
U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 4, 2015 ISSN 1223-7027

CONTROLLABILITY FOR THE VIBRATING STRING EQUATION

WITH MIXED BOUNDARY CONDITIONS

Alexandru Negrescu1

In this paper we study the controllability in T = π of the vibrating
string equation with mixed boundary conditions by solving a moment problem.
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1. Introduction

We consider the vibrating string equation

∂2u

∂t2
=
∂2u

∂x2
, x ∈ (0, π) , t > 0, (1)

with the following initial and mixed boundary conditions:

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0,

∂u

∂x
(0, t) = f(t), u(π, t) = 0, (2)

where f ∈ L2(0, π).

In our problem, u(x, t) denotes the vertical displacement and
∂u

∂t
(x, t) the

vertical velocity of the point at position x at time t. This problem is relevant for the
modeling of the longitudinal vibration in a spring with the end fastened at x = π and
with a traction force exerted at the end x = 0, which allows to control vibrations.

There are some significant papers which studied the controllability of the wave
equation with mixed boundary conditions, using the Hilbert Uniqueness Method:
in [2] Cui and Gao proved the exact controllability for the one-dimensional case
in a non-cylindrical domain, in [1] Cavalcanti showed the exact controllability for
the time-dependent coefficients case, in [6] Heibig and Moussaoui proved the exact
controllability in a plane domain with cracks, by using a boundary control.

In this paper, we obtain some new properties of the reachable sets, using the
Fourier series method presented in [7], and we study the exact controllability of
the mixed problem for the wave equation at T = π, using the moment problem
approach.

Denote by uf the solution of equation (1) with conditions (2).
Let us define H+ = {φ ∈ H1(0, π);φ(π) = 0} and

uk(t) =

√
2

π

∫ π

0
uf (x, t) cos

(
k +

1

2

)
xdx.
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After some computations, detailed in [8], we obtain that the function uk(t) solves
the following non-homogeneous second order differential equation:

u′′k(t) +

(
k +

1

2

)2

uk(t) = −
√

2

π
f(t),

with the initial conditions: uk(0) = u′k(0) = 0. Therefore,

uk(t) = −

√
2
π

k + 1
2

∫ t

0
f(s) sin

(
k +

1

2

)
(t− s) ds,

which implies

uf (x, t) = −
√

2

π

∞∑
k=0

1

k + 1
2

[∫ t

0
f(s) sin

(
k +

1

2

)
(t− s) ds

]
cos

(
k +

1

2

)
x. (3)

In [8] we have also shown that the map t 7→ uf (·, t) belongs to

C ([0;π],H+) ∩ C1([0;π], L2(0;π)).

For the case:
∂2φ

∂t2
=
∂2φ

∂x2
, 0 < x < π, t > 0, (4)

with the following initial and mixed boundary conditions:

φ(x, 0) = ξ(x),
∂φ

∂t
(x, 0) = η(x),

∂φ

∂x
(0, t) = 0, φ(π, t) = 0,

where ξ, η ∈ L2(0, π) with:

ξ(x) =

√
2

π

∞∑
k=0

ξk cos

(
k +

1

2

)
x and η(x) =

√
2

π

∞∑
k=0

ηk cos

(
k +

1

2

)
x,

we find the solution (see [8])

φ(x, t) =

√
2

π

∞∑
k=0

[
ξk cos

(
k +

1

2

)
t+

ηk

k + 1
2

sin

(
k +

1

2

)
t

]
cos

(
k +

1

2

)
x. (5)

The map t 7→ φ(·, t) belongs to C
(
[0;T ], dom(−A)

1
2

)
∩ C1([0;T ], L2(0;π)), for all

T > 0, where A is the operator Ah =
d2h

dx2
with

domA =

{
h ∈ H2(0, π),

dh

dx
(0) = 0, h(π) = 0

}
.

