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APPROXIMATION ON THE MIXED TYPE
ADDITIVE-QUADRATIC-SEXTIC FUNCTIONAL EQUATION
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In this paper, a class of the mized type additive-quadratic-sextic functional equa-
tions is introduced and the common general solutions of elements of this class are ob-
tained. An alternative method of the fized point theory to study the stability of these
new functional equations in the quasi-B-normed spaces has been applied. Furthermore,
a hyperstability result and a counterexample for the odd case are indicated.
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1. Introduction

The theory of stability of functional equations is an emerging field in modern math-
ematics. The investigation of stability of functional equations is initiated by the renowned
problem of S. M. Ulam [20] in 1940. D. H. Hyers [13] was the foremost mathematician who
provided an answer to the question of Ulam. Later on, various generalizations and extensions
of Hyers’ result were ascertained by Bourgin [8], Th. M. Rassias [18], T. Aoki [1], J. M. Ras-
sias [17] and P. Gavruta [12] in different versions. After that, this problem became known as
Hyers-Ulam stability problem for functional equations. During the last three decades, several
stability problems of a large variety of functional equations in miscellaneous spaces have been
extensively studied and generalized by a number of mathematicians. Some results regarding
the stability of various forms of the mixed type additive-quadratic ([5], [6]), additive-cubic
([16], [23]), additive-quartic ([2], [3]), cubic-quartic ([4], [9]), quadratic-quartic ([7], [21]),
additive-quadratic-cubic [15], additive-quartic-cubic [10] and additive-quartic-cubic-quartic
[19] functional equations were investigated in normed spaces and algebras.

Motivated by the sextic functional equation given in [14], in this paper, we consider
the following mixed type additive-quadratic-sextic functional equations as follows:

flro +sy) + f(re — sy) + f(sz +ry) + f(sx —ry)
=’ (r* + )f (@ +y) + fl@—y) —2f(z) — f(y) — f(—)]
+2[f(rz) + f(sz) + f(ry) + f(sy)] — (r +5)(f(y) — f(~y)) (1)

for the fixed integer r and any integer s such that r,s # 0,£1 and r + s # 0. It is easily
verified that the function f(z) = ax® + bx? + cz is a common solution of the functional
equations given in (1). We obtain the general solution and study the Hyers-Ulam stability
of the equation (1) in the quasi-8-normed spaces for the fixed integer r and any integer
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s such that r,s # 0,41 and r + s # 0. In the case that f is an odd mapping satisfying
(1), we show that under some mild conditions (1) can be hyperstable. We also present a
counterexample for a single case.

2. Solution of (1)

In this section, we obtain some results on the general solution of functional equation
(1). Given f : X — Y, for simplicity, we define the difference operators I'y. s f : X x X — Y
by

Losf(zy) = flra+sy) + f(ra —sy) + f(sz +ry) + f(sz —ry)
=22 (r® + 8%)[f(z +y) + fz —y) — 2f(2) = f(y) — f(-y)]
= 2[f(rz) + f(s2) + f(ry) + f(sy)] + (r + ) (f(y) — f(=y))
for all z,y € X, for the fixed integer r and any integer s such that r, s # 0, +1 and r+s # 0.

In the sequel, by T, s f(z,y) = 0, we mean that f satisfies (1) for the fixed integer r and

any integer s such that r,s # 0,41 and r + s # 0. Moreover, for the set X, we denote
n—times

X XX x--+x X by X". Recall that a mapping f : X™ — Y is called n-additive if it is

additive in each variable. Here, we find out the general solution of (1).

Proposition 2.1. Let X andY be real vector spaces. Then, a mapping f : X — Y satisfies
the functional equation (1) if and only if there exist a unique additive mapping A: X — Y,
a unique symmetric biadditive mapping @ : X x X — Y and a unique symmetric 6-additive
mapping S : X6 — Y such that f(z) = A(z) + Q(x,x) + S(x,x, 2,7, 2,7) for all v € X.

Proof. Suppose that there exist a unique additive mapping A : X — Y, a unique symmetric
biadditive mapping @ : X xX — Y and a unique symmetric 6-additive mapping S : X6 —
Y such that f(x) = A(x)+Q(z,z)+ S(z,z,z,z,z,x) for all x € X. It is easily verified that
f satisfies the functional equation (1) for all z,y € X.

