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ALGORITHMIC ANALYSIS OF TSENG’S ITERATES FOR

PSEUDO-MONOTONE VARIATIONAL INEQUALITIES
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The iterative methods for solving the variational inequality problem are

studied and reviewed. We reconsider the convergence of the Tseng’s algorithm for

solving the pseudo-monotone variational inequalities. Under some mild assump-

tions, we show that the Tseng’s algorithm converges weakly to a solution of the

pseudo-monotone variational inequality.
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1. Introduction

Let H be a real Hilbert space with its inner product 〈·, ·〉 and norm ‖ · ‖. Let

C be a nonempty closed and convex subset of H.

Definition 1.1. An operator A : C → H is said to be monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

An operator A : C → H is said to be pseudo-monotone if

〈Ay, x− y〉 ≥ 0 implies 〈Ax, x− y〉 ≥ 0, ∀x, y ∈ C.

Definition 1.2. An operator A : C → H is called L-Lipschitz continuous if there

exists a positive constant L such that

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ C.

Definition 1.3. Recall that an operator A : C → H is said to be

(i) strongly monotone if (for some positive constant γ)

〈Ax−Ay, x− y〉 ≥ γ‖x− y‖2, ∀x, y ∈ C.
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(ii) inverse strongly monotone if (for some positive constant γ)

〈Ax−Ay, x− y〉 ≥ γ‖Ax−Ay‖2, ∀x, y ∈ C.

(iii) sequently weakly continuous if for each sequence {xn}, we have: {xn} converges

weakly to x̃ implies {Axn} converges weakly to Ax̃.

In this work, we are interested in the investigation on the classical variational

inequality problem which is formulated as

find x̃ ∈ C such that 〈Ax̃, x− x̃〉 ≥ 0, ∀x ∈ C. (1)

We denote the solution set of (1) by Sol(C,A).

Variational inequalities as a useful computational framework has been applied

widely to physics, engineering, economics, optimization and control problems, traffic

network problems, equilibrium problems, etc., see [5, 12, 14, 15]. The theory of

approximation and iterative algorithms, as an active topic of variational inequalities,

has attracted so much attention to explore and analyze relevant convergent results

and provide possible error analysis, see [16]. Among them, the more popular method

is the following projected-type method ([1, 6, 10, 11, 13]): for x0 ∈ C, calculate

iteratively the sequence {xn} through

xn+1 = PC [xn − τAxn], n ≥ 0,

where PC is the metric projection and τ > 0 is the step-size.

The projected-type algorithm is an effective method for solving variational

inequalities. However, the involved operator should be strongly monotone or inverse

strongly monotone. In order to overcome this flaw, in [9], Korpelevich suggested an

extragradient method for solving variational inequalities. For given current iteration

xn, calculate the next iteration xn+1 by the form{
yn = PC [xn − τAxn],

xn+1 = PC [xn − τAyn], n ≥ 0

where the step-size τ ∈ (0, 1/L) with L being the Lipschitz constant of A.

Korpelevich’s algorithm has received so much attention by a range of scholars,

who improved it in several ways; see, e.g., [2, 7, 8, 17, 21]. Very recently, Vuong [20]

proved that the extragradient method can be successfully applied for solving pseudo-

monotone variational inequality (1). However, the operator A has been imposed an

additional assumption with A being sequently weakly continuous on C.

Among drawbacks of Korpelevich’s extragradient algorithm is the necessity of

two projections onto the admissible set C (that are resource-consuming when the

structure of the set C is complicated) to pass to the next iteration. We restrict our

attention to an alternative of the extragradient method. It was proposed in [19] by

Tseng with the following remarkable form{
yn = PC [xn − τnAxn],

xn+1 = yn + τn(Axn −Ayn).
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Consequently, Tseng’s algorithm was studied extensively by many authors, see [3,

18].

The purpose of this paper is to reconsider the convergence of the Tseng’s algo-

rithm for solving pseudo-monotone variational inequalities. By using new analysis

technique, we show that the Tseng’s algorithm converges weakly to a solution of

pseudo-monotone variational inequalities. Our result improves some existing results

in the literature.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. For fixed

z ∈ H, there exists a unique z† ∈ C satisfying

‖z − z†‖ = inf{‖z − z̃‖ : z̃ ∈ C}.

Denote z† by PC [z].

The following inequality is an important property of projection PC([?]): for

given x ∈ H,

〈x− PC [x], y − PC [x]〉 ≤ 0, ∀y ∈ C. (2)

There holds the relation

〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ C. (3)

In what follows, we shall use the following expressions:

• un ⇀ z† denotes the weak convergence of un to z†.

• wω(un) = {u† : ∃{uni} ⊂ {un} such that uni ⇀ u†(i→∞)}.

Lemma 2.1 ([4]). Let C be a nonempty closed convex subset of a real Hilbert space

H. Let A : C → H be a continuous and pseudo-monotone operator. Then x† ∈
Sol(C,A) iff x† solves the following dual variational inequality

〈Au†, u† − x†〉 ≥ 0, ∀u† ∈ C.

