BISMUTH FERRITE POWDERS PREPARED BY MICROWAVE-ASSISTED HYDROTHERMAL METHOD

Vasile-Adrian SURDU^{1*}, Yaohui WANG², Alexandra Cătălina BÎRCĂ¹, Eugenia TANASĂ¹, Ecaterina ANDRONESCU¹

BiFeO₃ powders were synthetized by a fast, reproducible and environmental-friendly microwave-assisted hydrothermal method. The aim of the study is the investigation of increased pressure and different mineralizer concentration on the reaction mechanism, morphology of the particles and magnetic behavior. X-ray diffraction, Field-Emission Scanning Electron Microscopy, Raman spectroscopy and Vibrating Sample Magnetometry showed the successful preparation of BiFeO₃ powders at 200°C and 40 bar for 1 h. Particle size was between 1.15 and 5.35 μ m. Morphology of particles and aggregates as well as magnetic behavior depend on the concentration of KOH mineralizer.

Keywords: BiFeO₃, microwave-assisted hydrothermal, magnetic behavior.

1. Introduction

Multifunctional multiferroic materials that combine ferroelectricity, ferromagnetism and in some cases ferroelasticity have become a challenge both for scientifical and industrial advance. The applications of such materials include photocatalysis [1–3], photocatalytic hydrogen generation [4], gas sensor [5], actuators [6], data storage [7], spintronic devices [8], microwave absorption [9] or magnetic localized dose enhancement in radiotherapy and imaging [10].

One of the most studied material that has coupled electric, magnetic and structural order parameters that results in simultaneous ferroelectricity and antiferromagnetism is BiFeO₃. Extensive efforts to obtain single phase BiFeO₃ by solid-state reaction without secondary phases was proved to be difficult if not impossible [11–13]. In this view, alternative soft-chemical routes such as sol-gel method [14–16], ultrasonication technique [17], microemultion technique [18] and hydrothermal process [19] have been developed.

Microwave-assisted hydrothermal method is a combination of the hydrothermal and microwave methods, fulfilling the advantages of microwaves and water heat [20]. BiFeO₃ synthesis by this method was carried out using NaOH and KOH mineralizers [21–24]. The research aimed the influence of several

_

¹ Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest

² ENSIL-ENSCI Limoges, FRANCE

^{*}corresponding author: e-mail: ecaterina.andronescu@upb.ro (Ecaterina ANDRONESCU)

parameters, like mineralizer concentration, concentration of the precursors, temperature and time of treatment. To the best of our knowledge, there is no study regarding microwave-assisted hydrothermal synthesis of BiFeO₃ particles at a pressure higher than the vapor pressure of water (\approx 15 bar at 200°C).

The aim of the present study is to investigate the influence of the mineralizer under increased pressure of 40 bar in the formation mechanism of $BiFeO_3$ particles for various (4 – 14 M) KOH concentrations.

2. Materials and methods

BiFeO₃ particles were prepared by microwave assisted hydrothermal method. The chemical reagents used in the present work were $Bi(NO_3)_3 \cdot 5H_2O$, $Fe(NO_3)_3 \cdot 9H_2O$ and KOH. All the reagents were purchased from SigmaAldrich and were of analytical grade. Firstly, bismuth nitrate and iron nitrate were dissolved in distilled water. Then, KOH was added slowly to the Bi-Fe solution to coprecipitate Bi^{3+} and Fe^{3+} ions under constant stirring until a brown precipitate was obtained. KOH concentration was varied from 6M to 14 M. The suspension was poured into a Teflon-lined stainless-steel vessel for microwave-assisted hydrothermal treatment in Milestone Synthwave equipment in different conditions. One batch was treated at 150° C for 1 h, under 40 bar pressure and the other was treated at 200° C for 1 h, under 40 bar pressure. Then, the obtained powders were filtered, washed with distilled water until pH = 7 and dried at 60° C for 12 h.

