
U.P.B. Sci. Bull., Series A, Vol. 83, Iss. 1, 2021 ISSN 1223-7027

p(·)

PARAMETER MARCINKIEWICZ INTEGRAL ON 
NON-HOMOGENEOUS MORREY SPACE WITH VARIABLE 

EXPONENT

Guanghui LU1

In this paper, the author proves that the parameter Marcinkiewicz integral Mρ is

bounded on Morrey space with variable exponent Mq(·)
(X)N over the non-homogeneous

space (X, d, µ). Meanwhile, the boundeness of commutator M
ρ
b generated by the regular

bounded mean oscillation space (= RBMO) and Mρ on the M
q(·)
p(·) (X)N is also obtained.

As corollaries, the boundeness of the Mρ and commutator the M
ρ
b on the Lebesgue space

with variable exponent is also obtained.
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1. Introduction

During the past fifteen and twenty years, many authors have paid much attention
to study the classical theory of harmonic analysis with non-doubling measure which only
satisfies the polynomial growth condition. For example, in 2005, Sawano and Tanaka [13]
gave out the definition of Morrey space, and respectively established the boundedness of
the Hardy-Littlewood maximal operator, fractional integral and Marcinkiewicz integral. In
2007, Hu et. al showed that the Marcinkiewicz integral M is bounded on Lebesgue space
Lp(µ) with p ∈ (1,∞), and bounded from the Hardy space H1(µ) into the Lebesgue space
L1(µ) (see [3]). The further research about the integral operators or function spaces under
non-doubling measure, we can see [6, 7, 13, 17, 18] and the references therein.

Regarding as a generation of the classical Lebesgue space, Orlicz in 1931 first intro-
duced the definition of Lebesgue space with variable exponent (see [11]). Fortunately, Orlicz
et.al have researched a wide class of space, namely, Orlicz space and Musielak-Orlicz space
(see [8, 9]). However, up to 1991, the Lebesgue space with variable exponent Lp(·)(Rn)
and the Sobolev space with variable exponent Wκ,p(·)(Rn) are systematically studied by
Kováčik and Rákosnik [5]. Since then, the spaces with variable exponent on Rn have been
widely studied, for example, Wang [16] proved that Marcinkiewicz integral operator and its
commutator are bounded on Herz space with variable exponent. The more redevelopment
about the space, we can see [1, 2, 10].

Let X := (X, d, µ) be a quasimetric measure space, if µ is a complete measure, and
there exists a non-negative real-valued function (quasimetric) d on X × X satisfying the
following conditions:

(i) d(x, x) = 0 for all x in X; (ii) d(x, y) > 0 for all x 6= y, x, y ∈ X;
(iii) for all x, y, z ∈ X, there exists a constant a1 > 0, such that d(x, y) ≤ a1(d(x, z)+

d(y, z));
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(iv) there exists a constant a0 > 0, such that d(x, y) ≤ a0d(y, x) for all x, y ∈ X.
Moreover, we always assume that the balls B(x, r) := {y ∈ X : d(x, y) < r} are

measurable, 0 ≤ µ(B(x, r)) <∞, µ(X) <∞ and µ({x}) = 0 for all x ∈ X and r > 0 in this
paper.

A measure µ on X is said to satisfy the growth condition, if there exists a positive
constant C such that, for all x ∈ X and r > 0,

µ(B(x, r)) ≤ Cr. (1.1)

Then the (X, d, µ) is called a non-homogeneous space. In this setting, we will study the
boundedness of the parameter Marcinkiewicz integral Mρ and its commutator Mρ

b on Morrey
space with variable exponent over the (X, d, µ). In 2010, Vakhtang and Alexander [15] proved
that the modified maximal function M and the fractional integral with variable exponent

Iα(·) is respectively bounded from the Morrey space with variable exponent M
q(·)
p(·) (X)N into

the M
q(·)
p(·) (X)Nā, where Nā is a positive constant satisfying N ≥ 1 and ā := a1(a1(a0+1)+1)

with a1, a0 > 0. Motivated by this, we will mainly prove that the parameter Marcinkiewicz

integral Mρ is bounded from the M
q(·)
p(·) (X)N into the M

q(·)
p(·) (X)Nā, and the commutator

M
ρ
b generated by the regular bounded mean oscillation space (= RBMO) and Mρ on the

M
q(·)
p(·) (X)N is also obtained.

