EDGE-WIENER TYPE INVARIANTS OF SPLICES AND LINKS OF GRAPHS

Mahdieh AZARI1, Ali IRANMANESH2

In this paper, we present explicit formulae for the first and second edge-Wiener type invariants of splices and links of graphs. As a consequence, the first and second edge-Wiener and edge hyper-Wiener indices of these classes of composite graphs will be determined.

Keywords: Distance, Edge-Wiener type invariants, Splice, Link.

MSC 2010: 05C76, 05C12.

1. Introduction

In this paper, we are concerned with connected finite graphs without any loops or multiple edges. Let G be such a graph with the vertex set $V(G)$ and the edge set $E(G)$. For $u \in V(G)$ and $e \in E(G)$, we denote by $\deg_G(u)$, the degree of u in G and by $V(e)$, the set of two end vertices of e. A topological index $\Top(G)$ of G is a real number with the property that for every graph H isomorphic to G, $\Top(H) = \Top(G)$. Vertex version of the Wiener index is the first reported distance-based topological index which was introduced in 1947 by Wiener [1], who used it for modeling the shape of organic molecules and for calculating several of their physico-chemical properties. The Wiener index $W(G)$ of G is defined as:

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v),$$

where $d(u,v|G)$ denotes the distance between the vertices u and v of G which is defined as the length of any shortest path in G connecting u and v. Details on the Wiener index can be found in [2-4].

The hyper-Wiener index of acyclic graphs was introduced by Milan Randić in 1993. Then Klein et al. generalized Randić’s definition for all connected graphs in 1995 [5]. The vertex version of hyper-Wiener index of G is defined as:

1Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box: 14115-137, Tehran, Iran, e-mail: mahdie.azari@gmail.com

2Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box: 14115-137, Tehran, Iran, e-mail: iranmanesh@modares.ac.ir

*Corresponding author
\[WW(G) = \frac{1}{2} [W(G) + \sum_{\{u,v\} \subseteq V(G)} d(u,v)^2]. \]

We encourage the reader to consult [6-7], for the mathematical properties of hyper-Wiener index and its applications in chemistry.

Edge versions of the Wiener index based on distance between all pairs of edges in a graph \(G \) were introduced in 2009 [8]. Two possible distances between the edges \(e = uv \) and \(f = zt \) of the graph \(G \) can be considered. The first distance is denoted by \(d_0(e,f|G) \) and defined as:

\[
d_0(e,f|G) = \begin{cases}
 d_1(e,f|G) + 1 & e \neq f \\
 0 & e = f
\end{cases},
\]

where \(d_1(e,f|G) = \min \{d(u,z|G), d(u,t|G), d(v,z|G), d(v,t|G)\} \). It is easy to see that \(d_0(e,f|G) = d(e,f|L(G)) \), where \(L(G) \) is the line graph of \(G \).

The second distance is denoted by \(d_4(e,f|G) \) and defined as:

\[
d_4(e,f|G) = \begin{cases}
 d_2(e,f|G) & e \neq f \\
 0 & e = f
\end{cases},
\]

where \(d_2(e,f|G) = \max \{d(u,z|G), d(u,t|G), d(v,z|G), d(v,t|G)\} \).

Related to the above distances, two edge versions of the Wiener index can be defined. The first and second edge-Wiener indices of \(G \) are denoted by \(W_{e_0}(G) \) and \(W_{e_4}(G) \), respectively and defined as [8]:

\[
W_{e_i}(G) = \sum_{\{e,f\} \subseteq E(G)} d_i(e,f|G), \quad i \in \{0,4\}.
\]

Obviously, \(W_{e_0}(G) = W(L(G)) \). For more information on the edge-Wiener indices see [9-14].