Conversely, assume that f satisfies (1). We decompose f into the even part and odd
part by setting

o) = 2@ — F(2). fle) = 2(f@) + f(-x)), (z€X).

2
By a simple computation, we see that I'; s fo(z,y) = 0. Since f, is an odd mapping, the last
equation can be rewritten as follows:

folra + sy) + folrx — sy) + fo(sx +ry) + fo(sx —ry)

=128 (1 + ) [fo(x + y) + folz — y) — 2fo(2)]

+2[fo(r@) + fo(sz) + fo(ry) + fo(sy)] = 2(r + s) fo(y) (2)
for all x,y € X. Replacing (z,vy, s) by (0,z,7) in (2), we have
folrz) =1fo(x) (3)

for all x € X. Putting s = r in (2) and using (3), we find 2(r® —7)[f,(x +y) + fo(z —y)] =
4(rS — r) fo(x) for all z,y € X. Since r # 0, 1, we have

Jolx +y) + folz —y) = 2fo(x) (4)
for all z,y € X. Replacing (z,y) by (y,x) in (4) and using the oddness of f,, we get
folx +y) = folz —y) = 2fo(y) (5)
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for all z,y € X. It concludes by the equalities (4) and (5) that f,(z+y) = fo(z) + fo(y) for
all z,y € X. This means that f, is an additive mapping, say it A. Now, similar the above,
one can show that I', ¢ fe(z,y) = 0. Hence, the last equation is equivalent to the following:

fe(rz + sy) + fo(ra — sy) + fe(sz + 1Y) + fe(sz —ry) = 1°s*(r? + ) [fe(z + y)

+ fe(w —y) = 2fe(x) = 2fe(y)] + 2[fe(rz) + fe(sx) + fe(ry) + fe(sy)]. (6)
Note that f.(0) = 0. Letting y = = and s = 2r in (6) and using the evenness of f, we get
fe(Bra) + fe(ra) = 10r°[fe(22) — 4fe()] + 2[fe(2ra) + fe(ro)] (7)
for all x € X. Putting y = « and s = 3r in (6), we obtain
fe(dra) + fe(2rz) = 45r°(fo(22) — Afe(2)] + 2[fe(3r2) + fe(ra)] (8)
for all x € X. It follows from (7) and (8) that
feldra) + fe(2ra) = 65r°[fe(22) — 4fe(2)] + 4 fe(2ra) + fe(ra)] (9)

for all z € X. Letting s = r and y = 2z in (6), we have

fe(Bra) + fe(rz) = r°[fe(3x) — 2fe(22) — fe(x)] + 2[fe(2ra) + fe(ra)] (10)
for all x € X. Once more, by putting s = r and y = 3z in (6), we find

feldra) + fe(2ra) = 1°[fe(4o) + fe(22) - 2fe() = 2fc(32)]
+2[fe(Brz) + fe(ra)] (11)
for all x € X. Plugging (10) into (11), we see that

fe(drz) + fe(2rz) = r°[fe(4z) = 3fc(2x) — 4fc(2)] + Al fe(2rz) + fo(r)] (12)

for all x € X. Since r # 0, the equalities (9) and (12) imply that f.(4z) — 68f.(2z) +
256 f.(z) = 0 for all x € X. The last equality means that the mappings g,h : X — Y
defined by g(z) := fo(22) — 64f.(z) and h(z) := f.(22) — 4f.(x) are quadratic and sextic,
respectively. Thus, there exists a unique symmetric biadditive mapping @ : X x X — Y
and a unique symmetric 6-additive mapping S : X¢ — Y such that f.(z) = Q(z,x) +
S(x,z,z,z,z,x) for all x € X (see the proofs of [14, Theorem 2.1] and [21, Theorem 2.2]).
This completes the proof. O

Corollary 2.1. Let X and Y be real vector spaces. Suppose that the mapping f: X — Y
satisfies the functional equation (1).

(i) If f is an even mapping, then it is quadratic-sextic;

(ii) If f is an odd mapping, then it is additive.

3. Stability of (1)—Odd Case

In this section, we prove the generalized Hyers-Ulam stability of the mixed type
additive-quadratic-sextic functional equation (1) when f is an odd mapping. We firstly
recall some basic facts concerning quasi-S-normed space.