Suppose that p is a µ-measurable function on X. We denote

p−(E) := inf
E
p(x) and p+(E) := sup

E
p(x).

Moreover, we simply abbreviate p− := p−(X) and p+ := p+(X).

Definition 1.1. [15] Let N ≥ 1 be a constant. Suppose that p is a function on X such that
0 < p− < p+ <∞. We say that p ∈ P(N) if there is a constant C > 0 such that

[µ(B(x,Nr))]p−(B(x,r))−p+(B(x,r)) ≤ C (1.2)

for all x ∈ X and r > 0.

Definition 1.2. [15] Let 0 < p− ≤ p+ <∞. We say that the function p on X satisfies the
log-Hölder continuity condition p ∈ LH(X) if

|p(x)− p(y)| ≤ A

− log(d(x, y))
, d(x, y) ≤ 1

2
,

where the positive constant A does not depend on x, y ∈ X.

For any ball B, we respectively denote its center and radius by cB and rB (or r(B)).
Let α > 1 and β > α, we say that ball B is an (α, β)-doubling ball if µ(αB) ≤ βµ(B), where
αB denotes the ball with the same center as B and r(αB) = αr(B). Especially, for any

given ball B, we denote by B̃ the smallest doubling ball which contains B and has the same
center as B. Given two balls B ⊂ S in X, define

KB,S := 1 +

NB,S∑
k=1

µ(2kB)

r(2kB)
,

where NB,S is denoted by the smallest integer k such that r(2kB) ≥ r(S).
The following definition of the regular bounded mean oscillation space is from [14].

Definition 1.3. [14] Let τ ∈ (1,∞). A function f ∈ L1
loc(µ) is said to be in the space

RBMO(µ) if there exists a constant C > 0 such that for any ball B centered at some point
of supp(µ),

1

µ(τB)

∫
B

|f(y)−mB̃(f)|dµ(y) ≤ C (1.3)
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and

|mB(f)−mS(f)| ≤ CKB,S (1.4)

for any two doubling balls B ⊂ S, where mB(f) represents the mean value of f over ball B.
Moreover, the minimal constant C satisfying (1.3) and (1.4) is defined to be the norm of f
in the space RBMO(µ) and denoted by ‖f‖RBMO(µ).

We give out the definition of parameter Marcinkiewicz integral on X.

Definition 1.4. Let K be a locally integrable function on X ×X \ {(x, y) : x = y}. Assume
that there exists a constant C > 0 such that for all x, y ∈ X with x 6= y,

|K(x, y)| ≤ C

d(x, y)
, (1.5)

and for any y, y′ ∈ X, d(x, y) ≥ 2d(x, x′) and ε ∈ (0, 1],[
|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)|

]
≤ C [d(x, x′)]ε

[d(x, y)]1+ε
. (1.6)

The parameter Marcinkiewicz integral Mρ(f) associated to the above kernel K is defined by,
for x ∈ X and ρ ≥ 0,

Mρ(f)(x) =

(∫ ∞
0

∣∣∣∣ 1

tρ

∫
d(x,y)≤t

K(x, y)[d(x, y)]ρf(y)dµ(y)

∣∣∣∣2 dt

t

) 1
2

. (1.7)

Given a function b ∈ RBMO(µ), the commutator M
ρ
b(f) associated with the Mρ(f)

is defined by

M
ρ
b(f)(x) =

(∫ ∞
0

∣∣∣∣ 1

tρ

∫
d(x,y)≤t

K(x, y)[d(x, y)]ρ(b(x)− b(y))f(y)dµ(y)

∣∣∣∣2 dt

t

) 1
2

. (1.8)

We now recall the notation of Morrey space with variable exponent M
p(·)
q(·) (X)N in

[15].

