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In this paper, a class of the mixed type additive-quadratic-sextic functional equa-

tions is introduced and the common general solutions of elements of this class are ob-
tained. An alternative method of the fixed point theory to study the stability of these

new functional equations in the quasi-β-normed spaces has been applied. Furthermore,

a hyperstability result and a counterexample for the odd case are indicated.
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1. Introduction

The theory of stability of functional equations is an emerging field in modern math-
ematics. The investigation of stability of functional equations is initiated by the renowned
problem of S. M. Ulam [20] in 1940. D. H. Hyers [13] was the foremost mathematician who
provided an answer to the question of Ulam. Later on, various generalizations and extensions
of Hyers’ result were ascertained by Bourgin [8], Th. M. Rassias [18], T. Aoki [1], J. M. Ras-
sias [17] and P. Găvruţa [12] in different versions. After that, this problem became known as
Hyers-Ulam stability problem for functional equations. During the last three decades, several
stability problems of a large variety of functional equations in miscellaneous spaces have been
extensively studied and generalized by a number of mathematicians. Some results regarding
the stability of various forms of the mixed type additive-quadratic ([5], [6]), additive-cubic
([16], [23]), additive-quartic ([2], [3]), cubic-quartic ([4], [9]), quadratic-quartic ([7], [21]),
additive-quadratic-cubic [15], additive-quartic-cubic [10] and additive-quartic-cubic-quartic
[19] functional equations were investigated in normed spaces and algebras.

Motivated by the sextic functional equation given in [14], in this paper, we consider
the following mixed type additive-quadratic-sextic functional equations as follows:

f(rx+ sy) + f(rx− sy) + f(sx+ ry) + f(sx− ry)

= r2s2(r2 + s2)[f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)]

+ 2[f(rx) + f(sx) + f(ry) + f(sy)]− (r + s)(f(y)− f(−y)) (1)

for the fixed integer r and any integer s such that r, s 6= 0,±1 and r + s 6= 0. It is easily
verified that the function f(x) = ax6 + bx2 + cx is a common solution of the functional
equations given in (1). We obtain the general solution and study the Hyers-Ulam stability
of the equation (1) in the quasi-β-normed spaces for the fixed integer r and any integer
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s such that r, s 6= 0,±1 and r + s 6= 0. In the case that f is an odd mapping satisfying
(1), we show that under some mild conditions (1) can be hyperstable. We also present a
counterexample for a single case.

2. Solution of (1)

In this section, we obtain some results on the general solution of functional equation
(1). Given f : X −→ Y , for simplicity, we define the difference operators Γr,sf : X×X −→ Y
by

Γr,sf(x, y) = f(rx+ sy) + f(rx− sy) + f(sx+ ry) + f(sx− ry)

− r2s2(r2 + s2)[f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)]

− 2[f(rx) + f(sx) + f(ry) + f(sy)] + (r + s)(f(y)− f(−y))

for all x, y ∈ X, for the fixed integer r and any integer s such that r, s 6= 0,±1 and r+s 6= 0.
In the sequel, by Γr,sf(x, y) = 0, we mean that f satisfies (1) for the fixed integer r and
any integer s such that r, s 6= 0,±1 and r + s 6= 0. Moreover, for the set X, we denote

n−times︷ ︸︸ ︷
X ×X × · · · ×X by Xn. Recall that a mapping f : Xn −→ Y is called n-additive if it is
additive in each variable. Here, we find out the general solution of (1).

Proposition 2.1. Let X and Y be real vector spaces. Then, a mapping f : X −→ Y satisfies
the functional equation (1) if and only if there exist a unique additive mapping A : X −→ Y ,
a unique symmetric biadditive mapping Q : X×X −→ Y and a unique symmetric 6-additive
mapping S : X6 −→ Y such that f(x) = A(x) +Q(x, x) + S(x, x, x, x, x, x) for all x ∈ X.

Proof. Suppose that there exist a unique additive mapping A : X −→ Y , a unique symmetric
biadditive mappingQ : X×X −→ Y and a unique symmetric 6-additive mapping S : X6 −→
Y such that f(x) = A(x) +Q(x, x) +S(x, x, x, x, x, x) for all x ∈ X. It is easily verified that
f satisfies the functional equation (1) for all x, y ∈ X.