Phase analysis was performed by X-ray diffraction (PANalytical Empyrean) using Ni-filtered CuK α radiation (λ = 1.5418 Å) after precipitation and microwave-assisted hydrothermal processes. XRD patterns were measured in 20 range of 10-80° with a step size 0.02° and a counting time per step of 255 s. Phase content and unit cell parameters were obtained through Rietveld refinement in HighScore Plus 3.0.e software. Local symmetry was determined by Raman spectrometry (Horiba LabRAM HR Evolution) with 514 nm Argon ion laser in 50-700 cm⁻¹ spectral range. Morphology was studied by Scanning Electron Microscopy with field emission gun (FEI Quanta Inspect F50) at an accelerating voltage of 30 kV. Vibrating sample magnetometry (LakeShore 7404-s VSM) investigated the magnetic behavior of the processed powders.

3. Results and discussion

The influence of KOH concentration in the precursor solution and hydrothermal treatment was studied in what concerns the phase composition after coprecipitation step and microwave-assisted hydrothermal treatments. Fig. 1 illustrates the XRD patterns after coprecipitation.

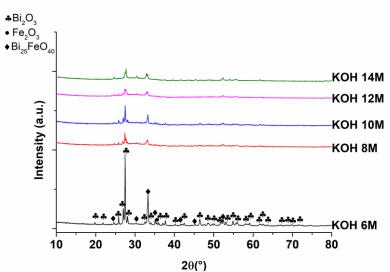


Fig. 1. XRD patterns of powders after coprecipitation step for various concentrations of KOH: 6M, $8M,\,10M,\,12M$ and 14M

Peak profiles show a lower degree of crystallinity as the KOH concentration increases, which is observed due to the broadening of the peaks and decrease of intensity. Phase composition analysis showed obtaining α -Bi₂O₃ (ICDD PDF4+ 04-003-2034 [25]), α -Fe₂O₃ (ICDD PDF4+ 04-015-9576 [26]) and Bi₂₅FeO₄₀ (ICDD PDF4+ 00-046-041).

Microwave-assisted hydrothermal treatment at 150°C and 40 bar for 1 h promoted the reaction between the phases obtained by coprecipitation. Fig. 2 depicts XRD patterns measured on the powders obtained after the treatment.

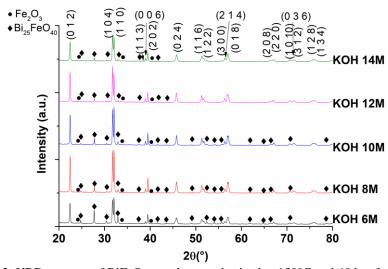


Fig. 2. XRD patterns of BiFeO₃ powders synthesized at 150°C and 40 bar for 1 h

At this stage, independent of KOH concentration, BiFeO₃ with rhombohedral distorted perovskite structure is formed (ICDD PDF4+ 01-081-9728 [27]). Besides, there are still unreacted α -Fe₂O₃ and Bi₂₅FeO₄₀. The amount of secondary phases decreases with the increase of KOH concentration, evidenced by the decrease of the intensities of the corresponding phases.

The powders obtained by treatment at 200°C and 40 bar for 1 h show single phase composition starting with a concentration of 8 M KOH (Fig. 3).

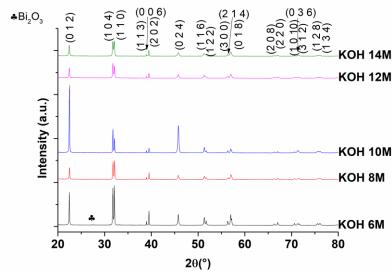


Fig. 3. XRD patterns of BiFeO₃ powders synthesized at 200°C and 40 bar for 1 h

At a concentration of KOH of 6 M, there is also present a diffraction peak with a low intensity at $2\theta = 27.45^{\circ}$, which most probably corresponds to Bi_2O_3 . This may occur because of different solubility of Bi^{3+} and Fe^{2+} when the concentration of KOH is low [28]. As the concentration of KOH increases from 8 M to 14 M, the profiles of the peaks show a decrease in the crystallinity degree. Interestingly, at 10 M one can notice a preferential orientation along [012] direction which is evidenced by the increase of intensity of the peaks corresponding to (012) and (024) crystallographic planes.