It follows that

∂φ

∂t
(x, t) =

√
2

π

∞∑
k=0

[
−
(
k +

1

2

)
ξk sin

(
k +

1

2

)
t+ ηk cos

(
k +

1

2

)
t

]
·

· cos
(
k +

1

2

)
x. (6)

We define:



Controllability for the vibrating string equation with mixed boundary conditions 159

Definition 1.1. The reachable set of the displacement at time T is

RD(T ) =
{
uf (·, T ), f ∈ L2(0, T )

}
⊆ H+

while

R(T ) =

{(
uf (·, T ), ∂u

f

∂t
(·, T )

)
, f ∈ L2(0, T )

}
⊆ H+ × L2(0, π)

is the reachable set of the pair

(
u,
∂u

∂t

)
.

We remark that R(T ) is the image of the map

ΛT : L2(0, π) → H+ × L2(0, π),

defined by:

ΛT f =

(
Λ1
T f

Λ2
T f

)
=

 uf (x, T )
∂uf

∂t
(x, T )

 .

Lemma 1.1. The adjoint operator Λ∗
T : H+ × L2(0, π) → L2(0, π) is given by:

Λ∗
T

(
ξ
η

)
=
(
Λ1∗
T ,Λ

2∗
T

)(ξ
η

)
= Λ1∗

T ξ + Λ2∗
T η = f,

with:

Λ1∗
T ξ =

∂φ1

∂t
(0, T − t)

and

Λ2∗
T η =

∂φ2

∂t
(0, T − t),

where φ1(x, t) solves (4) with the conditions: φ1(x, 0) = ξ(x),
∂φ1

∂t
(x, 0) = 0, and

φ2(x, t) solves (4) with the conditions: φ2(x, 0) = 0,
∂φ2

∂t
(x, 0) = η(x).

Proof. The inner product of H+ is that of H1(0, π) and the next inner product gives
us a norm equivalent with the standard norm in H1(0, π) (see [4]):

⟨φ,ψ⟩ = φ(π)ψ(π) +

∫ π

0
φ′(x)ψ′(x) dx, φ, ψ ∈ H1(0, π).
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We compute the following inner product:

⟨Λ1
T f, ξ(x)⟩H+ = ⟨uf (x, T ), ξ(x)⟩H+ =

=

√
2

π

∫ π

0
ξ′(x)

∞∑
k=0

sin

(
k +

1

2

)
x

[∫ T

0
sin

(
k +

1

2

)
(T − s)f(s) ds

]
dx

=

∫ T

0
f(s)

{√
2

π

∞∑
k=0

[∫ π

0
ξ′(x) sin

(
k +

1

2

)
xdx

]
sin

(
k +

1

2

)
(T − s)

}
ds

=

∫ T

0
f(s)

{
−
√

2

π

∞∑
k=0

[∫ π

0

(
k +

1

2

)
ξ(x) cos

(
k +

1

2

)
xdx

]
·

· sin
(
k +

1

2

)
(T − s)

}
ds

=

∫ T

0
f(s)

{
−
√

2

π

∞∑
k=0

(
k +

1

2

)
ξk sin

(
k +

1

2

)
(T − s)

}
ds.

So, [(
Λ1
T

)∗
ξ
]
(t) = −

√
2

π

∞∑
k=0

(
k +

1

2

)
ξk sin

(
k +

1

2

)
(T − t).

If we compare with (6), we see that[(
Λ1
T

)∗
ξ
]
(t) =

∂φ1

∂t
(0, T − t),

where φ1(x, t) solves (4) with the conditions φ1(x, 0) = ξ(x),
∂φ1

∂t
(x, 0) = 0.

An analogue computation shows that[(
Λ2
T

)∗
η
]
(t) =

√
2

π

∞∑
k=0

ηk cos

(
k +

1

2

)
(T − t).

We compare with (6) and we can write[(
Λ2
T

)∗
η
]
(t) =

∂φ2

∂t
(0, T − t),

where φ2(x, t) solves (4) with the conditions φ2(x, 0) = 0,
∂φ2

∂t
(x, 0) = η(x). �

2. Properties of the solution map

The characterization of the sets RD(T ) and R(T ) is very important for the
study of the properties of controllability. Now, we present some general properties
of these two sets, for T > 0.

Theorem 2.1.