Conversely, assume that f satisfies (1). We decompose f into the even part and odd
part by setting

fo(x) =
1

2
(f(x)− f(−x)), fe(x) =

1

2
(f(x) + f(−x)), (x ∈ X).

By a simple computation, we see that Γr,sfo(x, y) = 0. Since fo is an odd mapping, the last
equation can be rewritten as follows:

fo(rx+ sy) + fo(rx− sy) + fo(sx+ ry) + fo(sx− ry)

= r2s2(r2 + s2)[fo(x+ y) + fo(x− y)− 2fo(x)]

+ 2[fo(rx) + fo(sx) + fo(ry) + fo(sy)]− 2(r + s)fo(y) (2)

for all x, y ∈ X. Replacing (x, y, s) by (0, x, r) in (2), we have

fo(rx) = rfo(x) (3)

for all x ∈ X. Putting s = r in (2) and using (3), we find 2(r6 − r)[fo(x+ y) + fo(x− y)] =
4(r6 − r)fo(x) for all x, y ∈ X. Since r 6= 0, 1, we have

fo(x+ y) + fo(x− y) = 2fo(x) (4)

for all x, y ∈ X. Replacing (x, y) by (y, x) in (4) and using the oddness of fo, we get

fo(x+ y)− fo(x− y) = 2fo(y) (5)
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for all x, y ∈ X. It concludes by the equalities (4) and (5) that fo(x+ y) = fo(x) + fo(y) for
all x, y ∈ X. This means that fo is an additive mapping, say it A. Now, similar the above,
one can show that Γr,sfe(x, y) = 0. Hence, the last equation is equivalent to the following:

fe(rx+ sy) + fe(rx− sy) + fe(sx+ ry) + fe(sx− ry) = r2s2(r2 + s2)[fe(x+ y)

+ fe(x− y)− 2fe(x)− 2fe(y)] + 2[fe(rx) + fe(sx) + fe(ry) + fe(sy)]. (6)

Note that fe(0) = 0. Letting y = x and s = 2r in (6) and using the evenness of f , we get

fe(3rx) + fe(rx) = 10r6[fe(2x)− 4fe(x)] + 2[fe(2rx) + fe(rx)] (7)

for all x ∈ X. Putting y = x and s = 3r in (6), we obtain

fe(4rx) + fe(2rx) = 45r6[fe(2x)− 4fe(x)] + 2[fe(3rx) + fe(rx)] (8)

for all x ∈ X. It follows from (7) and (8) that

fe(4rx) + fe(2rx) = 65r6[fe(2x)− 4fe(x)] + 4[fe(2rx) + fe(rx)] (9)

for all x ∈ X. Letting s = r and y = 2x in (6), we have

fe(3rx) + fe(rx) = r6[fe(3x)− 2fe(2x)− fe(x)] + 2[fe(2rx) + fe(rx)] (10)

for all x ∈ X. Once more, by putting s = r and y = 3x in (6), we find

fe(4rx) + fe(2rx) = r6[fe(4x) + fe(2x)− 2fe(x)− 2fe(3x)]

+ 2[fe(3rx) + fe(rx)] (11)

for all x ∈ X. Plugging (10) into (11), we see that

fe(4rx) + fe(2rx) = r6[fe(4x)− 3fe(2x)− 4fe(x)] + 4[fe(2rx) + fe(rx)] (12)

for all x ∈ X. Since r 6= 0, the equalities (9) and (12) imply that fe(4x) − 68fe(2x) +
256fe(x) = 0 for all x ∈ X. The last equality means that the mappings g, h : X −→ Y
defined by g(x) := fe(2x) − 64fe(x) and h(x) := fe(2x) − 4fe(x) are quadratic and sextic,
respectively. Thus, there exists a unique symmetric biadditive mapping Q : X ×X −→ Y
and a unique symmetric 6-additive mapping S : X6 −→ Y such that fe(x) = Q(x, x) +
S(x, x, x, x, x, x) for all x ∈ X (see the proofs of [14, Theorem 2.1] and [21, Theorem 2.2]).
This completes the proof. �

Corollary 2.1. Let X and Y be real vector spaces. Suppose that the mapping f : X −→ Y
satisfies the functional equation (1).

(i) If f is an even mapping, then it is quadratic-sextic;
(ii) If f is an odd mapping, then it is additive.