XRD patterns were further refined by Rietveld method in order to assess quantitatively the phase composition and to determine the unit cell parameters for the powders synthetized at 200°C. Fig. 4 shows the evolution of composition versus KOH concentration after coprecipitation step (CP) and microwave-assisted hydrothermal treatments (M-H). By looking at the trends, it may be concluded that both the concentration of KOH and the treatment temperature have a crucial role in what concerns obtaining BiFeO₃ powders without secondary phases. Besides, this representation also suggests the reaction pathway. At room temperature, Bi³⁺ and Fe³⁺ ions react with KOH to form crystalline Bi₂O₃, Fe₂O₃

and an intermediate sillenite-type crystal $Bi_{25}FeO_{40}$. When increasing the temperature and pressure in the hydrothermal reactor, several processes may occur. On the one hand, the reaction between Bi_2O_3 and Fe_2O_3 as well as the reaction between $Bi_{25}FeO_{40}$ and Fe_2O_3 is promoted. The concentration of KOH also plays a crucial role because the higher the concentration the lower the crystallinity degree, which speeds the reaction between components. On the other hand, at $200^{\circ}C$ there is a competition between crystallization and dissolution for Bi^{3+} , which may affect the stoichiometry in $BiFeO_3$.

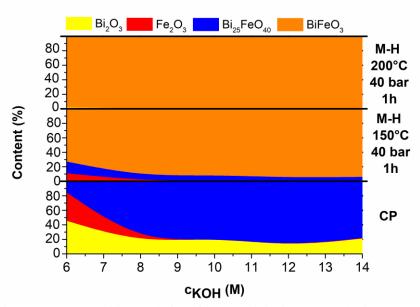


Fig. 4. Phase composition evolution after coprecipitation (CP) and microwave-hydrothermal treatment at 150°C and 200°C

The evolution of unit cell parameters, crystallite size, microstrain and crystallinity degree for different concentrations of KOH obtained from Rietveld refinement are shown in Table 1. The values of R_{exp} , R_p , R_{wp} and χ^2 parameters indicated a high quality data fit.

When increasing the concentration of KOH from 6 M to 8M, a, c and V increase, as a result of incorporation of $\mathrm{Bi^{3+}}$ ions in the perovskite lattice, as in the case of 6 M there is also 1.5% $\mathrm{Bi_2O_3}$ secondary phase. As the concentration further increases, the trend for unit cell parameter c is a decreasing one, except the 10 M concentration where is present a preferential orientation on [012] direction as stated before. The degree of crystallinity decreases with the increase of concentration, except the case of 10 M where the orientation promotes faster crystallization. Average crystallite size and microstrain vary as expected. Thus,

the average crystallite size is decreasing and the microstrain is increasing when increasing the concentration of KOH from 6 to 14 M.

 ${\it Table~1}$ Unit cell parameters, average crystallite size, microstrain and crystallinity degree for powders treated at 200 $^{\circ}{\rm C}$

101 powders treated at 200 C								
	6 M	8 M	10 M	12 M	14 M			
a (Å)	5.580660 ±	5.582918 ±	5.582330 ±	5.581063 ±	5.583564 ±			
	0.000120	0.000225	0.000269	0.000292	0.000295			
c (Å)	13.872090 ±	13.876740 ±	13.879020 ±	13.872740 ±	13.868180 ±			
	0.000334	0.000616	0.000845	0.000817	0.000831			
V (Å ³)	374.1483	374.5766	374.5589	374.2198	374.4322			
< D > (nm)	71.52 ± 35.89	44.71 ± 24.42	36.21 ± 20.48	35.91 ± 15.48	27.08 ± 12.57			
< S > (%)	0.12 ± 0.01	0.21 ± 0.04	0.26 ± 0.06	0.25 ± 0.03	0.33 ± 0.05			
Crystallinity (%)	65.58	58.04	65.74	56.21	55.90			
$\mathbf{R}_{\mathrm{exp}}$	4.73345	5.88156	5.13509	5.8494	5.59764			
$\mathbf{R}_{\mathbf{p}}$	4.74719	5.33156	8.26663	5.57075	4.63677			
Rwp	7.16821	8.07722	12.92238	8.01321	7.06300			
χ^2	2.29333	1.88599	6.33270	1.87668	1.59209			

