THEORETICAL PREDICTION OF POSSIBLE COEXISTENCE OF SUPERCONDUCTIVITY AND ANTIMAGNETISM IN NOVEL SrFeRuBi2, SrRu2Bi2 AND PARENT SrFe2Bi2 COMPOUNDS

D. S. JAYALAKSHMI1, M. SUNDARESWARI2, E. VISWANATHAN3

The optimized properties of the SrFe2Bi2 compound are compared with its isostructural compounds by gradual replacing of Ru in Fe position, namely SrFeRuBi2, SrRu2Bi2 compounds by means of first principles calculation. Energies of the reported compounds at various magnetic orders, stability nature and electrical resistivity at ambient temperature are calculated. All the observed parameters with its conducting behaviour are used to analyze the superconducting nature of the reported compounds. In this group SrFe2As2 compound, is reported as an antiferromagnetic coexisting superconducting compound. This leads our main interest to focus the magnetic and superconducting nature of the proposed compounds.

Keywords: Intermetallic compounds; Fermi surface; Anti ferromagnet; High Tc superconductors; DFT.

1. Introduction

Among the recently discovered iron-based high-temperature superconductors, two main groups are identified as iron pnictides and iron chalcogenides. The parent compounds of these iron-pnictides are metallic, while the parent compounds of cuprates are Mott insulators. From the literature [1] it is understood that several structural families are possible for iron (Fe) pnictides (Pn), such as ternary 111 (e.g. LiFePn), 122 (e.g. BaFe2Pn2), quaternary 1111 (e.g. LaFePnO) and five-component 32225 (e.g. Sr3Sc2Fe2Pn2O5), etc. Of which the present study deals with the band structure study of newly proposed Iron(Fe)/Ruthenium(Ru) replaced 122 pnictide compounds. AT2Pn2 Materials with ThCr2Si2 type structure (122 compounds) have attracted interest of solid state community for decades for the diverse bonding patterns and dimensionality that give rise to exotic physical properties. In the vicinity of room temperature, 122 (AFe2Pn2) compounds crystallize in tetragonal symmetry with no magnetic T(Fe)Pn layer, where Fe atoms form a 2D square sublattice with Pn atoms sit at

1 Department of Physics, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, India, e-mail: jayalakshmi.physics@sathyabama.ac.in.
2 Department of Physics, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, India
3 Department of Physics, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, India
the centre of these square, but off the Fe plane (above and below the plane alternately) [2,3].

Some ThCr$_2$Si$_2$-type compounds exhibit superconductivity and other physical properties are enhanced under chemical doping or under the application of external pressure. Upon doping or compressing, there is a transition in the magnetic order and the same support for superconducting state. Also in Ba$_{1-x}$K$_x$Fe$_2$As$_2$, BaFe$_2$As$_2$,Co$_x$As$_2$ and SrFe$_{2-x}$Ru$_x$As$_2$ an unconventional superconductivity was discovered by doping at alkaline metal (A) or transition metal (T) site [4,5].

This motivates us to study about Ru substituted SrFe$_2$Bi$_2$ compound namely SrFeRuBi$_2$ compound. To provide a complete description, this study leads a comparative band structure study on SrFe$_2$Bi$_2$, SrRu$_2$Bi$_2$ and SrFeRuBi$_2$ compounds. In our previous work, SrFe$_2$Bi$_2$ is proposed as an unconventional superconductor [6]. In addition from the literature it is observed that superconducting transition temperature (T$_C$) can be enhancing in the presence of large concentration of the magnetic Fe in these layered compounds has provided an avenue to investigate the interplay of magnetism and superconductivity which may help in unraveling a long standing mystery of high temperature superconductivity and the same motivates us to do the present study [7].

2. Materials and Methodology

The calculations are carried out by means of Full Potential – Linearized Augmented Plane Wave (FP – LAPW) method as implemented in the WIEN 2K code [8]. The Generalized Gradient Approximation parameterized by Perdew et al. [9] has been applied to calculate the exchange correlation potential [10,11]. These compounds exist in ThCr$_2$Si$_2$ type tetragonal structure, with the space group 139 (I4/mmm). The atomic positions for Sr is (0, 0, 0), for Fe/Ru is (0, 0.5, 0.25) and for Bismuth is (0, 0,Z$_{\text{Bi}}$). Here Z$_{\text{Bi}}$ (variable position parameter) is the so-called internal coordinate governing the Fe/Ru–Bi distance (d). Muffin tin spheres of radius RMT are chosen in such a way that there is minimal charge leakage from the core. The calculations are performed with 1000 K-points in the Brillouin zone. The plane wave expansion (R$_{\text{MT}}$ * K$_{\text{MAX}}$) is taken as 7. The self consistent calculations are carried out to an accuracy of 0.0001 Ry, 0.1 mRy and 0.001 |e| for energy, force and charge respectively. The theoretically calculated equilibrium lattice parameters form the optimized volume [12] are used to optimize c/a ratio, which are then used to optimize position of the (Z$_{\text{pa}}$) pnictogen atoms in non magnetic (NM) order. The same optimization procedure has been done in ferromagnetic (FM) and anti-ferro magnetic (AFM) order with spin calculation. The optimized structural, positional, electronic, magnetic parameters and the total energy (E$_{\text{Total}}$) in Rydberg for non magnetic, ferro magnetic and anti-ferro
magnetic order of the compounds under study are calculated and reported. The resistivity calculation of the compounds is performed by using Boltzmann transport theory interfaced to the Wien2k program [13].