3. Stability of (1)–Odd Case

In this section, we prove the generalized Hyers-Ulam stability of the mixed type
additive-quadratic-sextic functional equation (1) when f is an odd mapping. We firstly
recall some basic facts concerning quasi-β-normed space.

Definition 3.1. Let β be a fix real number with 0 < β < 1, and let K denote either R or C.
Let X be a linear space over K. A quasi-β-norm is a real-valued function on X satisfying
the following:

(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;
(ii) ‖tx‖ = |t|β |‖x‖ for all x ∈ X and t ∈ K;

(iii) There is a constant K ≥ 1 such that ‖x+ y‖ ≤ K(‖x‖+ ‖y‖) for all x, y ∈ X.
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The pair (X, ‖ · ‖) is called a quasi-β-normed space if ‖ · ‖ is a quasi-β-norm on X.
The smallest possible K is called the modulus of concavity of ‖ · ‖. A quasi-β-Banach space
is a complete quasi-β-normed space. From now on, let X be a linear space and Y be a
quasi-β-Banach space with quasi-β-norm ‖ · ‖Y and K be the modulus of concavity of ‖ · ‖Y ,
unless otherwise explicitly stated. In this section, by using an idea of Găvruţa [12] we prove
the stability of (1) in the spirit of Hyers, Ulam, and Rassias. We recall the following theorem
which is a result in fixed point theory [22]. This result plays a fundamental role to obtain
our purpose in this paper.

Lemma 3.1. Let j ∈ {−1, 1} be fixed, a, s ∈ N with a ≥ 2 and ψ : X −→ [0,∞) be
a function such that there exists an L < 1 with ψ(ajx) < Lajsβψx for all x ∈ X. If
f : X −→ Y is a mapping satisfying ‖f(ax) − asf(x)‖Y ≤ ψ(x) for all x ∈ X, then
there exists a uniquely determined mapping F : X −→ Y such that F (ax) = asF (x),
F (x) = limn→∞ a−jnsf(ajnsx) and ‖f(x)− F (x)‖Y ≤ 1

asβ |1−Lj |ψ(x) for all x ∈ X.

In the upcoming result, we prove the stability for the functional equation (1) in quasi-
β-normed spaces.

Theorem 3.1. Let j ∈ {−1, 1} be fixed, and let φ : X × X −→ [0,∞) be a function such
that there exists an 0 < L < 1 with φ(tjx, tjy) 6 tjβLφ(x, y) for all x ∈ X, where t ∈ {2, r}.
Let f : X −→ Y be an odd mapping satisfying

‖Γr,sf(x, y)‖Y 6 φ(x, y) (13)

for all x, y ∈ X. Then, there exist unique additive mappings Ai : X −→ Y (i ∈ {1, 2}) such
that

‖f(x)−A1(x)‖Y 6
1

rβ |1− Lj |
φ̃(x) (14)

and

‖f(x)−A2(x)‖Y 6
1

2β |1− Lj |
Φ(x) (15)

for all x ∈ X, where

φ̃(x) :=
K

4β

[∣∣∣∣ r6

r − 1

∣∣∣∣β φ(0, 0) + φ(0, x)

]
, (16)

Φ(x) :=
1

(2(r6 − 1))β
[K32βφ̃(2x) +K3φ(x, x) +K28βφ̃(x)]

+
K

(4|r − 1|)β
φ(0, 0). (17)

Proof. Putting x = y = 0 and s = r in (13), we get

‖f(0)‖Y ≤
1

|4(r − 1)|β
φ(0, 0). (18)

The relation (18) implies that

‖4r6f(0)‖Y ≤
∣∣∣∣ r6

r − 1

∣∣∣∣β φ(0, 0). (19)

Replacing (x, y, s) by (0, x, r) in (13), we get

‖4r6f(0)− 4f(rx) + 4rf(x)‖Y ≤ φ(0, x) (20)

for all x ∈ X. It follows from (19) and (20) that

‖f(rx)− rf(x)‖Y ≤ φ̃(x) (21)
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for all x ∈ X, where φ̃(x) is defined in (16). By Lemma 3.1, there exists a unique mapping
A1 : X −→ Y such that A1(rx) = rA1(x) and (14) holds. It remains to show that A1 is an
additive map. By (13), we have∥∥∥∥Γr,sf(rjnx, rjny)

rjn

∥∥∥∥
Y

≤ r−jnβφ(rjnx, rjny) 6 r−jnβ(rjβL)nφ(x, y) = Lnφ(x, y)

for all x, y ∈ X and n ∈ N. Letting n → ∞ in the above inequality, we observe that
Γr,sA1(x, y) = 0 for all x, y ∈ X. Therefore, the mapping A1 is additive, as required. For
the case t = 2, by setting s = r and y = x in (13), we obtain