Definition 3.1. Let 3 be a fix real number with 0 < 8 < 1, and let K denote either R or C.
Let X be a linear space over K. A quasi-B-norm is a real-valued function on X satisfying
the following:
(i) |||l > 0 for all x € X and ||z|| = 0 if and only if x = 0;
(i) ||tz|| = [t||||z]| for all x € X and t € K;
(i) There is a constant K > 1 such that ||z + y|| < K(||z|| + |ly||) for all z,y € X.
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The pair (X, | - ||) is called a quasi-3-normed space if || - || is a quasi-S-norm on X.
The smallest possible K is called the modulus of concavity of | - ||. A quasi-3-Banach space
is a complete quasi-g-normed space. From now on, let X be a linear space and Y be a
quasi-3-Banach space with quasi-S-norm || - ||y and K be the modulus of concavity of || - ||y,
unless otherwise explicitly stated. In this section, by using an idea of Gavruta [12] we prove
the stability of (1) in the spirit of Hyers, Ulam, and Rassias. We recall the following theorem
which is a result in fixed point theory [22]. This result plays a fundamental role to obtain
our purpose in this paper.

Lemma 3.1. Let j € {—1,1} be fized, a,s € N with a > 2 and ¢ : X — [0,00) be
a function such that there exists an L < 1 with v(a’x) La’*Pypx for all x € X. If
f+ X — Y is a mapping satisfying || f(ax) — a®f(x)|ly < ¥(x) for all x € X, then

there exists a uniquely determined mapping F : X — Y such that F(ax) = a°F(z),
F(z) =lim, 0 a 9™ f(a/™2) and ||f(z) — F(2)|y < md}({b) forallz € X.

>
<

In the upcoming result, we prove the stability for the functional equation (1) in quasi-
[-normed spaces.

Theorem 3.1. Let j € {—1,1} be fized, and let ¢ : X x X — [0,00) be a function such
that there exists an 0 < L < 1 with ¢(t'x,t/y) < /P Lo(x,y) for allz € X, where t € {2,7}.
Let f: X — Y be an odd mapping satisfying

ITrsf(z9)lly < oz, y) (13)

for all z,y € X. Then, there exist unique additive mappings A; : X —'Y (i € {1,2}) such
that

1f(x) = Ar(@)lly € 57— 579(@) (14)
and

1f(2) = Az(2)]ly <

for all x € X, where

~ K 76 o
By = 5 U_l\ 50,0+ 6(0.2)| (16)
_ 1 3987, 87
®(x) *W[K‘s? $(2z) + K*¢(x,x) + K*8°¢(x)]
K
+7(4|r—1|)5¢(0’0)' (17)
Proof. Putting x =y =0 and s = in (13), we get
1
Hf(O)HY < m¢(0»0)' (18)
The relation (18) implies that
6 |8
far* 50y < |25 ot0.0) (19)

Replacing (x,y, s) by (0,z,r) in (13), we get
1470 £(0) — 4f (rz) + 4rf(2) ]|y < 6(0,2) (20)
for all x € X. Tt follows from (19) and (20) that

If (rz) = rf(@)lly < o(x) (21)
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for all z € X, where g(:v) is defined in (16). By Lemma 3.1, there exists a unique mapping
Aj : X — Y such that A;(rz) = rA;(z) and (14) holds. It remains to show that A; is an
additive map. By (13), we have

Fr,sf(ranZa Tjny)

’ < eI Po(r i, rity) < IO L) () = Ll y)
r n

Y

for all z,y € X and n € N. Letting n — oo in the above inequality, we observe that
Iy sA1(z,y) =0 for all z,y € X. Therefore, the mapping A, is additive, as required. For
the case t = 2, by setting s = r and y = z in (13), we obtain

12f (2ra) — 2r°(f(22) — 2f(2)) = 2(° = 1) f(0) — 8f (rz) + 47 f(z) |}y < é(z, )
for all x € X. The above inequality can be modified as follows:
12(f (2ra) —rf(22)) = 2(r° — r)(f(22) - 2f(2))
=2(r® = 1) f(0) = 8(f(rz) — rf(2))ly < ¢(,2) (22)

for all x € X. It concludes from the relation (21) that

12f (2rz) —rf2)lly < é(22) (23)

for all x € X. Now, the inequalities (18), (21), (22) and (23) imply that
1 (22) = 2f(@))]ly < ®(z) (24)
for all z € X, where ®(z) is defined in (17). Hence, Lemma 3.1 necessitates that there exists
a unique additive mapping Ay : X — Y such that (15) holds. a

Recall that a functional equation F is hyperstable if any mapping f satisfying the
equation JF approximately is a true solution of F. Under some conditions the functional
equation (1) can be hyperstable as follows. In all corollaries of the paper, we assume that
X is a quasi-a-normed space with quasi-a-norm || - ||x, and Y is a 5-Banach space with
quasi-S-norm || - ||y

Corollary 3.1. Let 6, m and n be positive numbers with m + n # g If f: X —Yisa
mapping satisfying |Tr s f(x, y)lly < 0llz||%lyl% for all x,y € X, then f is additive.