1) R⊥(T ) =

{
(ξ, η) ∈ H+ × L2(0, π) :

∂φ

∂t
(0, t) = 0, ∀t ∈ (0, T ), where φ

solves (4) with respect to (ξ, η)}.
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2) R⊥
D(T ) =

{
ξ ∈ H+ :

∂φ

∂t
(0, t) = 0, t ∈ (0, T ), and φ solves (4) with

η = 0}.
3) If the solution of (4) satisfies the following implication:

∂φ

∂t
(0, t) = 0,∀t ∈ (0, T ) ⇒ φ = 0,

then R(T ) is dense in H+ × L2(0, π).
4) If the solution of (4) satisfies the following implication:

∂φ

∂t
(0, t) = 0,∀t ∈ (0, T ) ⇒ φ = 0,

then RD(T ) is dense in H+.
For T ≤ π:
5) R(T ) is closed if∫ T

0

∣∣∣∣∂φ∂t (0, t)
∣∣∣∣2 dt ≥ m0

(
|ξ|2H+

+ |η|2L2(0,π)

)
, (7)

for all (ξ, η) ∈ ImΛT .
6) RD(T ) is closed if∫ T

0

∣∣∣∣∂φ∂t (0, t)
∣∣∣∣2 dt ≥ m0|ξ|2H+

, (8)

for all ξ ∈ ImΛ1
T .

Proof. 1) and 2): We characterize R(T )⊥, which is KerΛ∗
T , so, (ξ, η) ∈ H+×L2(0, π)

belongs to R(T )⊥ if and only if 0 = ⟨ΛT f, (ξ, η)⟩H+×L2(0,π) =

⟨f,Λ∗
T (ξ, η)⟩L2(0,π) = ⟨f,Λ1∗

T ξ + Λ2∗
T η⟩L2(0,π), for every f ∈ L2(0, π), i.e., Λ1∗

T ξ +

Λ2∗
T η = 0. The previous lemma implies that Λ1∗

T ξ(t)+Λ2∗
T η(t) =

∂φ

∂t
(0, T − t), where

φ(x, t) solves (3) with the conditions φ(x, 0) = ξ(x) and
∂φ

∂t
(x, 0) = η(x). So, 1)

and 2) are proved.
3) and 4): This property implies that R⊥(T ) = {0} and so R(T ) is dense in

H+ × L2(0, π). Then RD(T ) is dense in H+.
5) and 6): Consider Λ∗

T (ξn, ηn) → (ψ1, ψ2), for n→ ∞. Then {Λ∗
T (ξn, ηn)}n is

a Cauchy sequence and, using the inequalities (6) and (7), it follows that: ∥ (ξn+p, ηn+p)−
(ξn, ηn) ∥H+×L2(0,π) = ∥ (ξn+p − ξn, ηn+p − ηn) ∥H+×L2(0,π) ≤
1

m0
∥Λ∗

T (ξn+p, ηn+p)− Λ∗
T (ξn, ηn)∥L2(0,π) < ε, for all n ≥ nε and p ≥ 1. There-

fore, {(ξn, ηn)}n is a Cauchy sequence and there exists lim
n→∞

(ξn, ηn) = (ξ, η) which

implies that lim
n→∞

Λ∗
T (ξn, ηn) = Λ∗

T (ξ, η), then (ψ1, ψ2) = Λ∗
T (ξ, η).

Now, we prove that the transformation f 7→ ∂uf

∂t
is continuous. From (3) we

obtain

∂uf

∂t
(x, t) = −

√
2

π

∞∑
k=0

[∫ t

0
f(s) cos

(
k +

1

2

)
(t− s) ds

]
cos

(
k +

1

2

)
x
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and ∥∥∥∥∂uf∂t (·, T )
∥∥∥∥2
L2(0,π)

=

√
2

π

∞∑
k=0

(∫ T

0
f(s) cos

(
k +

1

2

)
(T − s) ds

)2

,

because the system of the normalized eigenfunctions

{√
2

π
cos

(
k +

1

2

)
x

}
k≥0

is

complete (see [5]).
If note gT (s) := f(T − s), we obtain:∫ T

0
cos

(
k +

1

2

)
(T − s) · f(s) ds =

∫ T

0
cos

(
k +

1

2

)
s · gT (s) ds =

=

∫ T

0

[
gT (s) cos ks cos

s

2
− gT (s) sin ks sin

s

2

]
ds.