‖2f(2rx)− 2r6(f(2x)− 2f(x))− 2(r6 − 1)f(0)− 8f(rx) + 4rf(x)‖Y ≤ φ(x, x)

for all x ∈ X. The above inequality can be modified as follows:

‖2(f(2rx)− rf(2x))− 2(r6 − r)(f(2x)− 2f(x))

− 2(r6 − 1)f(0)− 8(f(rx)− rf(x))‖Y ≤ φ(x, x) (22)

for all x ∈ X. It concludes from the relation (21) that

‖2(f(2rx)− rf(2x))‖Y ≤ φ̃(2x) (23)

for all x ∈ X. Now, the inequalities (18), (21), (22) and (23) imply that

‖f(2x)− 2f(x))‖Y ≤ Φ(x) (24)

for all x ∈ X, where Φ(x) is defined in (17). Hence, Lemma 3.1 necessitates that there exists
a unique additive mapping A2 : X −→ Y such that (15) holds. �

Recall that a functional equation F is hyperstable if any mapping f satisfying the
equation F approximately is a true solution of F. Under some conditions the functional
equation (1) can be hyperstable as follows. In all corollaries of the paper, we assume that
X is a quasi-α-normed space with quasi-α-norm ‖ · ‖X , and Y is a β-Banach space with
quasi-β-norm ‖ · ‖Y .

Corollary 3.1. Let θ, m and n be positive numbers with m + n 6= β
α . If f : X −→ Y is a

mapping satisfying ‖Γr,sf(x, y)‖Y 6 θ‖x‖mX‖y‖nX for all x, y ∈ X, then f is additive.

Proof. Taking φ(x, y) = θ‖x‖mX‖y‖nX in Theorem 3.1 in the case t = r, we see that φ̃(x) = 0
and so f is additive. �

The idea of the following example is taken from [11]. The method of proof is similar
but we include it for the sake of completeness.

Example Let θ > 0. For the fixed and arbitrary integers r, s with r, s 6= 0,±1 and
r + s 6= 0, set a = θ

4[2r2s2(r2+s2)+r+s+6]t , where t =max{|r|, |s|}. Consider the function

ψ : R −→ R defined by

ψ(x) =


ax |x| < 1

a x ≥ 1

−a x ≤ −1.

Suppose that the function f : R −→ R is defined through f(x) =
∑∞
n=0

ψ(2nx)
2n for x ∈ R.

We have f(0) = 0. Let x ∈ R+. Assume that N0 =min{n : x ≥ 1
2n }. Thus, f(−x) =

−N0x − x
∑∞
n=N0

1
2n = −f(x), and so f is an odd function. Furthermore, ψ is continuous

and bounded by a. Since f is a uniformly convergent series of continuous functions, it is
continuous and bounded. Indeed, for each x ∈ R, we have |f(x)| ≤ 2a. We wish to show
that

|Γr,sf(x, y)| 6 θ(|x|+ |y|) (25)
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for all x, y ∈ R. Obviously, (25) holds for x = y = 0. Assume that |x| + |y| < 1
t . We know

that |r|, |s| ≥ 2. Then, there exist positive integers N1, N2 such that |rx| + |sy| < 1
2N1−1

and |sx| + |ry| < 1
2N2−1 . Hence, |2N−1(rx ± sy)| < 1, |2N−1(sx ± ry)| < 1, |2N−1rx| <

1, |2N−1sx| < 1, |2N−1ry| < 1, |2N−1sy| < 1, |2N−1(x ± y)| < 1, where N =min{N1, N2}.
So, the above inequalities hold for each n ∈ {0, 1, 2, . . . , N−1}. Since, ψ is linear on (−1, 1),
by Corollary 2.1, |Γr,sψ(2nx, 2ny)| = 0 for all n ∈ {0, 1, 2, . . . , N − 1}. The last equality
implies that

|Γr,sf(2nx, 2ny)|
|x|+ |y|

≤
∞∑
n=N

|Γr,sψ(2nx, 2ny)|
2n(|x|+ |y|)

≤
∞∑
l=0

[4r2s2(r2 + s2) + 2(r + s) + 12]a

2l2N (|x|+ |y|)

≤
∞∑
l=0

[4r2s2(r2 + s2) + 2(r + s) + 12]a

2l
≤ 4[2r2s2(r2 + s2) + r + s+ 6]at = θ

for all x, y ∈ R. If |x| + |y| ≥ 1
t , then

|Γr,sf(2nx,2ny)|
|x|+|y| ≤ 4[2r2s2(r2 + s2) + r + s + 6]at = θ.

