ON RESULTS OF HARDY-ROGERS AND REICH IN CONE B-METRIC SPACE OVER BANACH ALGEBRA AND APPLICATIONS

Zoran D. Mitrović¹, Nawab Hussain²

In this paper, we establish certain recent results of Miculescu and Mihail [J. Fixed Point Theory Appl. 19, 2153-2163 (2017)] and of Suzuki [J. Inequal. Appl. 2017, 256, 11 p.] in cone b-metric spaces over Banach algebra. Also, we prove Reich contraction theorem in such spaces. Our results generalize, improve and complement several ones in the existing literature.

Keywords: Fixed points, b-metric spaces

MSC2010: 47H10

1. Introduction and Preliminaries

The concept of b-metric space was introduced of Bakhtin [3] and Czerwik [4]. Since then, many fixed point theorems for various contractions on the b-metric space and generalizations of such spaces have appeared (see [1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]). Following definitions and results will be needed in the sequel.

Definition 1.1. Let X be a nonempty set and let $s \ge 1$ be a given real number. A function $d: X \times X \to [0, \infty)$ is said to be a b-metric if and only if for all $x, y, z \in X$ the following conditions are satisfied:

- (1) d(x,y) = 0 if and only if x = y;
- (2) d(x,y) = d(y,x);
- (3) $d(x,z) \le s[d(x,y) + d(y,z)].$

A triplet (X, d, s), is called a b-metric space.

Note that class of metric spaces is included in the class of b-metric spaces. In fact, the notions of convergent sequence, Cauchy sequence and complete space are defined as in metric spaces.

Definition 1.2. Let (X, d, s) b-metric space, $\{x_n\}$ be a sequence in X and $x \in X$.

- (a) The sequence $\{x_n\}$ is said to be convergent in (X, d, s) and converges to x, if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x) < \varepsilon$ for all $n > n_0$ and this fact is represented by $\lim x_n = x$ or $x_n \to x$ as $n \to \infty$.
- (b) The sequence $\{x_n\}$ is said to be Cauchy sequence in (X, d, s) if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x_{n+p}) < \varepsilon$ for all $n > n_0, p > 0$.
- (c) (X, d, s) is said to be a complete b-metric space if every Cauchy sequence in X converges to some $x \in X$.

¹Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam, E-mail: zoran.mitrovic@tdtu.edu.vn

²Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia, E-mail: nhusain@kau.edu.sa

In the paper [25] Singh et al obtained the following result (see also Lemma 3. 1. in [12]).

Lemma 1.3. (Lemma 3. 1. in [25]) Let (X,d,s) be a b-metric space and let $\{x_n\}$ be a sequence in X. Assume that there exists $k \in [0,1/s)$ satisfying $d(x_{n+1},x_n) \leq kd(x_n,x_{n-1})$ for any $n \in \mathbb{N}$. Then $\{x_n\}$ is Cauchy.

From the previous Lemma, the next result immediately followed.

Lemma 1.4. Every sequence $\{x_n\}$ of elements from a b-metric space (X, d, s), having the property that there exist $k \in [0, 1/s)$ and C > 0 such that

$$d(x_{n+1}, x_n) \le Ck^n,$$

for any $n \in N$, is Cauchy.

Miculescu and Mihail [15] (Lemma 2. 2.) and Suzuki [26] (Lemma 6) proved that in Lemma 1.3, one may extend the range of k to the case 0 < k < 1.

In the paper [16] Mitrović very recently presented a short proof of results of Suzuki, Miculescu and Mihail. In this paper we establish these results in a cone b-metric space over Banach algebra and obtain certain new fixed point results.

We recall some well-known definitions which will be needed in the sequel.

Definition 1.5. Let \mathcal{A} be a real Banach algebra, i.e., \mathcal{A} is a real Banach space with a product that satisfies

```
1. x(yz) = (xy)z,
2. x(y+z) = xy + xz,
```

3. $\alpha(xy) = (\alpha x)y = x(\alpha y),$

4. $||xy|| \le ||x|| ||y||$,

for all $x, y, z \in \mathcal{A}, \alpha \in \mathbb{R}$.