Definition 1.5. [15] Let N ≥ 1 be a constant. Suppose that 1 < q− ≤ q(x) ≤ p(x) ≤ p+ <

∞. Then the Morrey space with variable exponent M
p(·)
q(·) (X)N is defined by

M
p(·)
q(·) (X)N = {f is measurable : ‖f‖

M
p(·)
q(·) (X)N

<∞},

where

‖f‖
M

p(·)
q(·) (X)N

:= sup
x∈X, r>0

[µ(B(x,Nr))]
1

p(x)
− 1

q(x) ‖f‖Lq(·)(B(x,r)). (1.9)

Remark 1.1. (1) If we take p(x) ≡ q(x) in (1.9), then the M
p(·)
q(·) (X)N is just the variable

exponent Lebesgue space Lp(·)(X). Respectively, its definition as follows

‖f‖Lp(·)(X) = inf{λ > 0 : Sp(f/λ) ≤ 1},

where 1 ≤ p−(·) ≤ p(·) <∞ and Sp(f) =
∫
X
|f(x)|p(x)dµ(x) <∞. For the other properties

of Lp(·), we can see [5, 12].

(2) If (X, d, µ) := (Rn, | · |,dx), p(x) and q(x) are the constants, then the M
p(·)
q(·) (X)N

as in (1.9) is just the Morrey space Mp
q (Rn) under non-doubling measure (see [13]).

Finally, we make some conventions on notation. Throughout the whole paper, C
represents a positive constant being independent of the main parameters. For any subset E
of X, we use χE to denote its characteristic function. Given any q ∈ (1,∞), let q′ := q

q−1

denote its conjugate index.
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2. Parameter Marcinkiewicz integral Mρ

In this section, we mainly establish the boundedness of the parameter Marcinkiewicz
integral Mρ on the Lebesgue space with variable exponent Lp(·)(X) and on the Morrey space

with variable exponent M
q(·)
p(·) (X)N .

The main theorems of this section are stated as follows.

Theorem 2.1. Let K satisfy the conditions (1.6) and (1.7), 1 < p− ≤ p+ < ∞, N be a
constant satisfying the conditions N ≥ 1 and p ∈ P(N) defined as in (1.3). If there exists a
constant C > 0 such that, for all x ∈ X and r > 0, the following inequality

[µ(B(x,Nr))]p−(B(x,r))−p(x) ≤ C (2.1)

holds, then Mρ is bounded in Lp(·)(X).

Theorem 2.2. Let K satisfy the conditions (1.6) and (1.7), 1 < q− ≤ q(x) ≤ p(x) ≤ p+ <
∞. Suppose that N := a1(1 + 2a0) and p ∈ P(N) defined as in (1.2), q ∈ P(1). Then Mρ is

bounded from the M
p(·)
q(·) (X)N into the M

p(·)
q(·) (X)Nā.

For any f ∈ L1
loc(µ), the modified maximal function Ms,N (see [15]) is defined by

Ms,Nf(x) := sup
r>0

(
1

µ(B(x,Nr))

∫
B(x,r)

|f(y)|sdµ(y)

) 1
s

, x ∈ X, (2.2)

where N is a constant greater than of equal to 1. Moreover, when s = 1, we abbreviate
MN := M1,N . Moreover, the sharp maximal function of M ]f (see [3]) is defined by

M ]f(x) = sup
B3x

1

µ( 3
2B)

∫
B

|f(y)−mB̃(f)|dµ(y) + sup
(B,S)∈∆x

|mB(f)−mS(f)|
KB,S

. (2.3)

where ∆x = {(B,S) : x ∈ B ⊂ S and B, S doubling balls} and f ∈ L1
loc(µ).

For 0 < r <∞, let M ]
rf(x) = [M ](|f |r)(x)]

1
r for x ∈ X. A simple computation shows

that if 0 < r < 1, it has
M ]
rf(x) ≤ CrM ]f(x), x ∈ X. (2.4)

Now we establish the following lemmas on the (X, d, µ).

Lemma 2.1. Let τ ∈ (0, 1), g ∈ L1
loc(X) and µ-measurable function f satisfy the following

condition
µ({x ∈ X : |f(x)| > t}) <∞, for all t > 0,

then ∫
X

|f(x)g(x)|dµ(x) ≤
∫
X

M ]
τ (f)(x)MN (g)(x)dµ(x). (2.5)

Remark 2.1. With a way similar to that used in the duality inequality (see [12]), it is not
difficult to show that (2.5) holds. Hence, here we omit the proof.

