points of this problem. The results are

presented in the Table 1.

Table 1. The numerical results of Example 5.1.

(x
(0)
1 , x

(0)
2 , y

(0)
1 , y

(0)
2 ) (x∗1, x

∗
2, y
∗
1 , y
∗
2) f∗

( 1,1,1,1) (0.0245,0.0245,0.0478,0.0478 ) (-0.0012)

( 1.5,1,2,1) (0.0262,0.0256,0.0512,0.0500) (-0.0011)

( 1.8,1.8,3,3) (0.0252,0.0252,0.0493,0.0493) ( -9.2992e-04)

( 0.2,0.5,1,1) (0.0257,0.0271,0.0504,0.0530) (-8.0510e-04)

(1.3,1,0.8,1) (0.0248,0.0247,0.0483,0.0482) ( -0.0013)

6. Conclusion

In this paper, we study homotopy method for solving the mathematical problems

with ball-constrained variational inequalities. MPBVI was transformed into a nonsmooth

optimization by using few variables. For the approximate problem of the MPBVI, the

existence and global convergence of a smooth homotopy path from almost any feasible point

was proven under some much weaker conditions. Meanwhile, numerical experiments show

that the method is feasible and effective.
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[15] M. M. Mäkelä and P. Neittaanmäki, Nonsmooth Optimization: Analysis and Algorithms with Applica-

tions to Optimal Control, World Scientific, 1992.

[16] G. L. Narber, Topological methods in eucidean spaces, Cambridge Univ. Press, London, 1980.

[17] L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity

problems and box constrained variational inequalities, Math. Program., 87 (2000), 1-35.

[18] S. M. Robinson, Normal maps induced by linear transformations, Math. Oper. Res., 17 (1992), 691-714.

[19] S. Scholtes, Convergence properties of a regularization scheme for mathematical programs with com-

plementarity constraints, SIAM J. Optim., 11 (2001), 918-936.

[20] H. Scheel and S. Scholtes, Mathematical Programs with Equilibrium Constraints: Stationarity, Opti-

mality, and Sensitivity, Department of Engineering University of Cambridge, Cambridge, 1997.

[21] B.S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed

points of Suzuki’s generalized nonexpansive? mappings, Appl. Math. Comput., 275 (2016), 147–155.

[22] B.S. Thakur, D. Thakur and M. Postolache, A new iteration scheme for approximating fixed points of

nonexpansive mappings, Filomat, 30 (2016), 2711–2720.

[23] D. Thakur, B.S. Thakur and M. Postolache, New iteration scheme for numerical reckoning fixed points

of nonexpansive mappings, J. Inequal. Appl., 2014 (2014), Art. No. 328.

[24] R. L. Tobin, Uniqueness results and algorithm for Stackelberg-Cournot-Nash equilibria, Ann. Oper.

Res., 34 (1992), 21-36.

[25] G.I. Usurelu and M. Postolache, Convergence analysis for a three-step Thakur iteration for Suzuki-type

nonexpansive mappings with visualization, Symmetry-Basel, 11 (2019), Art. No. 1441.

[26] J. J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium

constraints, J. Math. Anal. Appl., 307 2005, 350-369.

[27] Y. Yao, Ravi P. Agarwal, M. Postolache and Y.C. Liou, Algorithms with strong convergence for the

split common solution of the feasibility problem and fixed point problem, Fixed Point Theory Appl.,

2014 (2014), Art. ID 183.

[28] Y. Yao, L. Leng, M. Postolache and X. Zheng, Mann-type iteration method for solving the split common

fixed point problem, J. Nonlinear Convex Anal., 18 (2017), 875-882.

[29] Y. Yao, H. Li and M. Postolache, Iterative algorithms for split equilibrium problems of monotone oper-

ators and fixed point problems of pseudo-contractions, Optim., DOI: 10.1080/02331934.2020.1857757.

[30] Y. Yao, Y. C. Liou and M. Postolache, Self-adaptive algorithms for the split problem of the demicon-

tractive operators, Optim., 67 (2018), 1309-1319.

[31] Y. Yao, Y.C. Liou and J.C. Yao, Split common fixed point problem for two quasi-pseudocontractive

operators and its algorithm construction, Fixed Point Theory Appl., 2015 (2015), Art. No. 127.

[32] Y. Yao, Y.C. Liou and J.C. Yao, Iterative algorithms for the split variational inequality and fixed point

problems under nonlinear transformations, J. Nonlinear Sci. Appl., 10 (2017), 843–854.

[33] Y. Yao, M. Postolache, Y.C. Liou and Z. Yao, Construction algorithms for a class of monotone varia-

tional inequalities, Optim. Lett., 10 (2016), 1519-1528.

[34] Y. Yao, X. Qin and J.C. Yao, Projection methods for firmly type nonexpansive operators, J. Nonlinear

Convex Anal., 19 (2018), 407–415.

[35] Y. Yao, M. Postolache and J.C. Yao, Strong convergence of an extragradient algorithm for variational

inequality and fixed point problems, U.P.B. Sci. Bull., Series A, 82(1) (2020), 3-12.

[36] Y. Yao, M. Postolache and J.C. Yao, Iterative algorithms for generalized varational inequalities, U.P.B.

Sci. Bull., Series A, 81 (2019), 3-16.

[37] Y. Yao, M. Postolache and J.C. Yao, An iterative algorithm for solving the generalized variational

inequalities and fixed points problems, Mathematics, 7 (2019), Art. ID 61.

[38] Y. Yao and N. Shahzad, Strong convergence of a proximal point algorithm with general errors, Optim.

Lett., 6 (2012), 621–628.

[39] Y. Yao, J.C. Yao, Y.C. Liou and M. Postolache, Iterative algorithms for split common fixed points of

demicontractive operators without priori knowledge of operator norms, Carpathian J. Math., 34 (2018),

459-466.

[40] H. Zegeye, N. Shahzad and Y. Yao, Minimum-norm solution of variational inequality and fixed point

problem in Banach spaces, Optim., 64 (2015), 453–471.



12 Chuanyang Zhang, Zhichuan Zhu, Congting Sun

[41] C. Zhang, Z. Zhu and Q. Liu, Homotopy algorithm for solving mathematical programs with bounded

box-constrained variational inequalities, Optim., 66 (2019), 2293-2312.

[42] X. P. Zhao, J.C. Yao and Y. Yao, A proximal algorithm for solving split monotone variational inclusions,

U.P.B. Sci. Bull., Series A, 82(3) (2020), 43-52.

[43] X. P. Zhao and Y. Yao, Modified extragradient algorithms for solving monotone variational inequalities

and fixed point problems, Optim., 69 (2020), 1987-2002.

[44] Z.Y. Zhou and Y.C. Peng, The locally Chen-Harker-Kanzow-Smale smoothing functions for mixed

complementarity problems, J. Global Optim., 74 (2019), 169-193.