Edge version of hyper-Wiener index are defined based on the distances \(d_0 \) and \(d_4 \), as follows [15]:

\[
WW_{e_i}(G) = \frac{1}{2} [W_{e_i}(G) + \sum_{\{e,f\} \subseteq E(G)} d_i(e,f|G)^2], \quad i \in \{0,4\}.
\]

The definitions of the edge-Wiener and edge hyper-Wiener indices can be generalized by the following definition:

\[
W_{e_i}(\lambda)(G) = \sum_{\{e,f\} \subseteq E(G)} d_i(e,f|G)^\lambda, \quad i \in \{0,4\},
\]
where λ is an arbitrary real number. The indices $W_{e_0}^{(\lambda)}(G)$ and $W_{e_4}^{(\lambda)}(G)$ are called the first and second edge-Wiener type invariants of G, respectively. Obviously for $i \in \{0, 4\},$

$$W_{e_i}^{(0)}(G) = \binom{|E(G)|}{2}, \quad W_{e_i}^{(1)}(G) = W_{e_i}(G) \text{ and } \frac{1}{2}[W_{e_i}^{(1)}(G) + W_{e_i}^{(2)}(G)] = WW_{e_i}(G).$$

In this paper, we present explicit formulae for the first and second edge-Wiener type invariants of splices and links of graphs. Then, we apply our results to compute the first and second edge-Wiener and edge hyper-Wiener indices of these classes of composite graphs. Readers interested in more information on computing topological indices of composite graphs can be referred to [4, 9-12, 16-19].

2. Discussion and results

In this section, we compute the first and second edge-Wiener type invariants of splices and links of graphs. We start by introducing some useful notations.

Let G be a simple connected graph. Two possible distances between a vertex u and an edge $e=ab$ of the graph G can be considered [20]. The first distance is denoted by $D_1(u, e|G)$ and defined as:

$$D_1(u, e|G) = \min \{d(u, a|G), d(u, b|G)\},$$

and the second one is denoted by $D_2(u, e|G)$ and defined as:

$$D_2(u, e|G) = \max \{d(u, a|G), d(u, b|G)\}.$$

Note that, $D_1(u, e|G)$ is a nonnegative integer and $D_1(u, e|G) = 0$ if and only if $u \in V(e)$. Also, $D_2(u, e|G)$ is a positive integer and $D_2(u, e|G) = 1$ if and only if $u \in V(e)$ or u, a and b form a triangle in G.

Let λ be a real number and let $u \in V(G)$. We define:

$$D_1^{(\lambda)}(u|G) = \sum_{e \in E(G); u \notin V(e)} D_1(u, e|G)^{\lambda}, \quad D_2^{(\lambda)}(u|G) = \sum_{e \in E(G)} D_2(u, e|G)^{\lambda}.$$

Note that, if λ is a positive number then $D_1^{(\lambda)}(u|G) = \sum_{e \in E(G)} D_1(u, e|G)^{\lambda}$. In particular for $\lambda = 0$, $D_1^{(0)}(u|G) = |E(G)| - \deg_G(u)$, $D_2^{(0)}(u|G) = |E(G)|$.
2.1 Splice

Let \(G_1 \) and \(G_2 \) be two simple connected graphs with the vertex sets \(V(G_1) \) and \(V(G_2) \) and the edge sets \(E(G_1) \) and \(E(G_2) \), respectively. For given vertices \(y \in V(G_1) \) and \(z \in V(G_2) \), a splice of \(G_1 \) and \(G_2 \) by vertices \(y \) and \(z \) is denoted by \((G_1,G_2)(y,z)\) and defined by identifying the vertices \(y \) and \(z \) in the union of \(G_1 \) and \(G_2 \) as shown in Fig. 1 [21]. We denote by \(n_i \) and \(e_i \) the order and size of the graph \(G_i \), respectively. It is easy to see that \(|V((G_1,G_2)(y,z))| = n_1 + n_2 - 1 \) and \(|E((G_1,G_2)(y,z))| = e_1 + e_2 \).

