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ON THE GENERAL RANDIC, SUM-CONNECTIVITY AND
MODIFY RANDIC INDICES OF CARBON NANOCONES

CNCk[n]

by Jia-Bao Liu1, Muhammad K. Jamil2, Mohammad R. Farahani3 and Wei Gao4

Milan Randic̀ proposed the well-known Randic̀ connectivity index, defined

on the ground of vertex degrees R (G) =
∑

e=uv∈E(G) (dudv)
−1
2 . In 2008, B.

Zhou and N. Trinajstic proposed another connectivity index, named the Sum-

connectivity index χ (G) =
∑

e=uv∈E(G) (du + dv)
−1
2 . Substitution of −1

2
by any

real number αis called the generalization of these topological indices. In this
paper, we obtained some results for general Randic̀ and Sum-connectivity and
modify Randic̀ indices for Carbon Nanocones CNCk[n].
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1. Introductions

Let G be a molecular graph without directions, multiple edges and loops,
the vertex and edge-sets of which are represented by V (G) and E(G), respec-
tively. The distance between any two vertices u, v ∈ V (G), of the graph G is
the length of the shortest path connecting them. It is denoted as d(u, v). The
degree of a vertex, u ∈ V (G), is the number of adjacent vertices to u and we
denoted it as du. The maximum and minimum degree in a graph G is denoted
as ∆ and δ, respectively. Any vertex u of a graph G satisfies the following
relation

0 ≤ δ ≤ du ≤ ∆ ≤ n− 1.
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So, any edge uv = e ∈ E (G) satisfies the following inequalities

2δ ≤ du + dv ≤ 2∆
δ2 ≤ du × dv ≤ 2∆2

In chemical graphs, the vertices of the graph correspond to the atoms
of the molecule, and the edges represent the chemical bonds. Chemical graph
theory is a branch of mathematical chemistry which applies graph theory to
mathematical modeling of chemical phenomena [1-8]. Among topological de-
scriptors connectivity indices are very important and they have a prominent
role in chemistry.

Numbers reflecting certain structural features of organic molecules that
are obtained from the molecular graph are usually called graph invariants or
more commonly topological indices. In other words, an arbitrary topological
index is fixed by any automorphism of the graph. There are several topological
indices have been defined.

One of the oldest graph invariants are the Wiener index, which was for-
mally introduced by Harold Wiener [1] (in 1947). The Wiener index is defined
as the sum of distances between any two atoms in the molecules, in terms of
bonds and denoted by W(G).

W (G) =1
2

∑
v∈V (G)

∑
u∈V (G) d (v, u)

where d(u, v) denote the distance between vertices u and v in G .

Among the numerous topological indices considered in chemical graph
theory, only a few have been found noteworthy in practical application, con-
nectivity index is one of them.

In 1975,Milan Randic̀ proposed a structural descriptor called the branch-
ing index [9] that later became the well-known Randic̀ connectivity indexR(G).
Motivated by the definition of Randic̀ connectivity index based on the end-
vertex degrees of edges in a graph and is equal to

R (G) =
∑

e=uv∈E(G)

1√
dudv

This index has been successfully correlated with physo-chemical proper-
ties of organic molecules. Indeed if G is the molecular graph of a saturated
hydrocarbon then there is a strong correlation between R(G) and the boiling
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point of the substance [10]–[14].

Another connectivity indices is the Sum-Connectivity Index that intro-
duced by B. Zhou and N. Trinajstic̀ in 2008 [15, 16]. The sum-connectivity
index χ (G) is defined as the sum over all edges of the graph of the terms

(du + dv)
−1/2 and is equal to

χ (G) =
∑

uv∈E(G)

1√
du + dv

Recently in 2011, Z. Dvorak et. al. proposed a modification of the
Randic̀ Index of G and is defined as R

′
(G) =

∑
uv∈E(G)