Proof. Taking ¢(z,y) = 0||z||%|y||% in Theorem 3.1 in the case t = r, we see that dlz) =0
and so f is additive. a

The idea of the following example is taken from [11]. The method of proof is similar
but we include it for the sake of completeness.

Example Let 6 > 0. For the fixed and arbitrary integers r, s with r, s # 0,£1 and
r+s #0, set a = 4[2T252(T2+S2)+T+S+6]t, where ¢ =max{|r|,|s|}. Consider the functlon
1 : R — R defined by

ax |z] < 1
Y(x)=<a x>1

—a r < —1.
Suppose that the function f : R — R is defined through f(z) = Y07 Lt ;LI) for x € R.
We have f(0) = 0 Let * € RT. Assume that Ng =min{n : > 55}. Thus, f(-z) =
—Nox —xy o0 No 2” = —f(x), and so f is an odd function. Furthermore, v is continuous
and bounded by a. Since f is a uniformly convergent series of continuous functions, it is
continuous and bounded. Indeed, for each z € R, we have |f(z)| < 2a. We wish to show
that

ICrsf (@, 9)| < O] + [yl) (25)
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for all z,y € R. Obviously, (25) holds for z =y = 0. Assume that |z| + |y| < ;. We know
that |r[,[s| > 2. Then, there exist positive integers N1, Ny such that |[rz| + [sy| < zxi=r
and |sz| + |ry| < 2%% Hence, |2V~ Y(ra £+ sy)| < 1,12N " 1(sz £ ry)| < 1,2V 1ra| <
12Ntz < 1, 12N 1ry| < 1,128 1sy| < 1,12V 1(z £ y)| < 1, where N =min{Ny, Na}.
So, the above inequalities hold for each n € {0,1,2,..., N —1}. Since, ® is linear on (-1, 1),
by Corollary 2.1, |, s¢(2"z,2"y)| = 0 for all n € {0,1,2,...,N — 1}. The last equality
implies that

T f (22, 2"y) Z T s (272, 2"y) i [4r%5%(r? + s2) + 2(r + s) + 12]a
|z + [yl 2% (|| + ly]) 202N (|| + [y])

L [4r2s2(r2 + s2) + 2(r 4 5) + 12]a

< 42r%5%(r? + 5%) + 1+ 5+ 6lat = 0

1=0
for all z,y € R. If |z| + [y| > 1, then W < 4[2r%s2(r? + s%) + 7 + s + 6lat = 6.
Therefore, f satisfies (25) for all x,y € R. Suppose contrary to our claim, that there exists
a number b € [0,00) and an additive function A : R — R such that |f(z) — A(z)| < b|z|
for all z € R. Hence, there exists a constant ¢ € R such that A(z) = cx for all x € R. So

|f ()] < (le| + b) ], (26)
for all x € R. On the other hand, consider m € N such that (m + 1)a > || +b. If x is a real
number in (0, 5= ), then 2"z € (0,1) for all n =0,1,--- , N — 1. Thus, for such z, we get

fl@) =30, w(gnz) >3, 2;:?* = (m+ 1)az > (|c| + b)x. This relation contradicts (26).