![Fig. 1. A splice of \(G_1 \) and \(G_2 \) by vertices \(y \) and \(z \).](image)

In the following Lemma, the distance between vertices of \((G_1,G_2)(y,z)\) is computed. The proof can be easily obtained from the definition of splice of graphs, so is omitted.

Lemma 2.1 Let \(u, v \in V((G_1,G_2)(y,z)) \). Then

\[
d(u,v)((G_1,G_2)(y,z)) = \begin{cases}
 d(u,v)(G_1) & u,v \in V(G_1) \\
 d(u,v)(G_2) & u,v \in V(G_2) \\
 d(u,v)(G_1) + d(z,v)(G_2) & u \in V(G_1), v \in V(G_2)
\end{cases}
\]

Theorem 2.2 Let \(\lambda \) be a positive integer. The first and second edge-Wiener type invariants of \((G_1,G_2)(y,z)\) are given by:

(i) \(W_{e_0}^{(\lambda)}(G) = W_{e_0}^{(\lambda)}(G_1) + W_{e_0}^{(\lambda)}(G_2) + \deg_{G_1}(y)\deg_{G_2}(z) + \sum_{i=0}^{\lambda} \binom{\lambda}{i} \deg_{G_2}(z)D_1^{(i)}(y|G_1) + \deg_{G_1}(y)D_1^{(i)}(z|G_2) + \sum_{i=0}^{\lambda} \binom{\lambda}{i} D_1^{(i)}(y|G_1) \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} D_1^{(j)}(z|G_2) \)

(ii) \(W_{e_4}^{(\lambda)}(G) = W_{e_4}^{(\lambda)}(G_1) + W_{e_4}^{(\lambda)}(G_2) + \sum_{i=0}^{\lambda} \binom{\lambda}{i} D_2^{(i)}(y|G_1)D_2^{(\lambda-i)}(z|G_2) \)

Proof. (i) By definition of the first edge-Wiener type invariant,
Now, we partition the above sum into three sums as follows:

The first sum S_1 consists of contributions to $W_{e_0}^{(\lambda)}(G)$ of pairs of edges from G_1. For edges $e, f \in E(G_1)$, $d_0(e, f|G) = d_0(e, f|G_1)$. So,

$$S_1 = \sum_{\{e, f\} \subseteq E(G)} d_0(e, f|G_1)^\lambda = W_{e_0}^{(\lambda)}(G_1).$$

The second sum S_2 consists of contributions to $W_{e_0}^{(\lambda)}(G)$ of pairs of edges from G_2. For edges $e, f \in E(G_2)$, $d_0(e, f|G) = d_0(e, f|G_2)$. So,

$$S_2 = \sum_{\{e, f\} \subseteq E(G_2)} d_0(e, f|G_2)^\lambda = W_{e_0}^{(\lambda)}(G_2).$$

The third sum S_3 is taken over all pairs of edges $e, f \in E(G)$ such that $e \in E(G_1)$ and $f \in E(G_2)$. It is easy to see that, $d_0(e, f|G) = 1 + D_t(y, e|G_1) + D_t(z, f|G_2)$. So,

$$S_3 = \sum_{e \in E(G_1), f \in E(G_2)} [1 + D_t(y, e|G_1) + D_t(z, f|G_2)]^\lambda.$$

In order to compute the sum S_3, we partition it into four sums S_{31}, S_{32}, S_{33} and S_{34} as follows:

The sum S_{31} is equal to:

$$S_{31} = \sum_{e \in E(G_1), y \not\in V(e)} \sum_{f \in E(G_2), z \not\in V(f)} [1 + D_t(y, e|G_1) + D_t(z, f|G_2)]^\lambda \sum_{i=0}^{\lambda-1} \binom{\lambda}{i} D_t(y, e|G_1)^i \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} D_t(z, f|G_2)^j$$

$$= \sum_{e \in E(G_1), y \not\in V(e)} \sum_{f \in E(G_2), z \not\in V(f)} D_t(y, e|G_1)^\lambda \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} D_t(z, f|G_2)^j \sum_{i=0}^{\lambda} \binom{\lambda}{i} D_t(y, e|G_1)^i$$

$$= \sum_{i=0}^{\lambda} \binom{\lambda}{i} D_t(y, e|G_1)^i \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} D_t(z, f|G_2)^j \sum_{e \in E(G_1), y \not\in V(e)} \sum_{f \in E(G_2), z \not\in V(f)} D_t(y, e|G_1)^i \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} D_t(z, f|G_2)^j.$$

The sum S_{32} is equal to:

$$S_{32} = \sum_{e \in E(G_1), y \not\in V(e)} \sum_{f \in E(G_2), z \not\in V(f)} [1 + D_t(y, e|G_1)]^\lambda.$$
\[
S_{33} = \sum_{e \in E(G_1); y \in V(e) \cap V(G_2)} \sum_{f \in E(G_2)} [1 + D_1(z, f|G_2)]^j
= \sum_{e \in E(G_1); y \in V(e) \cap V(G_2)} \sum_{f \in E(G_2)} \sum_{i=0}^{j} \binom{j}{i} D_1(z, f|G_2)^i
= \deg_{G_1}(y) \sum_{i=0}^{j} \binom{j}{i} D_1^{(i)}(z|G_2).
\]

The sum \(S_{33} \) is equal to:

\[
S_{34} = \sum_{e \in E(G_1); y \in V(e) \cap V(G_2)} \sum_{f \in E(G_2)} \sum_{i=0}^{j} l^i
= \deg_{G_1}(y) \deg_{G_2}(z).
\]

By adding the quantities \(S_{31}, S_{32}, S_{33} \) and \(S_{34} \), we obtain:

\[
S_3 = \deg_{G_1}(y) \deg_{G_2}(z) + \sum_{i=0}^{j} \binom{j}{i} \deg_{G_2}(z) D_1^{(i)}(y|G_1) + \deg_{G_1}(y) D_1^{(i)}(z|G_2) + \sum_{i=0}^{j} \binom{j}{i} D_1^{(i)}(y|G_1) \sum_{j=0}^{i} \binom{i}{j} D_1^{(j)}(z|G_2).
\]

The formula of \(W_{e_4}(\lambda)(G) \) is obtained by adding the quantities \(S_1, S_2, S_3 \).

(ii) Using a similar method as in the proof of part (i), we have:

\[
W_{e_4}(\lambda)(G) = \sum_{\{e, f\} \subseteq E(G_1)} d_4(e, f|G_1)^\lambda + \sum_{\{e, f\} \subseteq E(G_2)} d_4(e, f|G_2)^\lambda
+ \sum_{e \in E(G_1), f \in E(G_2)} [D_1(y, e|G_1) + D_2(z, f|G_2)]^\lambda = W_{e_4}(\lambda)(G_1) + W_{e_4}(\lambda)(G_2)
+ \sum_{e \in E(G_1), f \in E(G_2)} \sum_{i=0}^{j} \binom{j}{i} D_2(y, e|G_1)^i D_2(z, f|G_2)^{\lambda-i}
= W_{e_4}(\lambda)(G_1) + W_{e_4}(\lambda)(G_2) + \sum_{i=0}^{j} \binom{j}{i} D_2^{(i)}(y|G_1) D_2^{(\lambda-i)}(z|G_2).
\]

This completes the proof. \(\square \)
Using Theorem 2.2, we can get the formulae for the edge-Wiener and edge hyper-Wiener indices of \((G_1, G_2)(y, z)\).