1
max{du,dv} that is more

tractable from computational point of view. It is much easier to follow during
graph modifications than Randic̀ index see [17] for more details. Some basic
properties of these indices can be found in the recent letters. For more study,
see reference [18, 19, 20].
The general Randic̀ index was introduced by Kier et. al. [3] in 1976, which is
defined as the sum of the weights (dudv)

α (∀α∈R) and is equal to Rα (G) =∑
uv∈E(G) (dudv)

α

The general sum-connectivity index was introduced by Zhou et. al. [16],
is equal to (∀α∈R):

χα (G) =
∑

e=uv∈E(G)

(du + dv)
α

Then χ−1/2 (G) is the sum-connectivity index.
For a simple graph G the first and second Zagreb indices of a graph G

are defined as: [2]
M1(G) =

∑
v∈E(G) (du)

2 =
∑

e=uv∈E(G)(du + dv)

M2(G) =
∑

e=uv∈E(G)(du×dv).

The first general Zagreb index of G is introduced by Li and Gutman [21]
and is defined as:

Mα
1

(G) =
∑

v∈E(G)

(dv)
α =

∑
e=uv∈E(G)

(
d(α−1)u + d(α−1)v

)
Where α is a real number with α 6= 0 and α 6= 1.
Since 1968, carbons Nanocones have been determined on the skin of naturally
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arising graphite [22]. Carbon nanostructures earned extraordinary attention
due to their possible use in many utilization including, nano-electronic devices,
biosensors, and chemical probes [23, 24]. We refer [25]–[41] for some results on
carbon Nanocones.

In this paper, we investigate the connectivity topological indices, and
computed some formulas for the Randic̀, sum-connectivity, modify Randic̀,
general Randic̀ and cum-connectivity, indices of carbon nanocones CNCk[n].

2. Results and Discussion

For a simple molecular graph G, we partition the edge set E(G) based
on the degrees of end vertices of each edge as follows

∀j : 2δ ≤ j ≤ 2∆, Ej = {uv ∈ E (G) |du + dv}
∀k : δ2 ≤ k ≤ 2∆2, E∗

k
= {uv = e ∈ E (G) |du × dv = k}

|Ej|, |E∗k | represent the number of elements in the sets Ej and E∗
k
.

Figure 1. Molecular graphs of
CNC3[1], CNC3[2] and CNC3[3].

Theorem 2.1. Let CNC3[n] be a graph, here n is any positive integer. Then

Rα (CNC3[n]) = 3 · 4α + (n− 1) · 6α+1 +
(
3n2 − 5n+ 2

)(32α+1

2

)
,

χα (CNC3[n]) = 3 · 4α + 6 (n− 1) · 5α +
(
9n2 − 15n+ 6

)(6α

2

)
,

R
′
(CNC3[n]) =

3n2 − n+ 1

2
.

where α is any real non-zero number.

Proof. For positive integer n, suppose CNC3[n] is the nth representative of
carbon nanocones Fig. 1. The nth representative of nanocones contain 3n2

vertices and n
2

(9n− 3) edges. The graph of CNC3[n] contain the vertices
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with degree 2 or 3. The partition of edge set based on the end vertices of edges
is as

E4 = {uv ∈ E (CNC3 [n]) |du + dv = 4}
E5 = {uv ∈ E (CNC3 [n]) |du + dv = 5}
E6 = {uv ∈ E (CNC3 [n]) |du + dv = 6}
E∗4 = {uv ∈ E (G) |du × dv = 4}
E∗6 = {uv ∈ E (G) |du × dv = 6}
E∗9 = {uv ∈ E (G) |du × dv = 9}

and
|E4| = |E∗4 | = 3
|E5| = |E∗6 | = 6 (n− 1)
|E6| = |E∗9 | = 9

2
n2 − 15

2
n+ 3.