Lemma 2.2. Let K satisfy the conditions (1.5) and (1.6), N ≥ 1, s ∈ (1,∞) and p0 ∈
(1,∞). If Mρ is bounded on L2(µ), then there exists a constant C > 0 such that, for all
f ∈ L∞(µ) ∩ Lp0(µ),

M ][Mρ(f)](x) ≤ CMs,N (f)(x).

Proof of Lemma 2.2. By applying the idea of the Theorem 9.1 in [14], it only suffices to
prove that

1

µ( 3
2B)

∫
B

|Mρ(f)(y)− hB |dµ(y) ≤ CMs,N (f)(x) (2.6)

for all x and B with x ∈ B, and

|hB − hS | ≤ CKB,SMs,N (f)(x) (2.7)
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for all ball B ⊂ S with x ∈ B, where B is arbitrary ball and S is doubling ball,

hB := mB [Mρ(fχX\ 4
3B

)] and hS := mS [Mρ(fχX\ 4
3S

)].

Now we give out the estimate for the (2.6). For a fixed ball B, x ∈ B and f ∈ L∞(µ),
decompose f as f := f1 + f2 := fχ 4

3B
+ fχX\ 4

3B
. Then, write

1

µ( 3
2B)

∫
B

|Mρ(f)(y)− hB |dµ(y) ≤ 1

µ( 3
2B)

∫
B

|Mρ(f1)(y)|dµ(y)

+
1

µ( 3
2B)

∫
B

|Mρ(f2)(y)− hB |dµ(y) =: D1 + D2.

By applying Hölder inequality, (2.2) and the (Ls(µ), Ls(µ))-boundedness of Mρ (see
[7]), we can get

D1 ≤
1

µ( 3
2B)

(∫
B

|Mρ(f1)(y)|sdµ(y)

) 1
s

[µ(B)]1−
1
s ≤ CMs,N (f)(x).

Since

D2 ≤
1

µ( 3
2B)

1

µ(B)

∫
B

∫
B

|Mρ(f2)(y)−Mρ(f2)(z)|dµ(y)dµ(z),

thus, for any y, z ∈ B, we only need to estimate |Mρ(f2)(y) −Mρ(f2)(z)|. By applying
Minkowski inequality, we have

|Mρ(f2)(y)−Mρ(f2)(z)|

≤

(∫ ∞
0

∣∣∣∣ ∫
d(y,w)≤t

K(y, w)[d(y, w)]ρf2(w)dµ(w)

−
∫
d(z,w)≤t

K(z, w)[d(z, w)]ρf2(w)dµ(w)

∣∣∣∣2 dt

t1+2ρ

) 1
2

≤

(∫ ∞
0

∣∣∣∣ ∫
d(y,w)≤t<d(z,w)

K(y, w)[d(y, w)]ρf2(w)dµ(w)

∣∣∣∣2 dt

t1+2ρ

) 1
2

+

(∫ ∞
0

∣∣∣∣ ∫
d(z,w)≤t<d(y,w)

K(z, w)[d(z, w)]ρf2(w)dµ(w)

∣∣∣∣2 dt

t1+2ρ

) 1
2

+

(∫ ∞
0

∣∣∣∣ ∫
d(y,w)≤t

K(y, w)[d(y, w)]ρf2(w)dµ(w)

−
∫
d(z,w)≤t

K(z, w)[d(z, w)]ρf2(w)dµ(w)

∣∣∣∣2 dt

t1+2ρ

) 1
2

=: E1 + E2 + E3.
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By (1.5), the Minkowski inequality, the Hölder inequality and (2.2), we have(∫ ∞
0

∣∣∣∣ ∫
d(y,w)≤t<d(z,w)

K(y, w)[d(y, w)]ρf2(w)dµ(w)

∣∣∣∣2 dt

t1+2ρ

) 1
2

≤ C
∫
X

|f2(w)|
[d(y, w)]2−ρ

(
1

[d(y, w)]2ρ
− 1

[d(z, w)]2ρ

) 1
2

dµ(w)

≤ C
∞∑
k=1

∫
2k× 4

3B\(2k−1× 4
3B)

[d(z, y)]
1
2

[d(y, w)]
3
2

|f(w)|dµ(w)

≤ C
∞∑
k=1

r
1
2

[2k−1 × 4
3r]

3
2

(∫
2k× 4

3B

|f(w)|sdµ(w)

) 1
s

[µ(2k × 4

3
B)]1−

1
s

≤ CMs,N (f)(x)

∞∑
k=1

1

2
1
2 (k−1)

≤ CMs,N (f)(x).