The Banach algebra \mathcal{A} is said to be unital if there exists an element $e \in \mathcal{A}$ such that ex = xe = x for all $x \in \mathcal{A}$. The element e is called the unit. An element $x \in \mathcal{A}$ is said to be invertible if there is a $y \in \mathcal{A}$ such that xy = yx = e. The inverse of x, if it exists, is unique and will be denoted by x^{-1} (see [23]).

Let $\mathcal A$ be a unital Banach algebra. A non-empty closed set $P\subset \mathcal A$ is said to be a cone if

```
1. e \in P,
```

- $2. P + P \subset P$
- 3. $\lambda P \subset P$ for all $\lambda \geq 0$,
- 4. $P \cdot P \subset P$.
- 5. $P \cap (-P) = \{\theta\},\$

where θ is the zero of the unital Banach algebra \mathcal{A} . For a given cone $P \subseteq A$, we can define a a partial ordering \preceq with respect to P by $x \preceq y$ if and only if $y - x \in P$ and we write $x \prec y$ if $x \preceq y$ and $x \neq y$ while $x \ll y$ will stands for $y - x \in intP$, where intP denotes the interior of P. If $intP \neq \emptyset$ then P is called a solid cone. The cone P is called normal if there is a number M > 0 such that for all $x, y \in A$,

$$\theta \le x \le y \Rightarrow ||x|| \le M||y||.$$

Cone b-metric space over Banach algebra with constant $s \ge 1$ is introduced in [8] as generalization of a metric space and many of its generalizations (b-metric space, cone metric space). We introduce here cone b-metric space over Banach algebra with constant $s \ge e$.

Definition 1.6. Let X be a nonempty set and the mapping $d: X \times X \to \mathcal{A}$ satisfies:

(CbM1)
$$d(x,y) = \theta$$
 if and only if $x = y$;

(CbM2)
$$d(x, y) = d(y, x)$$
 for all $x, y \in X$;

(CbM3) there exists $s \in P$, $e \leq s$ such that $d(x,y) \leq s[d(x,z)+d(z,y)]$ for all $x,y,z \in X$. Then d is called a cone b-metric on X and (X,d) is called a cone b-metric space over Banach algebra (in short CbMS-BA) with coefficient s. If s=e we say that (X,d) is a cone metric space over Banach algebra (in short CMS-BA).

Definition 1.7. Let $\{x_n\}$ be a sequence in Banach algebra \mathcal{A} .

- (i) A sequence $\{x_n\}$ said to be a c-sequence, if for each $c \gg \theta$, there exists a natural number n_0 such that $x_n \ll c$ for all $n \geq n_0$.
- (ii) A sequence $\{x_n\}$ in a is called a θ -sequence if $x_n \to \theta$ as $n \to \infty$.

Definition 1.8. Let (X,d) be a CbMS-BA with coefficient s and $\{x_n\}$ a sequence in X,

- (i) $\{x_n\}$ b-converges to $x \in X$, if $\{d(x_n, x)\}$ is a c-sequence;
- (ii) $\{x_n\}$ is a Cauchy sequence whenever for each $c \in A$ with $\theta \ll c$ there is a natural number N such that $d(x_n, x_m) \ll c$ for all n, m > N;
- (iii) (X, d) is b-complete, if every b-Cauchy sequence in X is b-convergent.

Let is notice that if $\{x_n\}$ and $\{y_n\}$ be two c-sequences in a solid cone P and $a, b \in P$ are two arbitrarily given vectors, then $ax_n + by_n$ is a c-sequence. Also, if $x \leq y$ and $y \ll z$, then $x \ll z$.

Lemma 1.9. [23] Let \mathcal{A} be a Banach algebra with a unit e and $k \in \mathcal{A}$, then $\lim_{n \to \infty} ||k^n||^{\frac{1}{n}}$ exists and the spectral radius r(k) satisfies

$$r(k) = \lim_{n \to \infty} ||k^n||^{\frac{1}{n}} = \inf_{n \ge 1} ||k^n||^{\frac{1}{n}}.$$

If $r(k) < |\lambda|$, then $\lambda e - k$ is invertible in \mathcal{A} , moreover,

$$(\lambda e - k)^{-1} = \sum_{i=0}^{\infty} \frac{k^i}{\lambda^{i+1}},$$

where λ is a constant.