Therefore, f satisfies (25) for all x, y ∈ R. Suppose contrary to our claim, that there exists
a number b ∈ [0,∞) and an additive function A : R −→ R such that |f(x) − A(x)| < b|x|
for all x ∈ R. Hence, there exists a constant c ∈ R such that A(x) = cx for all x ∈ R. So

|f(x)| ≤ (|c|+ b)|x|, (26)

for all x ∈ R. On the other hand, consider m ∈ N such that (m+ 1)a > |c|+ b. If x is a real
number in

(
0, 1

2N−1

)
, then 2nx ∈ (0, 1) for all n = 0, 1, · · · , N − 1. Thus, for such x, we get

f(x) =
∑∞
n=0

ψ(2nx)
2n ≥

∑m
n=0

2nax
2n = (m+ 1)ax > (|c|+ b)x. This relation contradicts (26).

4. Stability of (1)–Even Case

In this section, we prove the stability of the functional equation (1) when f is an even
mapping.

Theorem 4.1. Let j ∈ {−1, 1} be fixed, and let φ : X×X −→ [0,∞) be a function such that
there exists an 0 < L < 1 with φ(2jx, 2jy) 6 2jβLφ(x, y) for all x ∈ X. Let f : X −→ Y be
an even mapping satisfying

‖Γr,sf(x, y)‖Y 6 φ(x, y) (27)

for all x, y ∈ X. Then, there exists a unique quadratic mapping Q : X −→ Y and a unique
sextic mapping S : X −→ Y such that

‖f(2x)− 64f(x)− Q(x)‖Y 6
1

22β |1− Lj |
Λ(x) (28)

and

‖f(2x)− 4f(x)− S(x)‖Y 6
1

26β |1− Lj |
Λ(x) (29)

for all x ∈ X, where

Λ(x) =
1

2r6β

[
K3(2β + 1)φ(x, x) +K2

(
65r6

2(r6 − 1)

)β
φ(0, 0)

]

+
1

2r6β
K2
[
2βφ(x, 2x) + φ(x, 3x)

]
. (30)

Proof. Putting x = y = 0 and s = r in (27), we have ‖f(0)‖Y ≤ 1
|4(r6−1)|β φ(0, 0). Thus

‖130r6f(0)‖Y ≤
(

65r6

2(r6 − 1)

)β
φ(0, 0) (31)
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for all x ∈ X. Replacing (x, y, s) by (x, x, 2r) in (27), we get

‖4f(3rx) + 4f(rx)− 40r6[f(2x)− 4f(x) + f(0)]− 8[f(2rx) + f(rx)]‖Y
≤ 2βφ(x, x) (32)

for all x ∈ X. Letting x = y and s = 3r in (27), we find

‖2f(4rx) + 2f(2rx)− 90r6[f(2x)− 4f(x) + f(0)]− 4[f(3rx) + f(rx)]‖Y
≤ φ(x, x) (33)

for all x ∈ X. It follows from (32) and (33) that

‖2f(4rx) + 2f(2rx)− 130r6[f(2x)− 4f(x) + f(0)]− 8[f(2rx) + f(rx)]‖Y
≤ K(2β + 1)φ(x, x) (34)

for all x ∈ X. The relations (31) and (34) necessitate that

‖2f(4rx) + 2f(2rx)− 130r6[f(2x)− 4f(x)]− 8[f(2rx) + f(rx)]‖Y

≤ K2(2β + 1)φ(x, x) +K

(
65r6

2(r6 − 1)