Hence, we have E1 ≤ CMs,N (f)(x).
With an argument similar to that used in the estimate of E1, it is not difficult to

obtain that E2 ≤ CMs,N (f)(x).
For any y, z ∈ B, by applying (1.5), (1.6), the Minkowski inequality, the Hölder

inequality and (2.2), we can deduce that

E3 ≤

(∫ ∞
0

∣∣∣∣ ∫ d(y,w)≤t
d(z,w)≤t

K(y, w)

(
[d(y, w)]ρ − [d(z, w)]ρ

)
dµ(w)

∣∣∣∣2 dt

t1+2ρ

) 1
2

+

(∫ ∞
0

∣∣∣∣ ∫ d(y,w)≤t
d(z,w)≤t

K(y, w)−K(z, w)

[d(y, w)]−ρ
f2(w)dµ(w)

∣∣∣∣2 dt

t1+2ρ

) 1
2

≤ C
∫
X\ 4

3B

|f(w)|
d(y, w)

d(y, z)[d(y, w)]ρ−1

(∫
d(y,w)≤t
d(z,w)≤t

dt

t1+2ρ

) 1
2

dµ(w)

+

∫
X\ 4

3B

|K(y, w)−K(z, w)|
[d(y, w)]−ρ

|f(w)|
(∫

d(y,w)≤t
d(z,w)≤t

dt

t1+2ρ

) 1
2

dµ(w)

≤ C
∞∑
k=1

r

[2k−1 × 4
3r]

2

(∫
2k× 4

3B

|f(w)|sdµ(w)

) 1
s

[µ(2k × 4

3
B)]1−

1
s

+C

∞∑
k=1

rε

[2k−1 × 4
3r]

1+ε

(∫
2k× 4

3B

|f(w)|sdµ(w)

) 1
s

[µ(2k × 4

3
B)]1−

1
s

≤ CMs,N (f)(x)

∞∑
k=1

1

2k−1
≤ CMs,N (f)(x).

Which, together with E1 and E2, we get (2.6).
We now estimate (2.7). For any balls B ⊂ S with x ∈ B, where B is an arbitrary ball

and S is a doubling ball, denote HB,R + 1 by H. Write

|hB − hS | ≤
∣∣∣∣mB [Mρ(fχX\2HS)]−mS [Mρ(fχX\2HS)]

∣∣∣∣
+

∣∣∣∣mB [Mρ(fχ2HS\ 4
3B

)]

∣∣∣∣+

∣∣∣∣mS [Mρ(fχ2HS\ 4
3S

)]

∣∣∣∣ =: F1 + F2 + F3.



Parameter Marcinkiewicz Integral on Non-homogeneous Morrey Space with Variable Exponent 95

With an argument similar to that used in estimate of E3, it is not difficult to get
F1 ≤ CMs,N (f)(x).

We now turn to F3. For any y ∈ B, by applying (1.5), the Minkowski inequality, the
Hölder inequality and (2.2), we have

Mρ(fχ2HS\ 4
3S

)(y)

≤
∫

2HS\ 4
3S

|K(y, z)|
[d(y, z)]−ρ

|f(z)|

(∫ ∞
d(y,z)

dt

t1+2ρ

) 1
2

dµ(z)

≤ C
H−1∑
k=1

∫
2k× 4

3S\(2k−1× 4
3S)

|f(z)|
d(y, z)

dµ(z)

≤ C
H−1∑
k=1

1

(2k−1 × 4
3rS)

(∫
2k× 4

3S

|f(z)|sdµ(z)

) 1
s

[µ(2k × 4

3
S)]1−

1
s

≤ CKB,SMs,N (f)(x).

Similarly, we also have F2 ≤ CKB,SMs,N (f)(x).
Combing the estimates for F1, F2 and F3, imply (2.7). Hence, the proof of Lemma

2.2 is finished. �

Also, we need establish the following lemmas on the modified maximal operator Ms,N .

Lemma 2.3. Let µ(X) <∞, 1 ≤ s < p− ≤ p+ <∞, N ≥ 1 be a constant and the inequality
(2.1) hold. Then Ms,N as in (2.2) is bounded on Lp(·)(X).