The powders obtained at 200°C were further investigated in terms of local symmetry, morphology and magnetic behavior.

Raman spectroscopy (Fig. 5) was performed to support Rietveld analysis of the XRD patterns.

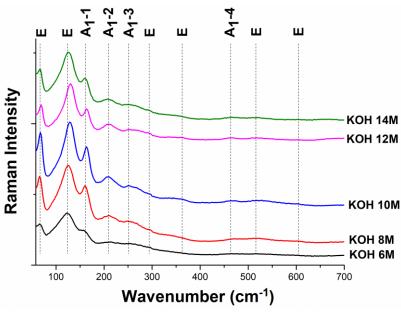


Fig. 5. Raman spectra of BiFeO₃ powders synthesized at 200°C

The active Raman modes of BiFeO₃ with rhombohedral distorted perovskite structure belonging R3c space group may be summarized using the irreducible representation of $\Gamma_{\text{Raman, R3c}} = 4A_I + 9E$ [29]. A₁-1 and A₁-2 modes are attributed to Bi-O bonds and, in this case, they shift to higher frequency side for 10 M and 12 M KOH concentration. This suggests that the mass of A-site in the perovskite structure is lower comparing to the other structures obtained in different conditions. A possible explanation is that in those cases, there is present a partial dissolution of Bi³⁺ from perovskite lattice.

FE-SEM images, particle size distribution and EDS analysis on BiFeO₃ powders obtained at 200°C for 6 M KOH concentration are shown in Fig. 6.

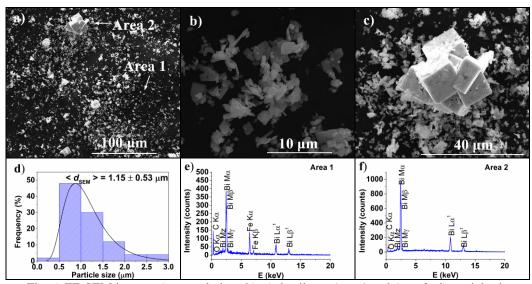


Fig. 6. FE-SEM images a) general view, b), c) details on Area 1 and Area 2, d) particle size distribution, e), f) EDS analysis on Area 1 and Area 2 at 6 M KOH concentration

The general view (Fig. 6 a)) evidence two types of morphologies. Area 1 (Fig. 6 b)) shows particles of 1.15 μ m with irregular morphology. EDS spectrum on Area 1 (Fig. 6 e)) confirms the presence of BiFeO₃. Area 2 (Fig. 6 c)) is attributed to Bi₂O₃ secondary phase, as in this case the EDS spectrum (Fig. 6 f)) shows no contribution from iron. Bi₂O₃ particles exhibit cubic morphology and a tendency for agglomeration.

The powders prepared at higher KOH concentration of 8, 10, 12 and 14 M consist of aggregates of microcrystalline building units. At 8 M KOH concentration (Fig. 7 a)), the aggregates of flakes building units (Fig. 7 b)) show a cvasi-spherical shape. At 10 M KOH concentration, the cubic building units assemble face to face like the blocks in a Rubik's Cube (Fig. 7 d) and e)) consistent with Suzuki *et al.* findings [30]. With a further increase in the concentration, the building units become more round edged and have an irregular

shape (Fig 7. h) and k)). The aggregates in the case of 12 and 14 M KOH (Fig. 7 f) and j)) concentration show spherical morphology. The average size of building unit decreases with the increase of KOH concentration from 5.35 μ m at 8M to 1.57 μ m at 14 M. The particle size distribution (Fig. 7 c), f), i) and l)) is single modal lognormal and narrow for 8 and 10 M and single modal but large for 12 and 14 M.