4. Stability of (1)-Even Case

In this section, we prove the stability of the functional equation (1) when f is an even
mapping.
Theorem 4.1. Let j € {—1,1} be fized, and let ¢ : X x X — [0, 00) be a function such that

there exists an 0 < L < 1 with ¢(27x,27y) < 278 Lo(x,y) for allx € X. Let f: X — Y be
an even mapping satisfying

ITr s f (2 9)lly < oz, 9) (27)

for all x,y € X. Then, there exists a unique quadratic mapping Q : X — Y and a unique
sextic mapping 8 : X — Y such that

1
1£(22) = 647(2) = 2y < G — 777

A(z) (28)

and
1) = 4 (@) = 8@y < g —57A6) (29)

for all x € X, where
1 6506 \”
o) =55 [K3(2B+1)¢(x,as)+K2 (M) ¢(0,0)]

+ g K2 [2°0(a, 20) + 62, 30)] (30)

Proof. Putting x =y =0 and s = r in (27), we have ||f(0)||y < mqb(o, 0). Thus

r6 o
13076 £(0) ||y < (2(:365_1)) $(0,0) (31)
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for all © € X. Replacing (z,y, s) by (x,x,2r) in (27), we get
[4f (3ra) + 4f(ra) — 40r°[f (22) — 4f (x) + f(0)] = 8[f(2rz) + f(ra)]|ly
< 2%9(a,) (32)
for all x € X. Letting x = y and s = 3r in (27), we find
12f (4r2) + 2f (2rz) — 90r°[f (22) — 4f (2) + £(0)] — 4[f (3ra) + f(ra)][ly
< ¢(z,2) (33)
for all z € X. It follows from (32) and (33) that
[2f(4r) + 2(2r) — 13057 (22) 47 (&) + F(0)] ~ 817 (2r) + F(ra)]ly
<K (2% +1)¢(x, ) (34)
for all x € X. The relations (31) and (34) necessitate that
12 (4r) + 2f (2ra) — 130r°[f (22) — 4f (2)] = 8[f (2ra) + f(ra)]lly
6 B
< K*2° 4+ )o(x,2) + K (2(7(?(557;1)> #(0,0) (35)
for all x € X. Interchanging (z,y, s) into (z,2z,r) in (27), we arrive at
14f (3ra) + 4f (re) — 4r°[f (3z) — f(x) — 2f(22)] — 8[f (2ra) + f(ra)]|ly
< 2P¢(x, 2x) (36)
for all x € X. Putting y = 3z and s = r in (27), we obtain
12£(4r2) + 2f (2ra)—20°[f(42) + F(2) — 2£(z) — 2 (3)
—4[f@Brz) + f(ra)llly < o(z,3x) (37)
for all x € X. Plugging (36) into (37), we have
[2£(4rz) + 27 (2ra)~2r°[(4) — 3£(22) — 47 (@)] ~ 81F2re) + F(ra)]ly
< K[2°¢(x,22) + ¢(z, 3))] (38)
for all x € X. Now, the relations (35) and (38) imply that
127 (£ (42) — 68£(22) + 256 f (2)] | < K*(2° +1)é(w, 2)

r8 b
R (2(r6§)_1>> 6(0,0) + K?[2°¢(w, 22) + ¢(x, 32)] (39)

for all z € X. Hence, ||g(2z) — 4g(z)||y < A(z) for all x € X, in which g(x) = f(2z) —
64f(z) and A(x) is defined in (30). It now follows from Lemma 3.1 that there exists a
unique quadratic mapping Q : X — Y such that Q(2z) = 4Q(z) and | f(z) — Q(z)|ly <

mA(m) for all 2 € X. Furthermore, from (39) we have ||h(2x) — 64h(z)|ly < A(x)

for all x € X, where h(xz) = f(2z) — 4f(x). The rest of the proof can be repeated similarly.
This finishes the proof. (|

5. Stability of (1)

In this section, by using Theorems 3.1 and 4.1, we prove the generalized Hyers-Ulam-
Rassias stability of the mixed type additive, quadratic and sextic functional equation (1)
when f is an arbitrary mapping.
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Theorem 5.1. Let j € {—1,1} be fized, and let ¢ : X x X — [0,00) be a function such
that there exists an 0 < L < 1 with o(27x,27y) < 2PLp(x,y). Let f : X — Y be a
mapping satisfying ||Tr s f(z,y)|ly < @(z,y) for all x,y € X. Then, there exists a unique
additive mapping A : X — Y, a unique quadratic mapping Q : X — Y and a unique
sextic mapping 8 : X — Y such that || f(z) — A(z) — Q) = 8(z)|ly < Vyp(z) forallz € X,
where