Now, consider the following functions: gT1(s) =

{
0 , T < s < π

gT (s) cos
s

2
, 0 < s < T

and

gT2(s) =

{
0 , T < s < π

gT (s) sin
s

2
, 0 < s < T

.

Therefore,

∞∑
k=0

∣∣∣∣∫ T

0
cos

(
k +

1

2

)
(T − s) · f(s) ds

∣∣∣∣2 ≤
≤ 2

∞∑
k=0

(∣∣∣∣∫ T

0
gT (s) cos ks cos

s

2
ds

∣∣∣∣2 + ∣∣∣∣∫ T

0
gT (s) sin ks sin

s

2
ds

∣∣∣∣2
)

=

= π

∞∑
k=0

∣∣∣∣∣
∫ π

0

√
2

π
gT1(s) cos ks ds

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ π

0

√
2

π
gT2(s) sin ks ds

∣∣∣∣∣
2
 .

Using the Parseval identity we obtain:

∞∑
k=0

∣∣∣∣∫ T

0
cos

(
k +

1

2

)
(T − s)f(s) ds

∣∣∣∣2 ≤ π
(
∥gT1∥2L2(0,π) + ∥gT2∥2L2(0,π)

)
= π

∫ T

0
g2T (s)ds = π

∫ T

0
f2(T − s)ds ≤ π∥f∥2L2(0,π) <∞.

We obtain that the transformation f 7→ ∂uf

∂t
is continuous. So the operator

ΛT is bounded and, because we proved above that the range of Λ∗
T is closed, it

follows that the range of ΛT , which is R(T ), is also closed (see Banach Closed Range
Theorem from [3], pp. 488-489). �

3. Controllability for T = π

Definition 3.1. ([10], p. 3) The wave equation (1) is controllable at time T if, for
every ψ ∈ H+, there exists a control f ∈ L2(0, π) such that uf (·, T ) = ψ.
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We conclude with the following theorem, which gives us the controllability at
time T = π:

Theorem 3.1. The reachable set RD(π) = H+.

Proof. We use the explicit formula (3) to deduce the controllability of the displace-
ment at time T = π. Therefore, we have that

uf (x, π) = −
√

2

π

∞∑
k=0

1

k + 1
2

[∫ π

0
f(s) sin

(
k +

1

2

)
(π − s) ds

]
cos

(
k +

1

2

)
x

= −
√

2

π

∞∑
k=0

[
1

k + 1
2

∫ π

0
g(s) sin

(
k +

1

2

)
sds

]
cos

(
k +

1

2

)
x, (9)

where g(t) := f(π − t).
The controllability can be obtained by solving a moment problem. So, the

problem of controllability is reduced to the possibility to find the identification of
the Fourier coefficients{

1

k + 1
2

∫ π

0
g(s) sin

(
k +

1

2

)
s ds

}
k≥0

,

with g ∈ L2(0, π).

The sequence

{√
2

π
sin

(
k +

1

2

)
x

}
k≥0

is the sequence of the normalized

eigenfunctions of the selfadjoint operator Ã in L2(0, π), where:

dom Ã =
{
h ∈ H2(0, π), h(0) = 0, h′(π) = 0

}
and Ãh(x) = h′′(x).

The system of eigenfunctions is a complete system in L2(0, π) (see [5]), so it
follows that {{∫ π

0
g(s) sin

(
k +

1

2

)
sds

}
, g ∈ L2(0, π)

}
k≥0

= l2.

We know that the functions from H1(0, π) have the following property for the
Fourier coefficients:

ck =
1

k + 1
2

ξk,

with {ξk}k≥0 ∈ l2. Then, for every ψ ∈ H+(0, π), there exists f ∈ L2(0, π), such
that uf (x, π) = ψ(x). �
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