from the above information we have the following

Rα (CNC3 [n]) =
∑

uv∈E(CNC3[n])
(du × dv)α

=
∑

uv∈E∗4
(du × dv)α +

∑
uv∈E∗6

(du × dv)α +
∑

uv∈E∗9
(du × dv)α

=
∑

j=4,6,9 j
α × |E∗j |

= 4α|E∗4 |+ 6α|E∗6 |+ 9α|E∗9 |
= 4α × 3 + 6α × 6 (n− 1) + 9α ×

(
9n2−15n+6

2

)
= 3 · 4α + (n− 1) · 6α+1 + (3n2 − 5n+ 2)

(
32α+1

2

)
χα (CNC3 [n]) =

∑
uv∈E(CNC3[n])

(du + dv)
α

=
∑

uv∈E4
(du + dv)

α +
∑

uv∈E5
(du + dv)

α +
∑

uv∈E6
(du + dv)

α

=
∑

j=4,5,6 j
α × |Ej|

= 4α|E4|+ 5α|E5|+ 6α|E6|
= 4α × 3 + 5α × 6 (n− 1) + 6α ×

(
9n2−15n+6

2

)
= 3 · 4α + 6 (n− 1) · 5α + (9n2 − 15n+ 6)

(
6α

2

)
R
′
(CNC3 [n]) =

∑
uv∈E(CNC3[n])

1
max{du,dv}

=
∑

uv∈E4

1
max{du,dv} +

∑
uv∈E5 or uv∈E6

1
max{du,dv}

= 3
2

+ 9n2−3n−6
6

= 3n2−n+1
2

.

Hence, the proof is complete. �

Theorem 2.2. Let CNC4[n] be a graph, where n is any positive integer. Then
∀α ∈ R

Rα (CNC4[n]) = 4α+1 + 8 (n− 1) · 6α +
(
6n2 − 10n+ 4

)
· 9α,

χα (CNC4[n]) = 4α+1 + 8 (n− 1) · 5α +
(
6n2 − 10n+ 4

)
6α,
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Figure 2. The molecular graph of
CNC4[1] and CNC4[2].

R
′
(CNC4[n]) =

6n2 − 2n+ 2

3
.

Proof. For positive integer n, suppose CNC4[n] is the nth representative of
carbon nanocones Fig. 2. The nth representative of this Nanonoces contains
4n2 vertices and 2n (3n− 1) edges. The graph of CNC4[n] contain the vertices
with degree 2 or 3. The partition of edge set based on the end vertices degree
of an edge is as follows

|E4| = |E∗4 | = 4
|E5| = |E∗6 | = 8 (n− 1)
|E6| = |E∗9 | = 6n2 − 10n+ 4

From the above information we have

Rα (CNC4 [n]) =
∑

uv∈E(CNC4[n])
(du × dv)α

=
∑

uv∈E∗4
(du × dv)α +

∑
uv∈E∗6

(du × dv)α +
∑

uv∈E∗9
(du × dv)α

=
∑

j=4,6,9 j
α × |E∗j |

= 4α|E∗4 |+ 6α|E∗6 |+ 9α|E∗9 |
= 4α × 4 + 6α × 8 (n− 1) + 9α × (6n2 − 10n+ 4)
= 4α+1 + 8 (n− 1) · 6α + (6n2 − 10n+ 4) · 9α

χα (CNC4 [n]) =
∑

uv∈E(CNC4[n])
(du + dv)

α

=
∑

uv∈E4
(du + dv)

α +
∑

uv∈E5
(du + dv)

α +
∑

uv∈E6
(du + dv)

α

=
∑

j=4,5,6 j
α × |Ej|

= 4α|E4|+ 5α|E5|+ 6α|E6|
= 4α × 4 + 5α × 8 (n− 1) + 6α × (6n2 − 10n+ 4)
= 4α+1 + 8 (n− 1) · 5α + (6n2 − 10n+ 4) 6α

R
′
(CNC4 [n]) =

∑
uv∈E(CNC4[n])

1
max{du,dv}

=
∑

uv∈E4

1
max{du,dv} +

∑
uv∈E5 or uv∈E6

1
max{du,dv}

= 4
2

+ 6n2−2n−4
3

= 6n2−2n+2
3

.