Lemma 2.4. Let µ(X) < ∞, 1 < s < q− ≤ q(x) ≤ p(x) ≤ p+ < ∞. Suppose that
N := a1(1 + 2a0) and p ∈ P(N) defined as in (1.3), q ∈ P(1). Then Ms,N as in (2.2) is

bounded from the M
p(·)
q(·) (X)N into the M

p(·)
q(·) (X)Nā.

The following lemma is from [12].

Lemma 2.5. [12] Let E be a subset of X such that µ(E) < ∞ and 1 ≤ p−(E) ≤ p(·) ≤
q(·) ≤ q+(E) <∞. Then the inequality

‖f‖Lp(·)(E) ≤ (1 + µ(E))‖f‖Lq(·)(E)

holds for all f ∈ Lq(·)(E).

Now we give out the proof of Lemmas 2.3 and 2.4, respectively.

Proof of Lemma 2.3. With the same spirit to the proof of the Theorem 3.1 in [15], we
first prove that for all f ∈ Lp(·)(X) such that

(1 + µ(X))‖f‖Lp(·)(X) ≤ 1 (2.8)

and all x ∈ X,

[Ms,Nf(x)]p(x) ≤ C
(
MN (|f |p(·))(x) + 1

)
. (2.9)

Let NB := B(x,Nr). Then by applying Lemma 2.5 and (2.8), it is easy to see that

‖f‖
Lp−(B)(B)

≤ 1. (2.10)
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By using Hölder inequality, (2.1) and (2.10), we can deduce that

[Ms,Nf(x)]p(x)

≤ 1

[µ(NB)]p(x)/s

[(∫
B

|f(y)|s×
p−(B)

s dµ(y)

) s
p−(B)

[µ(B)]
1− s

p−(B)

] p(x)
s

≤ C [µ(NB)]
p(x)
s −

p(x)
p−(B)

+1

[µ(NB)]p(x)/s

(
1

µ(NB)

∫
B

|f(y)|p−(B)dµ(y)

)
≤ C

(
MN (|f |p(·))(x) + 1

)
.

Hence, we prove that (2.8) holds.
Further, let us set that ‖f‖Lp(·)(X) ≤ 1 and prove that ‖Ms,Nf‖Lp(·)(X) ≤ C‖f‖Lp(·)(X).

In addition, we also assume that (1 + µ(X))‖f‖Lq(·)(X) ≤ 1. By applying the Lp−(X)-

boundedness of MN in [4], we can get∫
X

[Ms,N (f)]p(x)(x)dµ(x) ≤ C
[(∫

X

[MN (|f |
p(·)
p− )]p−(x)dµ(x)

) 1
p−

+ [µ(X)]
1

p−

]p−
≤ C

[(∫
X

|f(x)|p(x)(x)dµ(x)

) 1
p−

+ [µ(X)]
1

p−

]p−
≤ C

∫
X

|f(x)|p(x)(x)dµ(x).

What’s more, for any f satisfying only the condition ‖f‖Lp(·)(X) ≤ 1, the result holds. In

special, if we take g := f
(1+µ(X))2 , then by Lemma 2.8, we get (1+µ(X))‖g‖Lp(·)(X) ≤ 1. �

Proof of Lemma 2.4. With a slightly modified argument similar to that used in the proof
of Theorem 3.4 and Lemma 2.3 in this section, it is not difficult to obtain Lemma 2.4. Here
we do not give out the proof. �

Now let us turn to the Theorems 2.1 and 2.2.

Proof of Theorem 2.1. By applying the Lemma 2.3, Hölder inequality, (2.4) and Lemmas
2.5 and 2.6, we have∫

X

|Mρ(f)(x)g(x)|dµ(x) ≤ C
∫
X

M ]
r(Mρ(f))(x)M(g)(x)dµ(x)

≤ C
∫
X

Ms,N (f)(x)Ms,N (g)(x)dµ(x)

≤ C‖Ms,N (f)‖Lp(·)(X)‖Ms,N (g)‖Lq(·)(X) ≤ C‖f‖Lp(·)(X)‖g‖Lq(·)(X).