3. Main results

In this section, we show the convergence of Tseng’s method for solving the

pseudo-monotone variational inequality (1).

Let C be a nonempty closed convex subset of a real Hilbert space H. Assume

that the following conditions are satisfied

(C1): A is pseudo-monotone on H;

(C2): A is L-Lipschitz continuous on C;

(C3): A possesses the property (P): Let {xn} ⊂ C be a sequence. If xn ⇀ u ∈ C and

lim infn→∞ ‖Axn‖ = 0, then Au = 0.

Remark 3.1. If A is demi-closed at zero (recall that an operator A is demi-closed

at zero if xn ⇀ u and Axn → 0 imply that Au = 0), then A satisfies property (P).
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Next we introduce our iterative steps of the Tseng’s method. Let {τn}∞n=0 be

a sequence in (0,∞).

Step 1. Let x0 ∈ C be an initiation and set n = 0.

Step 2. Let xn be the iteration of the n-th step which has been calculated. If

xn = PC(xn − τnAxn), then stop. Otherwise, calculate the next iteration xn+1 by

the following form {
yn = PC [xn − τnAxn],

xn+1 = yn + τn(Axn −Ayn).
(4)

Step 3. Set n := n+ 1 and return to step 2.

Remark 3.2. According to (2), we know that x̂ solves VI (1) if and only if x̂ =

PC [x̂− µx̂] for any µ > 0. Hence, if xn = PC [xn − τnAxn], then xn is a solution of

VI (1).

Remark 3.3. Assume that the above iterate does not terminate in a finite steps.

In this case, it is obvious that Axn 6= 0 for all n ≥ 0, otherwise xn = PC [xn−τnAxn]

and the iterate stops voluntarily.

Next, we prove the convergence of the infinite iterations {xn} generated by

the above algorithm.

Theorem 3.1. Suppose that Sol(C,A) 6= ∅. Then the sequence {xn} generated by

(4) converges weakly to x† ∈ Sol(C,A) provided 0 < lim infn→∞ τn ≤ lim supn→∞ τn <

1/L.

Proof. Pick any x̂ ∈ Sol(C,A). From (2) and (4), we have

〈yn + τnAx
n − xn, yn − x̂〉 ≤ 0. (5)

Since yn ∈ C and x̂ ∈ Sol(C,A), we have

〈Ax̂, yn − x̂〉 ≥ 0.

By the pseudo-monotonicity of A, we deduce

〈Ayn, yn − x̂〉 ≥ 0. (6)

From (4), (5) and (6), we obtain

〈xn+1 − xn, yn − x̂〉 = 〈yn + τn(Axn −Ayn)− xn, yn − x̂〉
= 〈yn + τnAx

n − xn, yn − x̂〉 − τn〈Ayn, yn − x̂〉
≤ 0.

It follows that

〈xn+1 − xn, xn − x̂〉 = 〈xn+1 − xn, xn − yn〉+ 〈xn+1 − xn, yn − x̂〉

≤ 〈xn+1 − xn, xn − yn〉
= 〈yn + τn(Axn −Ayn)− xn, xn − yn〉

= −‖yn − xn‖2 + τn〈Axn −Ayn, xn − yn〉.

(7)
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By (4), we get

‖xn+1 − x̂‖2 = ‖yn − xn + xn − x̂+ τn(Axn −Ayn)‖2

= ‖yn − xn‖2 + ‖xn − x̂‖2 + τ2n‖Axn −Ayn‖2

+ 2〈yn − xn, xn − x̂〉+ 2τn〈yn − xn, Axn −Ayn〉
+ 2τn〈xn − x̂, Axn −Ayn〉

= ‖yn − xn‖2 + ‖xn − x̂‖2 + τ2n‖Axn −Ayn‖2

+ 2τn〈yn − xn, Axn −Ayn〉+ 2〈xn+1 − xn, xn − x̂〉.

(8)

Combining (7) with (8), we have

‖xn+1 − x̂‖2 ≤ ‖xn − x̂‖2 − ‖yn − xn‖2 + τ2n‖Axn −Ayn‖2. (9)

Noting that A is L-Lipschitz, we have

‖Axn −Ayn‖ ≤ L‖xn − yn‖.

This together with (9) implies that

‖xn+1 − x̂‖2 ≤ ‖xn − x̂‖2 − ‖yn − xn‖2 + L2τ2n‖xn − yn‖2

= ‖xn − x̂‖2 − (1− L2τ2n)‖xn − yn‖2
(10)

which implies that the sequence {‖xn− x̂‖} is monotone descending. Thus, the limit

limn→∞ ‖xn − x̂‖ exists and the sequence {xn} is bounded. Hence, there exists a

subsequence {xni} ⊂ {xn} such that xni ⇀ x† ∈ C.

Next, we show that x† ∈ Sol(C,A). In fact, by the assumption 0 < lim infn→∞ τn ≤
lim supn→∞ τn < 1/L, there exists a, b and N0 such that

0 < a ≤ τn ≤ b < 1/L

when n ≥ N0.