3. Results and Discussion

3.1 Replacing a single Fe by Ru in SrFe$_2$Bi$_2$ compound

The structural, electronic, magnetic, Bulk modulus and energy parameters of SrFe$_2$Bi$_2$ compound [6] are reported in Table 1 and are compared with available results [14]. The motivation to extend our study is prevailing literature [15] shows that the isovalent substitution of heavier element in lighter element provides an internal chemical pressure to the compound which could help in inducing superconductivity. As reference, substitution of As ($Z = 33$) in P ($Z = 15$) site at Eu 122 compound and Ru ($Z = 44$) in Fe ($Z = 26$) site at BaFe$_{2-x}$Ru$_x$As$_2$ ($x = 0.75$) compound shows superconductivity in increased order of transition temperature ($T_c \approx 20$ K). Qi et al. [16] reported that Ru substitution on the Fe site in Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$ compound exhibit properties similar to the electron-doped BaFe$_2$As$_2$ series, at higher doping compositions. Hence we replace Fe in SrFe$_2$Bi$_2$ compound with its isovalent Ru by which the electronic environment of the compound will not be affected.

The volume, c/a ratio and positional parameters are optimized for SrFeRuBi$_2$ at ambient condition and the corresponding values are tabulated in Table 1. The corresponding crystal structure of SrFeRuBi$_2$ compound is shown in Fig. 1. It has a tetragonal structure and it is iso structure with its parent SrFe$_2$Bi$_2$ compound with similar I4/mmm space group. The observed bulk modulus is very high in Ru substituted Fe compound and the same depicts from the literature [17]. DOS at Fermi level ($N(E_F)$) and electron density plots are plotted to study the transport behavior of electrons and the bonding property of SrFeRuBi$_2$ are shown in Figs.2 and 3 respectively.
Table 1

The optimized structural, electronic and magnetic parameters of SrFe$_2$Bi$_2$, SrFeRuBi$_2$ and SrRu$_2$Bi$_2$ compounds

<table>
<thead>
<tr>
<th>Phase/Parameter</th>
<th>SrFe$_2$Bi$_2$</th>
<th>SrFeRuBi$_2$</th>
<th>SrRu$_2$Bi$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{Bi}</td>
<td>0.3595 [6]</td>
<td>0.3606</td>
<td>0.3642</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk modulus [GPa]</td>
<td>46.68</td>
<td>77.18</td>
<td>91.9025</td>
</tr>
<tr>
<td>Fermi energy [Ryderb]</td>
<td>0.5465 [6]</td>
<td>0.2685</td>
<td>0.4062</td>
</tr>
<tr>
<td>N(E$_F$) (states/Ryderb f.u)</td>
<td>43.50 [6]</td>
<td>38</td>
<td>23.75</td>
</tr>
<tr>
<td>Resistivity (ρ) (Î­-cm)</td>
<td>0.66</td>
<td>0.07</td>
<td>1.08</td>
</tr>
<tr>
<td>Total energy (Ryd.)</td>
<td>-97777.0525^{NM}</td>
<td>-108631.7899^{NM}</td>
<td>-110813.2399^{NM}</td>
</tr>
<tr>
<td></td>
<td>-97777.0812^{FM}</td>
<td>-108585.9973^{FM}</td>
<td>-110813.2399^{FM}</td>
</tr>
<tr>
<td>Magnetic Moment of the compound (Bohr magneton)</td>
<td>4.8261^{FM}</td>
<td>2.01^{FM}</td>
<td>0.00053^{FM}</td>
</tr>
<tr>
<td></td>
<td>2.7055^{AFM}</td>
<td>-0.0003^{AFM}</td>
<td>0.0001^{AFM}</td>
</tr>
</tbody>
</table>

NM Non Magnetic; FM Ferro Magnetic; AFM Anti ferro Magnetic
Fig. 2 SrFeRuBi$_2$: (a) Total and partial density of states (b) Comparative spin up and spin down density of states.
3.1.1. Electron transport properties of SrFeRuBi$_2$ compound