Hence, the proof is complete. �
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Figure 3. First three members of
First two members of First two mem-
bers of CNC5[n].

Theorem 2.3. Let CNC5[n] be a graph, where n is any positive integer. Then

Rα (CNC5[n]) = 5 · 4α + 10 (n− 1) · 6α +

(
15n2 − 25n+ 10

2

)
· 9α,

χα (CNC5[n]) = 5 · 4α + 10 (n− 1) · 5α +

(
15n2 − 25n+ 10

2

)
6α,

R
′
(CNC5[n]) =

15n2 − 5n+ 23

6
.

where α is any real number.

Proof. For positive integer n, suppose CNC5[n] is the nth representative of
carbon nanocones Fig. 3. This class of Nanonoces contain 5n2 vertices and
15n2−5n

2
edges. The graph of CNC5[n] contain the vertices with degree 2 or

3. As in the previous, we partitioned the edge set of E (CNC5 [n]) have the
following cardinalities as follows

|E4| = |E∗4 | = 5
|E5| = |E∗6 | = 10 (n− 1)

|E6| = |E∗9 | = 15n2−25n+10
2

Rα (CNC5 [n]) =
∑

uv∈E(CNC5[n])
(du × dv)α

=
∑

uv∈E∗4
(du × dv)α +

∑
uv∈E∗6

(du × dv)α +
∑

uv∈E∗9
(du × dv)α

=
∑

j=4,6,9 j
α × |E∗j |

= 4α|E∗4 |+ 6α|E∗6 |+ 9α|E∗9 |
= 4α × 5 + 6α × 10 (n− 1) + 9α ×

(
15n2−25n+10

2

)
= 5 · 4α + 10 (n− 1) · 6α +

(
15n2−25n+10

2

)
· 9α
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χα (CNC5 [n]) =
∑

uv∈E(CNC5[n])
(du + dv)

α

=
∑

uv∈E4
(du + dv)

α +
∑

uv∈E5
(du + dv)

α +
∑

uv∈E6
(du + dv)

α

=
∑

j=4,5,6 j
α × |Ej|

= 4α|E4|+ 5α|E5|+ 6α|E6|
= 4α × 5 + 5α × 10 (n− 1) + 6α ×

(
15n2−25n+10

2

)
= 5 · 4α + 10 (n− 1) · 5α +

(
15n2−25n+10

2

)
6α

R
′
(CNC5 [n]) =

∑
uv∈E(CNC5[n])

1
max{du,dv}

=
∑

uv∈E4

1
max{du,dv} +

∑
uv∈E5 or uv∈E6

1
max{du,dv}

= 5
2

+ 15n2−5n+8
6

= 15n2−5n+23
6

�

Figure 4. First three members of
CNC6[n].

Theorem 2.4. Let CNC6[n] be a graph, where n is any positive integer. Then

Rα (CNC6[n]) = 6 · 4α + 12 (n− 1) · 6α +
(
9n2 − 15n+ 6

)
· 9α,

χα (CNC6[n]) = 6 · 4α + 12 (n− 1) · 5α +
(
9n2 − 15n+ 6

)
6α,

R
′
(CNC6[n]) = 3n2 − 5n+ 5.

where α is any real number.

Proof. Let CNC6[n] be the nth member of Carbon Nanocones, where n is any
positive integer. This class of Nanonoces contain 6n2 vertices and 9n2 − 3n
edges. The graph of CNC6[n] contain the vertices with degree 2 or 3. Based
on the degree of the vertices, the partitions of the edge set E (CNC6 [n]) have
the following cardinalities as follows

|E4| = |E∗4 | = 6
|E5| = |E∗6 | = 12 (n− 1)
|E6| = |E∗9 | = 9n2 − 15n+ 6

With the help of this partition we can obtain our desired results
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Rα (CNC6 [n]) =
∑

uv∈E(CNC6[n])
(du × dv)α

=
∑

uv∈E∗4
(du × dv)α +

∑
uv∈E∗6

(du × dv)α +
∑

uv∈E∗9
(du × dv)α

=
∑

j=4,6,9 j
α × |E∗j |

= 4α|E∗4 |+ 6α|E∗6 |+ 9α|E∗9 |
= 4α × 6 + 6α × 12 (n− 1) + 9α × (9n2 − 15n+ 6)
= 6 · 4α + 12 (n− 1) · 6α + (9n2 − 15n+ 6) · 9α