Lemma 1.10. [24] Let $P \subset \mathcal{A}$ be a cone.

- (a) If $a, b \in A, c \in P$ and $a \leq b$, then $ca \leq cb$,
- (b) If $a, k \in P$ are such that r(k) < 1 and $a \leq ka$, then $a = \theta$,
- (c) If $k \in P$ and r(k) < 1, then k^n is a c-sequence and for any fixed $n \in \mathbb{N}$ we have $r(k^n) < 1$.

Lemma 1.11. [6] Let A be a Banach algebra and P a solid cone in A. Then each c-sequence in P is a θ -sequence if and only if P is a normal cone.

Lemma 1.12. [23] Let A be a Banach algebra with a unit e and $a, b \in A$. If a commutes with b, then

$$r(a+b) < r(a) + r(b), r(ab) < r(a)r(b).$$

Lemma 1.13. [7] Let \mathcal{A} be a Banach algebra with a unit e and $k \in \mathcal{A}$. If λ is a constant and $r(k) < |\lambda|$, then

$$r((\lambda e - k)^{-1}) \le \frac{1}{|\lambda| - r(k)}.$$

2. Main Results

In this section, we suppose that (X,d) is a cone b-metric space over Banach algebra $\mathcal A$ with coefficient s.

Lemma 2.1. Let $\{x_n\}$ be a sequence in X. Assume that there exists $k \in P$ such that k and s commutes and $r(k) < \frac{1}{r(s)}$ satisfying $d(x_{n+1}, x_n) \leq kd(x_n, x_{n-1})$ for any $n \in \mathbb{N}$. Then $\{x_n\}$ is Cauchy.

Proof. Thus for any n > m, it follows that

$$d(x_{m}, x_{n}) \leq s[d(x_{m}, x_{m+1}) + d(x_{m+1}, x_{n})]$$

$$\leq sd(x_{m}, x_{m+1}) + s^{2}[d(x_{m+1}, x_{m+2}) + d(x_{m+2}, x_{n})]$$

$$\leq sd(x_{m}, x_{m+1}) + s^{2}d(x_{m+1}, x_{m+2})$$

$$+ s^{3}[d(x_{m+2}, x_{m+3}) + d(x_{m+3}, x_{n})]$$

$$\vdots$$

$$\leq sd(x_{m}, x_{m+1}) + s^{2}d(x_{m+1}, x_{m+2}) + \dots + s^{n-m}d(x_{n-1}, x_{n})$$

$$\leq s[k^{m} + sk^{m+1} + \dots + s^{n-m-1}k^{n-1}]d(x_{0}, x_{1})$$

$$\leq sk^{m}(e - sk)^{-1}d(x_{0}, x_{1}).$$

Using Lemma 1.10 we obtain that $\{x_n\}$ is a b-Cauchy sequence.

From the Lemma 2.1 we obtain the following result.

Lemma 2.2. Let $\{x_n\}$ be a sequence in X. Assume that there exists $k \in P$ such that $r(k) < \frac{1}{r(s)}$ and $C \in P$ such that

$$d(x_{n+1}, x_n) \leq Ck^n$$
,

for any $n \in N$. Then $\{x_n\}$ is Cauchy.

Lemma 2.3. Let $\{x_n\}$ be a sequence in X. Then for all $n, p \in \mathbb{N}$,

$$d(x_n, x_{n+p}) \leq s^p [d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p})]$$

holds.

$$Proof.$$
 Obvious.

Lemma 2.4. Let $\{x_n\}$ be a sequence in X. Assume that there exists $k \in A$ such that 0 < r(k) < 1 and s and k commutes and satisfying

$$d(x_{n+1}, x_n) \le k d(x_n, x_{n-1}), \tag{2.1}$$

for any $n \in \mathbb{N}$. Let $n_0 \in \mathbb{N}$ such that $n_0 > -\frac{\log r(s)}{\log r(k)}$, then

- (1) $\{x_{nn_0}\}$ is Cauchy,
- (2) $\{d(x_n, x_{n_0 \lfloor \frac{n}{n_0} \rfloor})\}$ is a c-sequence.