To know the electron transport behavior, the total and partial DOS histograms and spin up and spin down density of states are drawn for SrFeRuBi$_2$ compound (Fig. 2a). In Fig. 2b, it is observed that Fe and Ru contributes the most to the total DOS at the Fermi level consistent with a general tendency that the DOS at the Fermi level are dominated by the d-band of the T atom and the contribution from Sr towards the Fermi level in DOS is found to be comparatively less [18]. Replacement of Fe by Ru, in SrFe$_2$Bi$_2$ compound leads decrement of N(E$_F$); hence it is substantiated that Fe play a vital role towards metallic than Ru in present compound. The resistivity value is 0.07 (μΩ·cm), and it is one of the evidence for the possibility of superconductivity in this compound similar to its parent compound SrFe$_2$Bi$_2$ (0.66 μΩ·cm) listed in Table 1.

3.1.2. Bonding properties of SrFeRuBi$_2$ compound

To probe into the bonding properties of these compound charge density plots along (100) plane are plotted and are analysed, shown in Fig. 3. Directionality contours exist between Fe and Bi atoms, whereas no such covalent interaction is seen between Bi–Bi atoms in SrFeRuBi$_2$ compound. In SrFeRuBi$_2$ compound strong covalence is found between Ru and Fe (T) – Bi (Pn), and in both parent (SrFe$_2$Bi$_2$) [6] and novel (SrFeRuBi$_2$) compounds. Spherical charge density contours are exists around Sr atom which is an indication of metallic
nature of the compound. To extend and compose the comparative studies this work also concentrates over SrRu$_2$Bi$_2$ compound.

3.2 Replacing transition element Fe by Ru in SrFe$_2$Bi$_2$ compound

To explore the superconductivity beyond copper and iron as transition element, literature is available with Ru as a transition element. LaRu$_2$(P/As)$_2$ has been reported as a superconductor with transition temperature from 3.84 to 5.77 K using a pressure of 1.74 GPa [19]. Hence, in further study extends the replacement of Fe by Ru in SrFe$_2$Bi$_2$ compound.

The volume, c/a ratio and positional parameters of SrRu$_2$Bi$_2$ compound are optimized and derived from its respective parent compound SrRu$_2$As$_2$ [20]. The optimized structural parameters along with the distances (d) between the transition metal (Ru) - pnictogen (Bi) atoms, pnictogen - pnictogen (Bi) atoms, Fermi energy and DOS at Fermi level at ambient condition are given Table 1. The corresponding crystal structure of SrRu$_2$Bi$_2$ compound is shown in Fig.4.

3.2.1. Electron transport properties in SrRu$_2$Bi$_2$ compound

To analyze the electron transport behaviour, the band structure plots and DOS histograms are drawn and shown in Fig.5. Band structure (Fig.5a) of Ru-based hypothetical compound reveals that several bands cross the Fermi level depicting the metallic nature of these compounds. The lowest lying bands around -0.45 Rydberg arise mainly from Bi-$6s$ states and are separated by a gap; the energy bands located near the Fermi level at 0.4 Rydberg are formed predominantly by Ru-4d states and Bi-$6p$ states. In Fig. 5b, Ru-4s states and Bi-p states are contributing more to the total DOS. Here, further $N(E_F)$ is reduces from SrFe$_2$Bi$_2$ compound due to Ru role and the same Ru role leads to increment of bulk modulus. Bulk modulus is one of the parameter which decides the hardness of the material and compressibility is the inverse of bulk modulus. Hence in SrRu$_2$Bi$_2$ compound the compressibility is very less/ hardness is high because of its bulk modulus.

Besides, it is noteworthy that the contribution from the valence states of Ba is negligible in the near Fermi region. Total and partial density of States of SrRu$_2$Bi$_2$ is being contributed from Ru-4d states. In addition, the Fermi level lies exactly at pseudo gap in SrRu$_2$Bi$_2$. Hence the crystal structure of SrRu$_2$Bi$_2$ could be more stable. Moon et al. [21] described that the pseudo gap is universally regarded as an essential part of the physics of unconventional superconductors and it is the one of the manifestations in the class of high T_c materials [22]. This is an evidence to achieve superconductivity in SrRu$_2$Bi$_2$ compound and its resistivity value 1.08 ($\mu\Omega$-cm) is substantiate the same.
3.2.2. Bonding properties of SrRu$_2$Bi$_2$ compound

To probe into the bonding properties of SrRu$_2$Bi$_2$, charge density plots along (100) plane is plotted and analyzed, shown in Fig.6. From the plot one can observe (i) directional contours exist between Ru and Bi atoms; whereas no such covalent interaction is seen between Bi–Bi atoms; there are spherical charge
density contours around Bi atoms which is an indication of metallic nature of the compound
(ii) Electron clouds around [Ru$_2$Bi$_2$] blocks are separated from that of Sr atom and it is a sign of ionic interaction between [Ru$_2$Bi$_2$] blocks and Sr atom. Thus the charge density plots exits a mixed covalent, ionic and metallic behavior alike their parent compounds [23].