Corollary 2.3 The first and second edge-Wiener indices of \(G = (G_1, G_2)(y, z)\) are given by:

(i) \(W_{e_0}(G) = W_{e_0}(G_1) + W_{e_0}(G_2) + e_2 D_1^{(1)}(y|G_1) + e_1 D_1^{(1)}(z|G_2) + e_1 e_2\),

(ii) \(W_{e_4}(G) = W_{e_4}(G_1) + W_{e_4}(G_2) + e_2 D_2^{(1)}(y|G_1) + e_1 D_2^{(1)}(z|G_2)\).

Corollary 2.4 The first and second edge hyper-Wiener indices of \(G = (G_1, G_2)(y, z)\) are given by:

(i) \(WW_{e_0}(G) = WW_{e_0}(G_1) + WW_{e_0}(G_2) + \frac{3}{2} e_2 D_1^{(1)}(y|G_1) + \frac{3}{2} e_1 D_1^{(1)}(z|G_2) + \frac{1}{2} e_2 D_1^{(2)}(y|G_1) + \frac{1}{2} e_1 D_1^{(2)}(z|G_2) + e_1 e_2\),

(ii) \(WW_{e_4}(G) = WW_{e_4}(G_1) + WW_{e_4}(G_2) + \frac{1}{2} e_2 [D_2^{(1)}(y|G_1) + D_2^{(2)}(y|G_1)] + \frac{1}{2} e_1 [D_2^{(1)}(z|G_2) + D_2^{(2)}(z|G_2)] + D_2^{(1)}(y|G_1) D_2^{(1)}(z|G_2)\).

2.2 Link

Let \(G_1\) and \(G_2\) be two simple connected graphs with the vertex sets \(V(G_1)\) and \(V(G_2)\) and the edge sets \(E(G_1)\) and \(E(G_2)\), respectively. For vertices \(y \in V(G_1)\) and \(z \in V(G_2)\), a link of \(G_1\) and \(G_2\) by vertices \(y\) and \(z\) is denoted by \((G_1 \sim G_2)(y, z)\) and obtained by joining \(y\) and \(z\) by an edge in the union of these graphs, as shown in Fig. 2 [21].

![Fig. 2. A link of \(G_1\) and \(G_2\) by vertices \(y\) and \(z\).](image)

We denote by \(n_i\) and \(e_i\) the order and size of the graph \(G_i\), respectively. It is easy to see that \(|V((G_1 \sim G_2)(y, z))| = n_1 + n_2\) and \(|E((G_1 \sim G_2)(y, z))| = e_1 + e_2 + 1\).

In the following Lemma, the distance between vertices of \((G_1 \sim G_2)(y, z)\) is computed. The proof is easy, so we omit it.

Lemma 2.5 Let \(u, v \in V((G_1 \sim G_2)(y, z))\). Then
\[
d(d(u,v)|G_1 \sim G_2)(y,z)) = \begin{cases}
 d(u,v|G_1) & u,v \in V(G_1) \\
 d(u,v|G_2) & u,v \in V(G_2) \\
 d(u,y|G_1) + d(z,v|G_2) + 1 & u \in V(G_1), v \in V(G_2)
\end{cases}
\]

Theorem 2.6 Let \(\lambda \) be a positive integer. The first and second edge-Wiener type invariants of \(G = (G_1 \sim G_2)(y,z) \) are given by:

(i) \(W_{e_0}(\lambda)(G) = W_{e_0}(\lambda)(G_1) + W_{e_0}(\lambda)(G_2) + 2^2 \deg_{G_1}(y) \deg_{G_2}(z) \)

\[+ \deg_{G_1}(y) + \deg_{G_2}(z) + \sum_{i=0}^{\lambda} \binom{\lambda}{i} \left[D_1^{(i)}(y|G_1) + D_1^{(i)}(z|G_2) \right] \]

\[+ \sum_{i=0}^{\lambda} \binom{\lambda}{i} D_1^{(i)}(y|G_1) \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} 2^{\lambda-i-j} D_1^{(j)}(z|G_2), \]