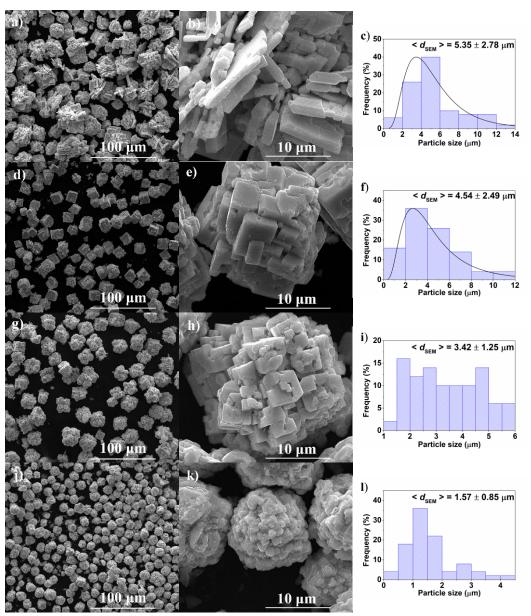


Fig. 7. a), d), g), j) FE-SEM general view, b), e), h), k) FE-SEM detail and c), f), i), l) particle size distribution at 8, 10, 12 and 14 M KOH concentration

Table 2 presents the elemental analysis of BiFeO₃ powders synthesized at 200°C. Although EDS is a semi-quantitative analysis and the error bars are relatively large, Bi/Fe ratio determined from these data support Raman investigations. Thus, in the case of 10 and 12 M KOH concentrations, Bi/Fe ratio is 0.95 and, respectively 0.83, which indicate a deficit of Bi³⁺ on the A-site of the distorted perovskite structure.

Elemental analysis of RiFeO₃ nowders synthesized at 200°C.

Table 2

Elemental analysis of BiFeO ₃ powders synthesized at 200°C						
KOH concentration	EDS quantification	ОК	Fe K	Bi L	Bi/Fe	
8 M	Atomic %	48.61	25.73	25.66	0.99	
O IVI	Error %	16.61	6.32	9.35		
10 M	Atomic %	51.43	24.9	23.67	0.95	
10 M	Error %	16.44	6.35	13		
12 M	Atomic %	52.92	25.66	21.42	0.83	
12 WI	Error %		6.15	12.9	0.83	
14 M	Atomic %	52.48	24.05	23.47	0.97	
14 IVI	Error %		6.64	12.47	0.97	

Magnetization versus field curves and typical parameters obtained for BiFeO₃ powders synthetized at 200°C are shown in Fig. 8 and Table 3.

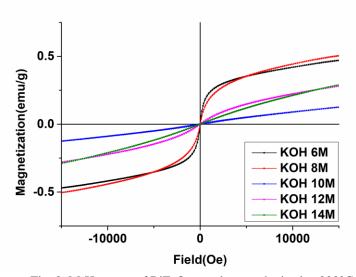


Fig. 8. M-H curves of BiFeO₃ powders synthetized at 200°C

For 6 and 8 M KOH concentrations, the curves exhibit a paramagnetic behavior, which we assume that is linked to non-crystalline iron reach phases,

which may not be identified by XRD measurements. At higher concentrations, the curves exhibit typical BiFeO₃ antiferromagnetic behavior.

H_C, M_S, M_r of BiFeO₃ powders synthesized at 200°C

Table 3

	KOH 6 M	KOH 8 M	KOH 10 M	KOH 12 M	KOH 14 M		
$H_{\rm C}$	2.2614	3.138	175.84	54.36	43.15		
$M_{\rm S}$	0.4699	0.5032	0.1035	0.2791	0.2877		
M_R	0.0014	0.0011	0.0018	0.0026	0.0011		

When assessing the coercitivity (Table 3), it may be noticed that the highest value is obtained for 10 M KOH concentration. This may suggest that preferential orientation observed in crystal growth may have an impact on the magnetic behavior of BiFeO₃.