Proof. 1. Using Lemma 2.3 and condition (2.1) we get the following

$$d(x_{(n+1)n_0}, x_{nn_0}) \leq s^{n_0} [d(x_{(n+1)n_0}, x_{(n+1)n_0-1}) + \dots + d(x_{nn_0+1}, x_{nn_0})]$$

$$\leq s^{n_0} (k^{(n+1)n_0-1} + \dots + k^{nn_0}) d(x_1, x_0)$$

$$\leq s^{n_0} k^{nn_0} d(x_1, x_0) (e - k)^{-1}$$

$$\leq C\mu^n,$$

where $C = s^{n_0}d(x_1, x_0)(e-k)^{-1}$ and $\mu = k^{n_0}$. Since $r(\mu) = r(k^{n_0}) \le r(k)^{n_0}$ (because of Lemma 1.12) and $n_0 > -\frac{\log r(s)}{\log r(k)}$, we have that $r(\mu) < \frac{1}{r(s)}$. So, from Lemma 2.2 we conclude that $\{x_{nn_0}\}$ is Cauchy.

$$d(x_n, x_{n_0 \lfloor \frac{n}{n_0} \rfloor}) \leq s^{n_0} [d(x_n, x_{n-1}) + \dots + d(x_{n_0 \lfloor \frac{n}{n_0} \rfloor + 1}, x_{n_0 \lfloor \frac{n}{n_0} \rfloor})]$$

$$\leq s^{n_0} (k^{n-1} + \dots + k^{n_0 \lfloor \frac{n}{n_0} \rfloor}) d(x_1, x_0)$$

$$\leq s^{n_0} k^{n_0 \lfloor \frac{n}{n_0} \rfloor} d(x_1, x_0) (e - k)^{-1}.$$

So,
$$\{d(x_n, x_{n_0 \lfloor \frac{n}{n_0} \rfloor})\}$$
 is a c-sequence.

Lemma 2.5. Let $\{x_n\}$ be a sequence in X. Assume that there exists $k \in A$ such that $r(k) \in [0,1)$ satisfying $d(x_{n+1},x_n) \leq kd(x_n,x_{n-1})$ for any $n \in \mathbb{N}$, then $\{x_n\}$ is Cauchy.

Proof. If r(k) = 0 proof is obvious. Let 0 < r(k) < 1 and $n_0 \in \mathbb{N}$ such that $n_0 > -\frac{\log r(s)}{\log r(k)}$, then the proof follows from Lemma 2.4 and the following inequality

$$d(x_n,x_m) \preceq s^2[d(x_n,x_{n_0\lfloor\frac{n}{n_0}\rfloor}) + d(x_{n_0\lfloor\frac{n}{n_0}\rfloor},x_{n_0\lfloor\frac{m}{n_0}\rfloor}) + d(x_{n_0\lfloor\frac{m}{n_0}\rfloor},x_m)],$$

for all $n, m \in \mathbb{N}$.

Remark 2.6. Lemma 2.5 is a generalization of the Lemma 11 in [1], Lemma 2.2. in [10] and Lemma 3.1. in [12].

3. Some Applications

Using Lemma 2.5 we can improve and generalize the series results in the literature that were obtained recently.

We first give a result of Hardy-Rogers [5] in CbMS-BA with coefficient s.

Theorem 3.1. Let (X,d) be a CbMS-BA with coefficient $s, (e \leq s)$ and $T: X \to X$ be a mapping satisfying:

$$d(Tx,Ty) \leq \alpha d(x,y) + \beta [d(x,Tx) + d(y,Ty)] + \gamma [d(x,Ty) + d(y,Tx)]$$
(3.1)

for all $x, y \in X$, where $\alpha, \beta, \gamma \in P$ commutes such that $r(\alpha) + 2r(\beta) + 2r(\gamma)r(s) < 1$ and $r(s)(r(\beta) + r(s)r(\gamma)) < 1$. Then T has a unique fixed point.