(ii) \(W_{e_4}(\lambda)(G) = W_{e_4}(\lambda)(G_1) + W_{e_4}(\lambda)(G_2) + 2^2 \deg_{G_1}(y) \deg_{G_2}(z) \)

\[+ \deg_{G_1}(y) + \deg_{G_2}(z) + \sum_{i=0}^{\lambda} \binom{\lambda}{i} \left[D_2^{(i)}(y|G_1) + D_2^{(i)}(z|G_2) \right] \]

\[+ \sum_{i=0}^{\lambda} \binom{\lambda}{i} D_2^{(i)}(y|G_1) \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} D_2^{(j)}(z|G_2). \]

Proof. (i) By definition of the first edge-Wiener type invariant,

\[W_{e_0}(\lambda)(G) = \sum_{\{e,f\} \subseteq E(G)} d_0(e,f|G)^{\lambda}. \]

Now, we partition the above sum into fifth sums as follows:

The first sum \(S_1 \) consists of contributions to \(W_{e_0}(\lambda)(G) \) of pairs of edges from \(G_1 \). For edges \(e,f \in E(G_1) \), \(d_0(e,f|G) = d_0(e,f|G_1) \). So,

\[S_1 = \sum_{\{e,f\} \subseteq E(G_1)} d_0(e,f|G_1)^{\lambda} = W_{e_0}(\lambda)(G_1). \]

The second sum \(S_2 \) consists of contributions to \(W_{e_0}(\lambda)(G) \) of pairs of edges from \(G_2 \). For edges \(e,f \in E(G_2) \), \(d_0(e,f|G) = d_0(e,f|G_2) \). So,

\[S_2 = \sum_{\{e,f\} \subseteq E(G_2)} d_0(e,f|G_2)^{\lambda} = W_{e_0}(\lambda)(G_2). \]

The third sum \(S_3 \) is taken over all pairs of edges \(e,f \in E(G) \) such that \(e \in E(G_1) \) and \(f = yz \). It is easy to see that, \(d_0(e,f|G) = 1 + D_1(y,e|G_1) \). So,
\[S_3 = \sum_{e \in E(G_1)} [1 + D_1(y,e|G_1)]^\lambda = \sum_{e \in E(G_1); y \notin V(e)} [1 + D_1(y,e|G_1)]^\lambda + \sum_{e \in E(G_1); y \in V(e)} 1^\lambda \\
= \sum_{e \in E(G_1); y \notin V(e)} \sum_{i=0}^\lambda \binom{\lambda}{i} D_1(y,e|G_1)^i \text{deg}_{G_1}(y) \\
= \sum_{i=0}^\lambda \binom{\lambda}{i} D_1(i)(y|G_2) + \text{deg}_{G_2}(y). \]

The forth sum \(S_4 \) is taken over all pairs of edges \(e,f \in E(G) \) such that \(e \in E(G_2) \) and \(f = yz \). It is easy to see that, \(d_0(e,f|G) = 1 + D_t(z,e|G_2) \). So by a similar argument as used in the computation of \(S_3 \), we have:

\[S_4 = \sum_{i=0}^\lambda \binom{\lambda}{i} D_1(i)(z|G_2) + \text{deg}_{G_2}(z). \]

The last sum \(S_5 \) is taken over all pairs of edges \(e,f \in E(G) \) such that \(e \in E(G_1) \) and \(f \in E(G_2) \). In this case,

\[d_0(e,f|G) = 2 + D_1(y,e|G_1) + D_1(z,f|G_2). \]

So,

\[S_5 = \sum_{e \in E(G_1), f \in E(G_2)} [2 + D_1(y,e|G_1) + D_1(z,f|G_2)]^\lambda. \]

Now, we partition the sum \(S_5 \) into four sums \(S_{51}, S_{52}, S_{53} \) and \(S_{54} \) as follows:

The sum \(S_{51} \) is equal to:

\[S_{51} = \sum_{e \in E(G_1); y \notin V(e) f \in E(G_2); z \notin V(f)} [2 + D_1(y,e|G_1) + D_1(z,f|G_2)]^\lambda \\
= \sum_{e \in E(G_1); y \notin V(e) f \in E(G_2); z \notin V(f)} \sum_{i=0}^\lambda \binom{\lambda}{i} D_1(y,e|G_1)^i \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} 2^{\lambda-i-j} D_1(z,f|G_2)^j \\
= \sum_{i=0}^\lambda \binom{\lambda}{i} D_1(i)(y|G_1) \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} 2^{\lambda-i-j} D_1(j)(z|G_2). \]

The sum \(S_{52} \) is equal to:

\[S_{52} = \sum_{e \in E(G_1); y \notin V(e) f \in E(G_2); z \notin V(f)} [2 + D_1(y,e|G_1)]^\lambda \\
= \sum_{e \in E(G_1); y \notin V(e) f \in E(G_2); z \notin V(f)} \sum_{i=0}^\lambda \binom{\lambda}{i} D_1(y,e|G_1)^i \]
\[= \deg_{G_2}(z) \sum_{i=0}^{\lambda} \binom{\lambda}{i} 2^{\lambda-i} D_1^{(i)}(y|G_1). \]

The sum \(S_{53} \) is equal to:

\[
S_{53} = \sum_{e \in E(G_1), y \in V(e)} \sum_{f \in E(G_2), z \in V(f)} \sum_{i=0}^{\lambda} \binom{\lambda}{i} 2^{\lambda-i} D_1(z, f|G_2)^i.
\]

\[= \deg_{G_1}(y) \sum_{i=0}^{\lambda} \binom{\lambda}{i} 2^{\lambda-i} D_1^{(i)}(z|G_2). \]

The sum \(S_{54} \) is equal to:

\[
S_{54} = \sum_{e \in E(G_1), y \in V(e)} \sum_{f \in E(G_2), z \in V(f)} 2^{\lambda} = 2^{\lambda} \deg_{G_1}(y) \deg_{G_2}(z).
\]

By adding the quantities \(S_{51}, S_{52}, S_{53} \) and \(S_{54} \), we obtain:

\[
S_5 = \sum_{i=0}^{\lambda} \binom{\lambda}{i} 2^{\lambda-i} [\deg_{G_2}(z)D_1^{(i)}(y|G_1) + \deg_{G_1}(y)D_1^{(i)}(z|G_2)]
\]

\[+ 2^{\lambda} \deg_{G_1}(y) \deg_{G_2}(z) + \sum_{i=0}^{\lambda} \binom{\lambda}{i} D_1^{(i)}(y|G_1) \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} 2^{\lambda-i-j} D_1^{(j)}(z|G_2). \]

Now, the formula of \(W_{e_0}(\lambda)(G) \) is obtained by adding the quantities \(S_1, S_2, S_3, S_4 \) and \(S_5 \).

ii Using a similar method as in the proof of part (i), we have:

\[
W_{e_4}(\lambda)(G) = \sum_{\{e, f\} \subseteq E(G_1)} d_4(e, f|G_1)^{\lambda} + \sum_{\{e, f\} \subseteq E(G_2)} d_4(e, f|G_2)^{\lambda} + \sum_{e \in E(G_1)} [1 + D_2(y, e|G_1)]^{\lambda}
\]

\[+ \sum_{e \in E(G_2)} [1 + D_2(z, e|G_2)]^{\lambda} + \sum_{e \in E(G_1), f \in E(G_2)} [1 + D_2(y, e|G_1) + D_2(z, f|G_2)]^{\lambda}
\]

\[= W_{e_4}(\lambda)(G_1) + W_{e_4}(\lambda)(G_2)
\]