Further, we can get

‖Mρ(f)‖Lp(·)(X) = sup
‖g‖

Lq(·)(X)
≤1

∣∣∣∣ ∫
X

Mρ(f)(x)g(x)dµ(x)

∣∣∣∣ ≤ C‖f‖Lp(·)(X).

Thus, the proof of the Theorem 2.1 is finished. �

Proof of Theorem 2.2. By applying (1.9), (2.2), (2.3) and Lemmas 2.5 and 2.7, we have

‖Mρ(f)‖
M

p(·)
q(·) (X)Nā

≤ ‖M ][Mρ(f)]‖
M

p(·)
q(·) (X)Nā

≤ C‖M ][Mρ(f)]‖
M

p(·)
q(·) (X)Nā

≤ C‖Ms,N (f)‖
M

p(·)
q(·) (X)Nā

≤ C‖f‖
M

p(·)
q(·) (X)N

.

Thus, we complete the proof of the Theorem 2.2. �
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3. Commutator M
ρ
b on Morrey space with variable exponent

In this section, we will prove that the commutator M
ρ
b generated by the b ∈

RBMO(µ) and Mρ is bounded on Lp(·)(X) via the sharp maximal function. Besides, the

boundedness of the M
ρ
b on M

p(·)
q(·) (X)N is also obtained.

Theorem 3.1. Let b ∈ RBMO(µ), K satisfy the conditions (1.5) and (1.6), 1 < p− ≤ p+ <
∞ and N ≥ 1 be a constant. If there exists a constant C > 0 such that, for all x ∈ X and
r > 0, the following inequality

[µ(B(x,Nr))]p−(B(x,r))−p(x) ≤ C

holds, then M
ρ
b is bounded in Lp(·)(X).

Theorem 3.2. Let b ∈ RBMO(µ), K satisfy the conditions (1.5) and (1.6), 1 < q− ≤
q(x) ≤ p(x) ≤ p+ < ∞. Suppose that N := a1(1 + 2a0) and p ∈ P(N) defined as in

(1.2), q ∈ P(1). Then the M
ρ
b is bounded from the M

p(·)
q(·) (X)N into the M

p(·)
q(·) (X)Nā with

ā = a1(a1(a0 + 1) + 1).

By an argument similar to that used in the proof of the Lemma 3.4 in [3], we can get
the following lemma .

Lemma 3.1. Let b ∈ L∞(µ), K satisfy the conditions (1.5) and (1.6), N be a constant
satisfying the condition N ≥ 1, s ∈ (1,∞) and p0 ∈ (1,∞). If Mρ is bounded on L2(µ),
then there exists a positive constant C such that for all f ∈ L∞(µ) ∩ Lp0(µ) and x ∈ X,

M ][Mρ
b(f)](x) ≤ C‖b‖RBMO(µ)

{
Ms,N [Mρ(f)] + ‖f‖L∞(µ)

}
.

Now we give out the proof of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. By using Theorem 2.1, Lemmas 2.2 and 2.3, we can deduce that

‖Mρ
b(f)‖Lp(·)(X) ≤ ‖M ][Mρ

b(f)]‖Lp(·)(X) ≤ C‖b‖RBMO(µ)‖Ms,N [Mρ(f)]‖Lp(·)(X)

≤ C‖b‖RBMO(µ)‖Mρ(f)‖Lp(·)(X) ≤ C‖b‖RBMO(µ)‖f‖Lp(·)(X).

So, the proof of the Theorem 3.1 is finished. �

Proof of Theorem 3.2. By using Theorem 2.2, Lemmas 2.4 and 3.1, we have

‖Mρ
b(f)‖

M
p(·)
q(·) (X)Nā

≤ ‖M ][Mρ
b(f)]‖

M
p(·)
q(·) (X)Nā

≤ C‖b‖RBMO(µ)‖Ms,N [Mρ(f)]‖
M

p(·)
q(·) (X)Nā

≤ C‖b‖RBMO(µ)‖f‖Mp(·)
q(·) (X)N

.

Hence, the proof of Theorem 3.2 is completed. �

4. Conclusions

With the result obtained in [15], the author proves that the parameter Marcinkiewicz
integral Mρ and the commutator Mρ

b which is generated by the Mρ and the regular bounded
mean oscillation space (=RBMO) is bouned on the Morrey space with variable exponent
and the Lebesgue space with variable exponent, respectively.
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