Proof. Let $x_0 \in X$ be arbitrary. Define the sequence $\{x_n\}$ by $x_{n+1} = Tx_n$ for all $n \geq 0$. From condition (3.1) we have that

$$d(x_{n+1}, x_n) \leq \alpha d(x_n, x_{n-1}) + \beta [d(x_n, x_{n+1}) + d(x_{n-1}, x_n)] + + \gamma [d(x_n, x_n) + d(x_{n-1}, x_{n+1})].$$

So,

$$(e-\beta)d(x_{n+1},x_n) \leq (\alpha+\beta)d(x_{n-1},x_n) + \gamma d(x_{n-1},x_{n+1}) \leq (\alpha+\beta)d(x_{n-1},x_n) + \gamma s[d(x_{n-1},x_n) + d(x_n,x_{n+1})].$$

Thus,

$$(e-\beta-\gamma s)d(x_{n+1},x_n) \leq (\alpha+\beta+\gamma s)d(x_{n-1},x_n),$$

how is it $r(\beta) + r(\gamma)r(s) < 1$ from Lemma 1.9, we have,

$$d(x_{n+1}, x_n) \le [e - (\beta + \gamma s)^{-1}](\alpha + \beta + \gamma s)d(x_n, x_{n-1}).$$
(3.2)

Put $\lambda = [e - (\beta + \gamma s)^{-1}](\alpha + \beta + \gamma s)$. From Lemma 1.12 and Lemma 1.13, we have that $r(\lambda) \leq \frac{r(\alpha) + r(\beta) + r(\gamma)r(s)}{1 - r(\beta) - r(\gamma)r(s)}$. So, $r(\lambda) \in [0, 1)$. From Lemma 2.5 follows that $\{x_n\}$ is a Cauchy sequence in (X, d). By completeness of (X, d) there exists $x^* \in X$ such that

$$\lim_{n \to \infty} x_n = x^*. \tag{3.3}$$

Now we obtain that x^* is the unique fixed point of T. Namely, we have

$$d(x^*, Tx^*) \leq sd(x^*, x_{n+1}) + sd(x_{n+1}, Tx^*)$$

$$= sd(x^*, x_{n+1}) + sd(Tx_n, Tx^*)$$

$$\leq sd(x^*, x_{n+1}) + s\alpha d(x_n, x^*) + s\beta [d(x_n, x_{n+1}) + d(x^*, Tx^*)]$$

$$+ s\gamma [d(x_n, Tx^*) + d(x^*, x_{n+1})]$$

$$\leq sd(x^*, x_{n+1}) + s\alpha d(x_n, x^*) + s\beta [d(x_n, x_{n+1}) + d(x^*, Tx^*)]$$

$$+ s\gamma [s(d(x_n, x^*) + d(x^*, Tx^*)) + d(x^*, x_{n+1})].$$

Since $\lim_{n\to\infty} d(x^*, x_n) = \theta$, $\lim_{n\to\infty} d(x_n, x_{n+1}) = \theta$, we obtain

$$d(Tx^*, x^*) \leq (s\beta + s^2\gamma)d(Tx^*, x^*).$$

Since, $r(s)(r(\beta) + r(s)r(\gamma)) < 1$, from Lemma 1.10 we claim that $d(x^*, Tx^*) = \theta$, that is, $Tx^* = x^*$.

For uniqueness, let y^* be another fixed point of T. Then it follows from (3.1) that

$$d(x^*, y^*) = d(Tx^*, Ty^*) \leq \alpha d(x^*, y^*) + \beta [d(x^*, Tx^*) + d(y^*, Ty^*)] + \gamma [d(x^*, Ty^*) + d(y^*, Tx^*)] \leq (\alpha + 2\gamma) d(x^*, y^*).$$

Now again from Lemma 1.10 we obtain $d(x^*, y^*) = \theta$, i.e., $x^* = y^*$.

From the previous theorem we obtain the Reich type theorem [22] in CbMS-BA with coefficient s.

Theorem 3.2. Let (X,d) be a CbMS-BA with coefficient $s, (e \leq s)$ and $T: X \to X$ be a mapping satisfying:

$$d(Tx, Ty) \le \alpha d(x, y) + \beta [d(x, Tx) + d(y, Ty)] \tag{3.4}$$

for all $x, y \in X$, where $\alpha, \beta \in P$ commutes such that $r(\alpha) + 2r(\beta) < 1$ and $r(s)r(\beta) < 1$. Then T has a unique fixed point.

Remark 3.3. We note that if r(s) < 2, the condition $r(s)r(\beta) < 1$ in Theorem 3.2 is superfluous.