![Fig. 6 Electron Density plot of SrRu$_2$Bi$_2$ compound](image)

3.3. Magnetic properties of SrFe$_2$Bi$_2$, SrFeRuBi$_2$ and SrRu$_2$Bi$_2$ compounds

It is intriguing that superconductivity and antiferromagnetism compete for the same electrons which were not expected, especially when it is known that the magnetism is generally detrimental for superconductivity [24,25]. But in FeAs superconductors the antiferromagnetism is coexists with superconductivity. In the FeAs-based superconductors, antiferromagnetism is originates from conduction electrons and also form the cooper pairs when T below T_c. In ‘122’ compound superconductivity could be induced from its antiferromagnetic parent compound by external pressure or by substitution of isovalent element. By taking it has a clue; we checked the total energy of the compounds namely SrFe$_2$Bi$_2$, SrFeRuBi$_2$ and SrRu$_2$Bi$_2$ for various magnetic orders and are given in Table 1, to extend our research towards their possibility for occurrence of superconductivity nature. It shows that SrFe$_2$Bi$_2$ and SrFeRuBi$_2$ compounds are stabled in antiferromagnetic order and total energy of SrRu$_2$Bi$_2$ compound is approximately same at all its magnetic order.
3.4. Fermi surface plots of newly proposed SrFeRuBi$_2$ and SrRu$_2$Bi$_2$ compounds

The Fermi surface plot of newly proposed compounds namely SrFeRuBi$_2$, SrRu$_2$Bi$_2$ are drawn and are depicted in Figure 7 and 8 respectively to validate the clues regarding the superconducting nature of the compounds. The observations from the Fermi surface plot of SrFeRuBi$_2$ compound (Fig. 7) are (i) Fermi surface plot is drawn by using the bands that crosses the Fermi level which are indexed as 48-52. This FS plot matches well with the plot reported in the literature [26] for the compounds CaFe$_2$As$_2$ which has been reported as a high T_c superconductor (ii) Electron sheet-like structures are seen at each of the four corners of the BZ at ‘X’, ‘P’ points (iii) hole cylinder-like structure is seen at ‘Γ–Z’ point along K_z direction of the Brillouin Zone (BZ).

The observations from the Fermi surface plot of SrRu$_2$Bi$_2$ compound (Fig. 8) are (i) two large distorted sheets of electron pockets around X and P points at each corner of the BZ (ii) flat pillow-like electron sheets at the top of the zone is observed at Z point along K_z direction, which arises due to Fermi crossings (bands 36, 37) and it is interconnected from a zone centre to the zone corner. These observations are similar with that of its BaFe$_2$As$_2$ compound [26].

![Fig. 7 Fermi surface plot of SrFeRuBi$_2$ compound](image1)
![Fig. 8 Fermi surface plot of SrRu$_2$Bi$_2$ compound](image2)

4. Conclusion

The observations from the comparative analysis of SrFe$_2$Bi$_2$, SrFeRuBi$_2$ and SrRu$_2$Bi$_2$ compounds are substitution of Ru in SrFe$_2$Bi$_2$ compound decreases the contribution of transition metal towards density of states at fermi level and increases the Bulk modulus. In SrRu$_2$Bi$_2$ compound, strong directional contours are exist between Ru and Bi atoms in the same layer, whereas no such strong interaction is seen between Bi-Bi atoms of adjacent layer. Fermi energy
lies in the deep valley (pseudo gap) for SrRu₂Bi₂, which suggests the more stable nature of the compound and also it supports for the evidence of superconductivity. In this study, it is shown that SrFeRuBi₂ and SrFe₂Bi₂ are stable in antiferromagnetism and these compounds also exhibits approximate zero resistivity, which supports for superconductivity. Hence it stated that antiferromagnetism is induced in SrRu₂Bi₂ by the substitution of Fe at ‘T’ site. From our results we can provide a clue for the existence of superconductivity in SrFe₂Bi₂ and SrFeRuBi₂ compounds for the experimentalist and it is to be verified by the experimentalist. In over all the electronic, structural, bonding and magnetic behaviour of SrFe₂Bi₂, SrFeRuBi₂ and SrRu₂Bi₂ compounds at ambient condition are analysed and their possibilities to become a superconductor is observed by comparing with their parent compounds.

Acknowledgement
The authors are grateful to the DST-FIST, India for funding this project through the project reference number SR/FST/PSI-193/2015.

REFERENCES