χα (CNC6 [n]) =
∑

uv∈E(CNC6[n])
(du + dv)

α

=
∑

uv∈E4
(du + dv)

α +
∑

uv∈E5
(du + dv)

α +
∑

uv∈E6
(du + dv)

α

=
∑

j=4,5,6 j
α × |Ej|

= 4α|E4|+ 5α|E5|+ 6α|E6|
= 4α × 6 + 5α × 12 (n− 1) + 6α × (9n2 − 15n+ 6)
= 6 · 4α + 12 (n− 1) · 5α + (9n2 − 15n+ 6) 6α

R
′
(CNC6 [n]) =

∑
uv∈E(CNC6[n])

1
max{du,dv}

=
∑

uv∈E4

1
max{du,dv} +

∑
uv∈E5 or uv∈E6

1
max{du,dv}

= 6
2

+ 9n2−15n+6
3

= 3n2 − 5n+ 5.

Hence, the proof is complete. �

Figure 5. A general representa-
tion of Carbon Nanocones CNCk[n]
∀k, n ∈ N&k = 3.

Theorem 2.5. Let α ∈ R, n ∈ N and k = 3, and CNC4[n] be a graph. Then
:

Rα (CNCk[n]) = 4αk + 2k (n− 1) 6α +
9α

2
k
(
3n2 − 5n+ 2

)
,

χα (CNCk[n]) = 4αk + 2 (n− 1) 5α +
6α

2

(
3n2 − 5n+ 2

)
k,
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R
′
(CNCk[n]) =

(
n2

2
+
n

3
− 1

3

)
k.

Proof. Let the molecular graph of Carbon Nanocones CNCk[n] Fig. 6, with
kn2 vertices and k

2
n (3n− 1) edges. The graph of CNCk[n] contain the vertices

with degree 2 or 3. Based on the degree of the vertices, we have three edge
partitions of E (CNCk [n]) as follows

|E4|=|E4*|=k,
|E5|=|E6*|=2k(n-1),
|E6|=|E9*|=3

2
kn2-5

2
kn+k=1

2
k(3n2-5n+2).

Here by these partitions, we can obtain our desired results ∀α ∈ R,
∀k, n ∈ N&k = 3.

Rα (CNCk [n]) =
∑

uv∈E(CNCk[n])
(du × dv)α

=
∑

uv∈E∗4
(du × dv)α +

∑
uv∈E∗6

(du × dv)α +
∑

uv∈E∗9
(du × dv)α

=
∑

j=4,6,9 j
α × |E∗j |

= 4α|E∗4 |+ 6α|E∗6 |+ 9α|E∗9 |
= 4α × k + 6α × 2k (n− 1) + 9α (k (3n2 − 5n+ 2))
= 4αk + 2k (n− 1) 6α + 9α

2
k (3n2 − 5n+ 2)

χα (CNCk [n]) =
∑

uv∈E(CNCk[n])
(du + dv)

α

=
∑

uv∈E4
(du + dv)

α +
∑

uv∈E5
(du + dv)

α +
∑

uv∈E6
(du + dv)

α

=
∑

j=4,5,6 j
α × |Ej|

= 4α|E4|+ 5α|E5|+ 6α|E6|
= 4α × k + 5α × 2k (n− 1) + 6α × (k (3n2 − 5n+ 2))
= 4αk + 2k (n− 1) 5α + 6α

2
k (3n2 − 5n+ 2)

R
′
(CNCk [n]) =

∑
uv∈E(CNCk[n])

1
max{du,dv}

=
∑

uv∈E4

1
max{du,dv} +

∑
uv∈E5 or uv∈E6

1
max{du,dv}

=
|E4|
2

+
|E5|+|E6|

3

= k
2

+
2k(n−1)+k(3n2−5n+2)

3

=
(
n2

2
+ n

3
− 1

3

)
k.