)β
φ(0, 0) (35)

for all x ∈ X. Interchanging (x, y, s) into (x, 2x, r) in (27), we arrive at

‖4f(3rx) + 4f(rx)− 4r6[f(3x)− f(x)− 2f(2x)]− 8[f(2rx) + f(rx)]‖Y
≤ 2βφ(x, 2x) (36)

for all x ∈ X. Putting y = 3x and s = r in (27), we obtain

‖2f(4rx) + 2f(2rx)−2r6[f(4x) + f(2x)− 2f(x)− 2f(3x)]

− 4[f(3rx) + f(rx)]‖Y ≤ φ(x, 3x) (37)

for all x ∈ X. Plugging (36) into (37), we have

‖2f(4rx) + 2f(2rx)−2r6[f(4x)− 3f(2x)− 4f(x)]− 8[f(2rx) + f(rx)]‖Y
≤ K[2βφ(x, 2x) + φ(x, 3x)] (38)

for all x ∈ X. Now, the relations (35) and (38) imply that

‖2r6[f(4x)− 68f(2x) + 256f(x)]‖Y ≤ K3(2β + 1)φ(x, x)

+K2

(
65r6

2(r6 − 1)

)β
φ(0, 0) +K2[2βφ(x, 2x) + φ(x, 3x)] (39)

for all x ∈ X. Hence, ‖g(2x) − 4g(x)‖Y ≤ Λ(x) for all x ∈ X, in which g(x) = f(2x) −
64f(x) and Λ(x) is defined in (30). It now follows from Lemma 3.1 that there exists a
unique quadratic mapping Q : X −→ Y such that Q(2x) = 4Q(x) and ‖f(x) − Q(x)‖Y 6

1

22β |1− Lj |
Λ(x) for all x ∈ X. Furthermore, from (39) we have ‖h(2x)− 64h(x)‖Y ≤ Λ(x)

for all x ∈ X, where h(x) = f(2x)− 4f(x). The rest of the proof can be repeated similarly.
This finishes the proof. �

5. Stability of (1)

In this section, by using Theorems 3.1 and 4.1, we prove the generalized Hyers-Ulam-
Rassias stability of the mixed type additive, quadratic and sextic functional equation (1)
when f is an arbitrary mapping.
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Theorem 5.1. Let j ∈ {−1, 1} be fixed, and let ϕ : X ×X −→ [0,∞) be a function such
that there exists an 0 < L < 1 with ϕ(2jx, 2jy) 6 2jβLϕ(x, y). Let f : X −→ Y be a
mapping satisfying ‖Γr,sf(x, y)‖Y 6 ϕ(x, y) for all x, y ∈ X. Then, there exists a unique
additive mapping A : X −→ Y , a unique quadratic mapping Q : X −→ Y and a unique
sextic mapping S : X −→ Y such that ‖f(x)−A(x)−Q(x)−S(x)‖Y 6 Ψϕ(x) for all x ∈ X,
where

Ψϕ(x) :=
K

2β |1− Lj |
Φ̃(x) +K2

[
1

22β
+

1

26β

]
ΛΦ(x)

|1− Lj |
(40)

for which

Φ̃(x) :=
1

(2(r6 − 1))β
[K32βϕ̃(2x) +K3Φ(x, x) +K28βϕ̃(x)] +

K

(4|r − 1|)β
Φ(0, 0), (41)

ΛΦ(x) =
1

2r6β

[
K3(2β + 1)Φ(x, x) +K2

(
65r6

2(r6 − 1)

)β
Φ(0, 0)

]

+
1

2r6β
K2
[
2βΦ(x, 2x) + Φ(x, 3x)

]
(42)

whereas Φ(x, y) = 1
2 [ϕ(x, y) + ϕ(−x,−y)] and ϕ̃(x) := K

4β

[∣∣∣ r6r−1

∣∣∣β Φ(0, 0) + Φ(0, x)

]
.

Proof. We consider the mappings fo(x) and fe(x) introduced in Proposition 2.1. We have
‖Γr,sfo(x, y)‖Y 6 Φ(x, y) and ‖Γr,sfe(x, y)‖Y 6 Φ(x, y) for all x, y ∈ X. Also, Φ(2jx, 2jy) 6
2jβLΦ(x, y) for all x, y ∈ X. It follows from Theorem 3.1 that there exists a unique additive
mapping A : X −→ Y such that

‖fo(x)−A(x)‖Y 6
1

2β |1− Lj |
Φ̃(x) (43)

for all x ∈ X in which Φ̃(x) is defined in (41). Once more, Theorem 4.1 implies that there
exists a unique quadratic mapping Q0 : X −→ Y and a unique sextic mapping S0 : X −→ Y
such that