\[+ \sum_{e \in E(G_1)} \sum_{i=0}^{\lambda} \sum_{i=0}^{\lambda} \binom{\lambda}{i} D_2(y, e|G_1)^i + \sum_{e \in E(G_2)} \sum_{i=0}^{\lambda} \sum_{i=0}^{\lambda} \binom{\lambda}{i} D_2(z, f|G_2)^i
\]

\[+ \sum_{e \in E(G_1), f \in E(G_2)} \sum_{i=0}^{\lambda} \sum_{i=0}^{\lambda} \binom{\lambda}{i} D_2(y, e|G_1)^i \sum_{j=0}^{\lambda-i} \binom{\lambda-i}{j} D_2(z, f|G_2)^j. \]
\[W_{e_4}(G_1) + W_{e_4}(G_2) + \sum_{i=0}^{\lambda} \left(\frac{\lambda}{i} \right) D_2^{(i)}(y|G_1) + D_2^{(i)}(z|G_2) \]

\[+ \sum_{j=0}^{\lambda-i} \left(\frac{\lambda-i}{j} \right) D_2^{(j)}(z|G_2) \]

Using Theorem 2.6, we can get the formulae for the edge-Wiener and edge hyper-Wiener indices of \((G_1 \sim G_2)(y, z)\).

Corollary 2.7 The first and second edge-Wiener indices of \((G_1 \sim G_2)(y, z)\) are given by:

(i) \[W_{e_0}(G) = W_{e_0}(G_1) + W_{e_0}(G_2) + (e_2 + 1)D_1^{(1)}(y|G_1) + (e_1 + 1)D_1^{(1)}(z|G_2) \]

\[+ e_1 + e_2 + 2e_1e_2, \]

(ii) \[W_{e_4}(G) = W_{e_4}(G_1) + W_{e_4}(G_2) + (e_2 + 1)D_2^{(1)}(y|G_1) + (e_1 + 1)D_2^{(1)}(z|G_2) \]

\[+ e_1 + e_2 + e_1e_2. \]

Corollary 2.8 The first and second edge hyper-Wiener indices of \((G_1 \sim G_2)(y, z)\) are given by:

(i) \[WW_{e_0}(G) = WW_{e_0}(G_1) + WW_{e_0}(G_2) + \frac{1}{2}(5e_2 + 3)D_1^{(1)}(y|G_1) + \frac{1}{2}(5e_1 + 3)D_1^{(1)}(z|G_2) \]

\[+ \frac{1}{2}(e_2 + 1)D_1^{(2)}(y|G_1) + \frac{1}{2}(e_1 + 1)D_1^{(2)}(z|G_2) + D_1^{(1)}(y|G_1)D_1^{(1)}(z|G_2) \]

\[+ e_1 + e_2 + 3e_1e_2, \]

(ii) \[WW_{e_4}(G) = WW_{e_4}(G_1) + WW_{e_4}(G_2) + \frac{3}{2}(e_2 + 1)D_2^{(1)}(y|G_1) + \frac{3}{2}(e_1 + 1)D_2^{(1)}(z|G_2) \]

\[+ \frac{1}{2}(e_2 + 1)D_2^{(2)}(y|G_1) + \frac{1}{2}(e_1 + 1)D_2^{(2)}(z|G_2) \]

\[+ D_2^{(1)}(y|G_1)D_2^{(1)}(z|G_2) + e_1 + e_2 + e_1e_2. \]

3. Conclusions

In this paper, we studied the behavior of the edge-Wiener type invariants under the splices and links of graphs. Results were applied to compute the edge-Wiener and edge hyper-Wiener indices of these classes of composite graphs. It is also interesting to find explicit formulae for the edge-Wiener type invariants of other classes of composite graphs such as bridge and chain graphs. In order to achieve that goal, further research into mathematical properties of the edge-Wiener type invariants will be necessary.
Acknowledgements

The authors would like to thank the referees for their valuable comments. This work was partially supported by Center of Excellence of Algebraic Hyperstructures and its Applications of Tarbiat Modares University (CEAHA).

REFERENCES