�

From the above results we have the following corollaries.
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Corollary 2.1. The Randic̀ index of to

R (CNC3 [n]) = 3
2
n2 +

(√
6− 5

2

)
n+

(√
6 + 5

2

)
R (CNC4 [n]) = 2n2 +

(
8√
6
− 10

3

)
n+

(
10
3
− 8√

6

)
R (CNC5 [n]) = 5

2
n2 +

(
10√
6
− 25

2

)
n+

(
25
6
− 10√

6

)
R (CNC6 [n]) = 3n2 +

(
2
√

6− 5
)
n+

(
5− 2

√
6
)

...

R (CNCk[n]) =
(
9
2
n2 + (2

√
6− 15

2
)n+

(
7− 2

√
6
))
k

Corollary 2.2. The sum-connectivity index of is equal to

χ (CNC3 [n]) = 9
2
√
6
n2 +

(
6
√

5− 15
2
√
6

)
n+

(
3+
√
6

2

)
χ (CNC4 [n]) =

√
6n2 +

(
8
√
5

5
− 5

√
6

3

)
n+

(
2 + 2

√
6

3
− 8

√
5

5

)
χ (CNC5 [n]) = 15

√
6

12
n2 +

(
2
√

5− 25
√
6

12

)
n+

(
5
4
− 2
√

5 + 5
√
6

6

)
χ (CNC6 [n]) = 3

√
6

2
n2 +

(
12
√
5

5
− 5

√
6

2

)
n+

(
3 +
√

6− 12
√
5

5

)
...

χ (CNCk[n]) = 2k + 2 (n− 1)
√

5 +
√
6
2

(3n2 − 5n+ 2) k

=
(

3
√
6

2
n2 +

(
2
√

5− 5
√
6

2

)
n+

(
2 +
√

6− 2
√

5
))
k

Corollary 2.3. The first Zagreb index of equal to

M1 (CNC3 [n]) = 27n2 − 15n
M1 (CNC4 [n]) = 36n2 − 20n+ 48
M1 (CNC5 [n]) = 45n2 − 25n
M1 (CNC6 [n]) = 54n2 − 30n+ 72

...
M1 (CNCk [n]) = 9kn2 − 5kn.

Corollary 2.4. The second Zagreb index of equal to

M2 (CNC3 [n]) = 81
2
n2 − 63

2
n+ 3

M2 (CNC4 [n]) = 54n2 + 43n+ 4
M2 (CNC5 [n]) = 135

2
n2 − 105

2
n+ 5

M2 (CNC6 [n]) = 81n2 − 63n+ 6
...

M2 (CNCk [n]) = k (n2 − n+ 1) .�

3. Conclusions

Topological indices have found application in different regions of science,
material science, arithmetic, informatics, biology, however their most critical
use to date is in the non-exact Quantitative Structure-Property Relationships
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(QSPR) and Quantitative Structure-Activity Relationships (QSAR). Our re-
sults can help to guess properties of Carbon Nanocones, for example: The
Randic̀ index is a standout amongst the frequently connected sub-atomic struc-
ture descriptor. The Randic̀ index demonstrates great relationship with every
single physical property of alkanes, aside from their liquefying focuses with
correlation coefficient value r=0:219. Further, the value of r lies between 0.881
to 0.995. Randic̀ index has high connection with heat of vaporization of the
alkanes with r=0:995. The foreseeing intensity of GA for the physical proper-
ties of alkanes is similarly great as Randic̀ index. The value of r lies between
0.889 to 0.987 aside from melting point of alkanes, with r=0.235. Shockingly,
we could see that the connection of GA with heat of vaporization of alkanes is
extremely high with r=0.9871.
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