4. Conclusions

Bismuth ferrite powders with micrometer-ranged particles were prepared by microwave-assisted hydrothermal method. The temperature of the hydrothermal treatment and the concentration of KOH are important parameters for obtaining secondary phase free compositions, as evidenced by XRD measurements. After coprecipitation step, the powders consist of Bi₂O₃, Fe₂O₃ and Bi₂₅FeO₄₀ in different ratios, dependent on the concentration of KOH. When the concentration increases, the formation of Bi₂₅FeO₄₀ intermediate is promoted. When treating the precursor solution under microwave-hydrothermal conditions at 40 bar and 150°C for 1h, the process of BiFeO₃ formation is not complete, therefore resulting secondary phases of Bi₂₅FeO₄₀ and Fe₂O₃. The trend versus KOH concentration is similar to that observed after coprecipitation step. BiFeO₃ particles can be successfully synthesized at 40 bar under microwave-hydrothermal conditions at a temperature of 200°C and a concentration of KOH of at least 8M. At 6M, the composition consisted of 98.5% BiFeO₃ and 1.5% Bi₂O₃ as evidenced by Rietveld refinement. Moreover, for the concentration of 10 M KOH, one can notice a preferential orientation along [012] direction. Raman spectroscopy and EDS analysis showed the possibility of controlling Bi/Fe ratio in highly basic solutions. Different solubility of Bi³⁺ and Fe³⁺ in KOH solutions results in a partial dissolution of Bi₂O₃ at 200°C and poor control of Bi/Fe ratio in BiFeO₃ at KOH concentrations of 10 and 12 M. Particle and aggregates morphology depicted by FE-SEM investigations showed a tendency to form irregular shaped particles at KOH concentration of 6 M, for which the reaction is not complete. When increasing the concentration, BiFeO₃ particles exhibit regular shapes from cubic at 8 M to cvasi-spherical at 14 M. These particles show a high degree of aggregation into uniform shapes and sizes for all concentration between 8 and 14 M. The average size of the building units of aggregates increases from 1.15 μ m at 6 M to 5.35 μ m at 8 M and then decreases to 1.57 μ m at 14 M KOH concentrations. M-H curves characteristics illustrate that Bi/Fe ratio and preferential orientation of crystal growth influence the magnetic behavior of BiFeO₃ crystalline powders.

Acknowledgement

Microwave-assisted hydrothermal treatment, SEM and Raman spectroscopy characterizations were possible thanks to Project POSCCE, No.638/12.03.2014.