Example 3.1. Let $A = \{a = (a_{ij})_{3\times 3} : a_{ij} \in \mathbb{R}, 1 \leq i, j \leq 3\}$ and

$$||a|| = \frac{1}{3} \sum_{1 \le i,j \le 3} |a_{ij}|.$$

Take a cone $P = \{a \in A : a_{ij} \ge 0, 1 \le i, j \le 3\}$ in A. Let $X = \{1, 2, 3\}$. Define a mapping $d: X \times X \longrightarrow A$ by $d(1, 1) = d(2, 2) = d(3, 3) = (0)_{3 \times 3}$ and

$$d(1,2) = d(2,1) = \begin{pmatrix} 0 & 4 & 8 \\ 4 & 8 & 12 \\ 32 & 16 & 28 \end{pmatrix},$$

$$d(3,1) = d(1,3) = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 8 & 4 & 7 \end{pmatrix},$$

$$d(2,3) = d(3,2) = \begin{pmatrix} 0 & 2 & 4 \\ 2 & 4 & 6 \\ 16 & 8 & 14 \end{pmatrix}.$$

Then (X,d) be a CbMS-BA with coefficient $s=\begin{pmatrix} \frac{4}{3} & 0 & 0\\ 0 & \frac{4}{3} & 0\\ 0 & 0 & \frac{4}{3} \end{pmatrix}$. Let $T:X\to X$ be a

mapping define by T1=1, T2=3, T3=1 and let $\alpha=\beta=\begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$. Then a mapping

T satisfying:

$$d(Tx,Ty) \preceq \alpha d(x,y) + \beta [d(x,Tx) + d(y,Ty)]$$

for all $x, y \in X$, where α and β commutes such that $r(\alpha) + 2r(\beta) < 1$ and $r(s)r(\beta) = \frac{4}{3} \cdot \frac{1}{4} < 1$ and T has a unique fixed point x = 1.

Note that Theorem 3.1 improve and generalize Theorem 2. 1. in [8].

Theorem 3.4. (Theorem 2.1, [8]) Let (X, d) be a complete cone b-metric space over Banach algebra A with the coefficient $s \geq 1$. Let K be a solid not necessarily normal cone of A. Suppose $T: X \to X$ is a mapping and suppose that there exists $k \in K$ such that, for all $x, y \in X$, at least one of the following generalized Lipschitz conditions holds:

- (i) $d(Tx, Ty) \leq kd(x, y)$ and $r(k) < \frac{1}{s}$;
- (ii) $d(Tx, Ty) \leq k(d(Tx, x) + d(Ty, y))$ and $r(k) < \frac{1}{1+s}$; (iii) $d(Tx, Ty) \leq k(d(Tx, y) + d(Ty, x))$ and $r(k) < \frac{1}{s+s^2}$.

Then T has a unique fixed point in X.

Also, Theorem 3.1 improve and generalize Theorem 2. 1. in [9].

Theorem 3.5. (Theorem 2.1, [9]) Let (X,d) be a complete cone b-metric space over Banach algebra A with the coeficient $s \geq 1$. Let K be a solid not necessarily normal cone of A. Suppose $T: X \to X$ is a mapping and suppose that there exists $k \in K$ such that, for all $x,y \in X$, the following generalized Lipschitz conditions holds:

$$d(Tx, Ty) \leq kd(x, y),$$

and r(k) < 1. Then T has a unique fixed point in X and for any $x \in X$, the iterative sequence $\{T^n x\}$ b-converges to the fixed point.

Remark 3.6. In (i) of Theorem 3.4 the condition $r(k) < \frac{1}{s}$ can be replaced by a weaker condition r(k) < 1. Similarly, in condition (ii), $r(k) < \frac{1}{1+s}$ we can relax with $r(k) < \min\{\frac{1}{2},\frac{1}{r(s)}\}$, and in condition (iii) instead of $r(k) < \frac{1}{s+s^2}$ put $r(k) < \min\{\frac{1}{2r(s)},\frac{1}{r^2(s)}\}$.

Remark 3.7. Using Lemma 2.5 we can improve and generalize the following results: Theorem 12. in [1], Theorem 2.9. in [7], Theorem 2.5 in [8], Theorem 2.3. in [10], Theorem 3.3. in [12], Theorem 3.2. in [21].