‖fe(2x)− 64fe(x)− Q0(x)‖Y 6
1

22β |1− Lj |
ΛΦ(x) (44)

and

‖fe(2x)− 4fe(x)− S0(x)‖Y 6
1

26β |1− Lj |
ΛΦ(x) (45)

for all x ∈ X, where ΛΦ(x) is introduced in (42). By the inequalities (44) and (45), we have

‖fe(x)− Q(x)− S(x)‖Y 6 K
[

1

22β
+

1

26β

]
ΛΦ(x)

|1− Lj |
(46)

for all x ∈ X, where Q(x) = − 1
60Q0(x) and S(x) = 1

60S0(x). Plugging the relation (43) into
(46), we obtain the desired result. �

In the oncoming corollaries which are direct consequences of Theorem 5.1, Γr,sf(x, y)
is bounded by the sum and product of the powers of norms. We present them without
proofs.

Corollary 5.1. Let θ, λ be positive numbers with λ 6= β
α , 2

β
α , 6

β
α . If f : X −→ Y is a

mapping satisfying ‖Γr,sf(x, y)‖Y 6 θ(‖x‖λX + ‖y‖λX) for all x, y ∈ X, then there exists a
unique additive mapping A : X −→ Y , a unique quadratic mapping Q : X −→ Y and a
unique sextic mapping S : X −→ Y such that

‖f(x)−A(x)− Q(x)− S(x)‖Y
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≤



[
θΓλ

2β−2αλ
+ θΛλ

22β−2αλ
+ θΛλ

26β−2αλ

]
‖x‖λX 0 < λ < β

α[
2αλΓλθ

2β(2αλ−2β)
+ θΛλ

22β−2αλ
+ θΛλ

26β−2αλ

]
‖x‖λX

β
α < λ < 2βα[

2αλΓλθ
2β(2αλ−2β)

+ 2αλθΛλ
22β(2αλ−22β)

+ θΛλ
26β−2αλ

]
‖x‖λX 2βα < λ < 6βα[

2αλΓλθ
2β(2αλ−2β)

+ 2αλθΛλ
22β(2αλ−22β)

+ 2αλθΛλ
26β(2αλ−26β)

]
‖x‖λX λ > 6βα

for all x ∈ X, where Γλ = 1
(4(r6−1))β

[K32αλ +K32β+1 +K24β ] and

Λλ =
1

2r6β
[2K3(2β + 1) +K2[2β(1 + 2αλ) + 1 + 3αλ]].

Corollary 5.2. Let θ, m and n be positive numbers with λ = m + n 6= β
α , 2

β
α , 6

β
α . If f :

X −→ Y is a mapping satisfying ‖Γr,sf(x, y)‖Y 6 θ‖x‖mX‖y‖nX for all x, y ∈ X, then there
exists a unique additive mapping A : X −→ Y , a unique quadratic mapping Q : X −→ Y
and a unique sextic mapping S : X −→ Y such that

‖f(x)−A(x)− Q(x)− S(x)‖Y

≤



[
2K3θ

(2(r6−1))β(2β−2αλ)
+

θΛλ,n
22β−2αλ

+
θ(Λλ,n)
26β−2αλ

]
‖x‖λX 0 < λ < β

α[
2K32αλθ

2β(2(r6−1))β(2αλ−2β)
+

θΛλ,n
22β−2αλ

+
θ(Λλ,n)
26β−2αλ

]
‖x‖λX

β
α < λ < 2βα[

2K32αλθ
2β(2(r6−1))β(2αλ−2β)

+
2αλθΛλ,n

22β(2αλ−22β)
+

θΛλ,n
26β−2αλ

]
‖x‖λX 2βα < λ < 6βα[

2K32αλθ
2β(2(r6−1))β(2αλ−2β)

+
2αλθΛλ,n

22β(2αλ−22β)
+

2αλθΛλ,n
26β(2αλ−22β)

]
‖x‖λX λ > 6βα

for all x ∈ X, where Λλ,n = 1
2r6β

[2K3(2β + 1) +K2(2β+αn + 3αn)].

6. Conclusions

In this paper, the authors introduced a class of the mixed type additive-quadratic-
sextic functional equations and investigated their stability in the quasi-β-normed spaces.
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