REFERENCES

- [1]. *Gao*, *X.*; *Dai*, *Y.*; *Fu*, *F.*; *Hua*, *X.* 2D laminated cylinder-like BiFeO₃ composites: Hydrothermal preparation, formation mechanism, and photocatalytic properties. Solid State Sci. **62**, 2016, pp. 6–12.
- [2]. Duan, Q.; Kong, F.; Han, X.; Jiang, Y.; Liu, T.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Synthesis and characterization of morphology-controllable BiFeO₃ particles with efficient photocatalytic activity. *Mater. Res. Bull.* **112**, 2019, pp. 104–108.
- [3]. *Li, S.; Zhang, G.; Zheng, H.; Zheng, Y.; Wang, P.* Stability of BiFeO₃ nanoparticles via microwave-assisted hydrothermal synthesis in Fenton-like process. Environ. Sci. Pollut. Res. **24**, 2017, pp. 24400–24408.
- [4]. Bera, S.; Ghosh, S.; Shyamal, S.; Bhattacharya, C.; Basu, R.N. Photocatalytic hydrogen generation using gold decorated BiFeO₃ heterostructures as an efficient catalyst under visible light irradiation. Sol. Energy Mater. Sol. Cells **194**, 2019, pp. 195–206.
- [5]. Zhu, K.M.; Ma, S.Y.; Pei, S.T.; Tie, Y.; Zhang, Q.X.; Wang, W.Q.; Xu, X.L. Preparation, characterizaton and formaldehyde gas sensing properties of walnut-shaped BiFeO₃ microspheres. Mater. Lett. **246**, 2019, pp. 107–110.
- [6]. Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U. V; et al. Epitaxial BiFeO₃ multiferroic thin film heterostructures. Science **299**, 2003, pp. 1719–1722.
- [7]. Čebela, M.; Zagorac, D.; Batalović, K.; Radaković, J.; Stojadinović, B.; Spasojević, V.; Hercigonja, R. BiFeO₃ perovskites: A multidisciplinary approach to multiferroics. Ceram. Int. **43**, 2017, pp. 1256–1264.
- [8]. Lee, J.H.; Fina, I.; Marti, X.; Kim, Y.H.; Hesse, D.; Alexe, M. Spintronic functionality of BiFeO₃ domain walls. Adv. Mater. **26**, 2014, pp. 7078–7082.
- [9]. *Kang, Y.Q.; Cao, M.S.; Yuan, J.; Shi, X.L.* Microwave absorption properties of multiferroic BiFeO₃ nanoparticles. Mater. Lett. **63**, 2009, pp. 1344–1346.
- [10]. Rajaee, A.; Wensheng, X.; Zhao, L.; Wang, S.; Liu, Y.; Wu, Z.; Wang, J.; Si-Shen, F. Multifunctional bismuth ferrite nanoparticles as magnetic localized dose enhancement in radiotherapy and imaging. J. Biomed. Nanotechnol. 14, 2018, pp. 1159–1168.
- [11]. Rodrigues, H.O.; Pires, G.F.M.; Almeida, J.S.; Sancho, E.O.; Ferreira, A.C.; Silva, M.A.S.; Sombra, A.S.B. Study of the structural, dielectric and magnetic properties of Bi₂O₃ and PbO addition on BiFeO₃ ceramic matrix. J. Phys. Chem. Solids **71**, 2010, pp. 1329–1336.
- [12]. Lufaso, M.W.; Vanderah, T.A.; Pazos, I.M.; Levin, I.; Roth, R.S.; Nino, J.C.; Provenzano,