By terms of (10), we obtain

(1− aL)‖xn − yn‖2 ≤ ‖xn − x̂‖2 − ‖xn+1 − x̂‖2 → 0, n ≥ N0.

It follows that

lim
n→∞

‖xn − yn‖ = 0. (11)

From (2) and (4), we deduce

〈xni − τniAx
ni − yni , u− yni〉 ≤ 0, ∀u ∈ C.

It follows that

1

τni

〈xni − yni , u− yni〉+ 〈Axni , yni − xni〉 ≤ 〈Axni , u− xni〉, ∀u ∈ C. (12)

According to (11) and (12), we deduce

lim inf
i→∞

〈Axni , u− xni〉 ≥ 0. (13)

Now, we consider two possible cases.



76 Yonghong Yao, Huayu Li, Li-Jun Zhu

Case 1: lim infi→∞ ‖Axni‖ = 0. In this case, noting that xni ⇀ x† and A

satisfies property (P), we deduce that Ax† = 0. Consequently, x† ∈ Sol(C,A).

Case 2: lim infi→∞ ‖Axni‖ > 0. First, we note that Axni 6= 0 for each i ≥ 0,

otherwise, xni is a solution of VI(1). In terms of (13), we obtain

lim inf
i→∞

〈 Axni

‖Axni‖
, u− xni

〉
≥ 0. (14)

By (14), we can choose a positive real numbers sequence {θi} verifying θi → 0 as

i→∞. For each θi, there exists the smallest positive integer Ni such that〈 Axni

‖Axni‖
, u− xni

〉
+ θi ≥ 0, ∀i ≥ Ni.

It follows that

〈Axni , u− xni〉+ θi‖Axni‖ ≥ 0, ∀i ≥ Ni. (15)

Set uni =
Axni

‖Axni‖2
. Thus, we have

〈Axni , uni〉 = 1

for each i.

From (15), we deduce

〈Axni , u+ θi‖Axni‖uni − xni〉 ≥ 0, ∀i ≥ Ni. (16)

Since A is pseudo-monotone, it follows from (16) that

〈A(u+ θi‖Axni‖uni), u+ θi‖Axni‖uni − xni〉 ≥ 0, ∀i ≥ Ni. (17)

Since limi→∞ θi‖Axni‖‖uni‖ = limi→∞ θi = 0 and noting that A is L-Lipschitz

continuous and xni ⇀ x†, by taking the limit as i→∞ in (17), we obtain

〈Au, u− x†〉 ≥ 0. (18)

Applying Lemma 2.1 to (18), we conclude that x† ∈ Sol(C,A).

Finally, we show that the entire sequence {xn} converges weakly to x†. It is

enough to show that wω(xn) is singleton. Let x̃ ∈ wω(xn). Hence, there exists a

subsequence {xnj} of {xn} such that xnj ⇀ x̃. It is obvious that x̃ ∈ V I(C,A) and

limn→∞ ‖xn − x̃‖ exists. In turn, since

‖xn − x†‖2 − ‖xn − x̃‖2 + ‖x̃‖2 − ‖x†‖2 = 2〈xn, x̃− x†〉,

the limit limn→∞〈xn, x̃− x†〉 exists. Hence,

〈x†, x̃− x†〉 = lim
i→∞
〈xni , x̃− x†〉 = lim

j→∞
〈xnj , x̃− x†〉 = 〈x̃, x̃− x†〉.

Therefore, x̃ = x† and the sequence xn weakly converges to x† ∈ Sol(C,A). This

completes the proof. �

It is obvious that monotonicity implies pseudo-monotonicity. Thus, we obtain

the following corollary.
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Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let the operator A : H → H be monotone and L-Lipschitz continuous. Assume that

A possesses the property (P). Suppose that Sol(C,A) 6= ∅. Then the sequence {xn}
generated by (4) converges weakly to x† ∈ Sol(C,A) provided 0 < lim infn→∞ τn ≤
lim supn→∞ τn < 1/L.

Remark 3.4. It is obvious that if A is sequentially weakly continuous, then A

satisfies the above property (P).

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space

H. Let the operator A : H → H be monotone and L-Lipschitz continuous. Assume

that A is sequentially weakly continuous on C. Suppose that Sol(C,A) 6= ∅. Then

the sequence {xn} generated by (4) converges weakly to x† ∈ Sol(C,A) provided

0 < lim infn→∞ τn ≤ lim supn→∞ τn < 1/L.

4. Conclusions

In this paper, we investigate the pseudomonotone variational inequality prob-

lem in Hilbert spaces. Several existing algorithms for solving the pseudomono-

tone variational inequality are reviewed. We reconsider the Tseng’s algorithm and

demonstrate its convergence by using new technique for solving the pseudomonotone

variational inequalities. Noting that in Tseng’s iterative sequence (4), the involved

operator A requires an extra assumption (C3). A natural problem arises: how to

weaken this assumption?
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