Acknowledgements

The authors thank Professor Huaping Huang for their valuable comments and suggestions which improved greatly the quality of this paper.

REFERENCES

- [1] S. M. Abusalim and M. S. M. Noorani, Fixed Point and Common Fixed Point Theorems on Ordered Cone b-Metric Spaces, Abstract and Appl. Anal. Volume 2013, Article ID 815289,7pages.
- [2] H. Aydi, M.F. Bota, E. Karapinar and S. Mitrović, A fixed point theorem for set-valued quasicontractions in b-metric spaces, Fixed Point Theory Appl., (2012), 2012:88.
- [3] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Ulianowsk Gos. Ped. Inst., 30 (1989), 26-37.
- [4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11.
- [5] G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull. 16 (1973), 201-206.
- [6] H. Huang, G. Deng, S. Radenović, Some topological properties and fixed point results in cone metric spaces over Banach algebras, Positivity, https://doi.org/10.1007/s11117-018-0590-5.
- [7] H. Huang, S. Radenović, Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications, J. Nonlinear Sci. Appl. 8 (2015), 787-799.
- [8] H. P Huang and S. Radenović, Some fixed point results of generalised Lipchitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl., 20 (2016), 566-583.
- [9] H. Huang, S. Radenović, G. Deng, A sharp generalization on cone b-metric space over Banach algebra, J. Nonlinear Sci. Appl., 10 (2), 429-435.
- [10] H. Huang, S. Hu, B. Z. Popović, S. Radenović, Common fixed point theorems for four mappings on cone b-metric spaces over Banach algebras, J. Nonlinear Sci. Appl. 9 (2016), 3655-3671.
- [11] N. Hussain, A. M. Al-Solam, M. A. Kutbi, Fixed points of α-admissible mappings in cone b-metric spaces over Banach algebra, J. Mathematical Analysis, Volume 8 Issue 2 (2017), 89-97.

- [12] M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., (2010), Article ID 978121, 15 pages.
- [13] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73, (2010), 3123-3129.
- [14] M. A. Kutbi, J. Ahmad, A. E. Al-Mazrooei, N. Hussain, Multuvalued fixed point theorem in cone b-metric spaces over Banach algebra with applications, J. Math. Anal., Vol. 9 Issue 1 (2018), 52-64.
- [15] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 19, (2017), 2153-2163.
- [16] Z. D. Mitrović, A note on the result of Suzuki, Miculescu and Mihail, J. Fixed Point Thery Appl. (2019) DOI: 10.1007/s11784-019-0663-5.
- [17] Z. D. Mitrović, On an open problem in rectangular b-metric space, J. Anal., 25, No. 1, (2017), 135-137.
- [18] Z. D. Mitrović, S. Radenović, The Banach and Reich contractions in $b_v(s)$ -metric spaces, J. Fixed Point Theory Appl. (2017). Volume 19, Issue 4, 3087-3095.
- [19] Z. D. Mitrović, S. Radenović, A common fixed point theorem of Jungck in rectangular b-metric spaces, Acta Math. Hungar. (2017) Volume 153, Issue 2, 401-407.
- [20] Z. D. Mitrović, A note on a Banach's fixed point theorem in b-rectangular metric space and b-metric space, Math. Slovaca 68 (2018), No. 5, 1113-1116.
- [21] M. Özavşar, Nadler Mappings in Cone b-Metric Spaces over Banach Algebras, accepted in Rend. Sem. Mat. Univ. Padova.
- [22] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.
- [23] W. Rudin, Functional Analysis, McGraw-Hill, New York, (1991).
- [24] S. Shukla, S. Balasubramanian, M. Pavlović, A Generalized Banach Fixed Point Theorem, Bull. Malays. Math. Sci. Soc. (2) 39, No. 4, (2016), 1529-1539.
- [25] S. L. Singh, S. Czerwik, K. Król, A. Singh, Coincidences and fixed points of hybrid contractions. Tamsui Oxf. J. Math. Sci. 24, (2008), 401-416.
- [26] T. Suzuki, Basic inequality on a b-metric space and its applications, J. Inequal. Appl. 2017, 256, 11 p. (2017). DOI10.1186/s13660-017-1528-3.