- *V.; Schenck, P.K.* Phase formation, crystal chemistry, and properties in the system Bi₂O₃-Fe₂O₃-Nb₂O₅. J. Solid State Chem. **179**, 2006, pp. 3900–3910.
- [13]. *Bernardo, M.S.; Jardiel, T.; Peiteado, M.; Caballero, A.C.; Villegas, M.* Reaction pathways in the solid state synthesis of multiferroic BiFeO₃. J. Eur. Ceram. Soc. **31**, 2011, pp. 3047–3053.
- [14]. Sankar Ganesh, R.; Sharma, S.K.; Sankar, S.; Divyapriya, B.; Durgadevi, E.; Raji, P.; Ponnusamy, S.; Muthamizhchelvan, C.; Hayakawa, Y.; Kim, D.Y. Microstructure, structural, optical and piezoelectric properties of BiFeO₃ nanopowder synthesized from sol-gel. Curr. Appl. Phys. **17**, 2017, pp. 409–416.
- [15]. Wang, T.; Song, S.H.; Ma, Q.; Ji, S.S. Multiferroic properties of BiFeO₃ ceramics prepared by spark plasma sintering with sol-gel powders under an oxidizing atmosphere. Ceram. Int. 45, 2019, pp. 2213–2218.
- [16]. *Majid, F.; Mirza, S.T.; Riaz, S.; Naseem, S.* Sol-Gel Synthesis of BiFeO₃ Nanoparticles. Mater. Today Proc. **2**, 2015, pp. 5293–5297.
- [17]. Basith, M.A.; Ngo, D.T.; Quader, A.; Rahman, M.A.; Sinha, B.L.; Ahmmad, B.; Hirose, F.; Mølhave, K. Simple top-down preparation of magnetic Bi_{0.9}Gd_{0.1}Fe_{1-x}Ti_xO₃ nanoparticles by ultrasonication of multiferroic bulk material. Nanoscale **6**, 2014, pp. 14336–14342.
- [18]. *Das, N.; Majumdar, R.; Sen, A.; Maiti, H.S.* Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques. Mater. Lett. **61**, 2007, pp. 2100–2104.
- [19]. *Zhang, H.; Kajiyoshi, K.* Hydrothermal synthesis and size-dependent properties of multiferroic bismuth ferrite crystallites. J. Am. Ceram. Soc. **93**, 2010, pp. 3842–3849.
- [20]. *Yang, G.; Park, S.J.* Conventional and microwave hydrothermal synthesis and application of functional materials: A review. Materials (Basel). **12**, 2019.
- [21]. Li, S.; Nechache, R.; Davalos, I.A.V.; Goupil, G.; Nikolova, L.; Nicklaus, M.; Laverdiere, J.; Ruediger, A.; Rosei, F. Ultrafast microwave hydrothermal synthesis of BiFeO₃ nanoplates. J. Am. Ceram. Soc. **96**, 2013, pp. 3155–3162.
- [22]. Zheng, Y.Q.; Tan, G.Q.; Miao, H.Y.; Xia, A.; Ren, H.J. Self-assembly growth of BiFeO3 powders prepared by microwave-hydrothermal method. Mater. Lett. **65**, 2011, pp. 1137–1140.
- [23]. Wang, Z.; Zhu, J.; Xu, W.; Sui, J.; Peng, H.; Tang, X. Microwave hydrothermal synthesis of perovskite BiFeO₃ nanoparticles: An insight into the phase purity during the microwave heating process. Mater. Chem. Phys. **135**, 2012, pp. 330–333.
- [24]. Prado-Gonjal, J.; Villafuerte-Castrejon, M.E.; Fuentes, L.; Moran, E. Microwave-hydrothermal synthesis of the multiferroic BiFeO₃. Mater. Res. Bull. **44**, 2009, pp. 1734–1737.
- [25]. Malmros, G. The Crystal Structure of α-Bi₂O₃. Acta Chem. Scand. 24, 1970, pp. 384–396.
- [26]. *Hill, A.H.; Jiao, F.; Bruce, P.G.; Harrison, A.; Kockelmann, W.; Ritter, C.* Neutron Diffraction Study of Mesoporous and Bulk Hematite a-Fe₂O₃. Chem. Mater. **20**, 2008, pp. 4891–4899.
- [27]. Kiyanagi, R.; Yamazaki, T.; Sakamoto, Y.; Kimura, H.; Noda, Y.; Ohyama, K.; Torii, S.; Yonemura, M.; Zhang, J.; Kamiyama, T. Structural and magnetic phase determination of (1 x)BiFeO₃-xBaTiO₃ solid solution. J. Phys. Soc. Japan 81, 2012, pp. 1–6.
- [28]. Xu, X.; Xu, Q.; Huang, Y.; Hu, X.; Huang, Y.; Wang, G.; Hu, X.; Zhuang, N. Control of crystal phase and morphology in hydrothermal synthesis of BiFeO₃ crystal. J. Cryst. Growth **437**, 2016, pp. 42–48.
- [29]. *Rao, T.D.; Karthik, T.; Asthana, S.* Investigation of structural, magnetic and optical properties of rare earth substituted bismuth ferrite. J. Rare Earths **31**, 2013, pp. 370–375.
- [30]. Suzuki, K.; Tokudome, Y.; Tsuda, H.; Takahashi, M. Morphology control of BiFeO₃ aggregates via hydrothermal synthesis. J. Appl. Crystallogr. **49**, 2016, pp. 168–174.