() = ﬁ%@) + K [215 + Qiﬁ] |1A‘1’<2. (40)
Jor which
B(o) = (TGI K2 (20 + KO0, ) + K8 5(a)] + ﬁ@(o,o), (41)
o) :2%6& K3(2° +1)0(z, ) + K> (2(7?5”"_61)) " 20,0)
+ 2%6[,1(2 [2°®(2,22) + ®(z, 37)] (42)

whereas ®(z,y) = %[90(907?/) + (=2, —y)| and p(z) := 4513 [

o |8
ﬁl‘ @(0,0)—l—@(O,m)}

Proof. We consider the mappings f,(z) and f(z) introduced in Proposition 2.1. We have
ITssfolz,v)|ly < ®(x,y) and [Ty s fe(z,y)|ly < ®(z,y) forallz,y € X. Also, ®(27z, 27y) <
298 L& (z,y) for all z,y € X. Tt follows from Theorem 3.1 that there exists a unique additive
mapping A : X — Y such that
1 ~

[ fo(z) — A(@)[ly < m‘b(fﬂ) (43)
for all z € X in which ®(z) is defined in (41). Once more, Theorem 4.1 implies that there
exists a unique quadratic mapping Qg : X — Y and a unique sextic mapping 8¢ : X — Y
such that )

1 fe(22) = 64fe(2) = Qo(@)ly < Goa 7

Ag () (44)

and 1
[fe(22) — 4fe(z) — So(z)]ly < 81— 1]

for all z € X, where Ag(z) is introduced in (42). By the inequalities (44) and (45), we have

Ag () (45)

1 1 Aq> (.T)
150 = 90) = Sl < K | 535+ g5 | o (46)
for all z € X, where Q(z) = —45Q0(2) and 8(z) = 5580(z). Plugging the relation (43) into
(46), we obtain the desired result. O

In the oncoming corollaries which are direct consequences of Theorem 5.1, I'; 5 f(z, y)
is bounded by the sum and product of the powers of norms. We present them without
proofs.

Corollary 5.1. Let 0, ) be positive numbers with A # §,2§,6§. If f: X —Yisa
mapping satisfying |Tr s f(z,9)|ly < 0(|zl|% + lyllx) for all z,y € X, then there exists a
unique additive mapping A : X — Y, a unique quadratic mapping Q : X — Y and a
unique sextic mapping 8 : X — Y such that

1f(2) = A(z) = Q=) = 8()[ly
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28N A OA A el
[zﬁ 9% T g5p_gax T zelﬂ—zak} lzllx O<A<y
297D, 6 OA OA A
[2 @rogm) T 325 —pax t 26B7/2\a>\] llz]|% § <AL 2%
<
297D, 0 AOA AN A 8 el
[zﬁ(za% 25y t 22ﬂ(2aA 22ﬂ) + 56— 201*:| lzllx 25 <A<6g
2977, 6 FAGA 297 9A A B
[Qﬁ(gaxigﬁ) + 225@@,325) + geﬁ(gax,gsﬁ)} [E1kS A> 65

for all x € X, where I'y = W[K%‘”\ + K320+ 4+ K245) and

Ay = [2K3(2° +1) + K2[2°(1 4 2°M) + 1 + 3°7]).

2708

Corollary 5.2. Let 0, m and n be positive numbers with A = m +n # §,2§,6§. If f
X — Y is a mapping satisfying |Tr s f(x,y)|ly < 02| %lyll% for all x,y € X, then there
exists a unique additive mapping A : X — Y, a unique quadratic mapping Q : X — Y
and a unique sextic mapping 8 : X — Y such that

1f(2) = Alz) — Q) — 8(z)[ly

6Ax . 0(Ax.n) A B
[ 2(r= 1 zﬁ zox) T gErgax T 2664“} ]l 0<A<g
2K53290¢ OAxn O(Ax,n) A B B
[2ﬁ (2(r6—1))B (20X —2P) + 228 _ 201)\ + 263_2(0} ||$HX o <A< 23
<
2K32°2¢ 2°20Axn OAxn A B B
[2ﬁ (2(r6—1))5 (20X —25) + 22B (203 — 22;3) + 268 _ 2@] ||$||X 25 <A< 65
2K32°2¢ 2°20Axn “N0Arn A B
[25(2(,,6 1))B (20X —28) + 228 (203 — 22;3) + 266(2&)\ 2213)} HxHX A> GE

Jor all x € X, where Ay, = 565 [2K3(2° 4 1) + K2(20Fen 4 30m)],

6. Conclusions

In this paper, the authors introduced a class of the mixed type additive-quadratic-
sextic functional equations and investigated their stability in the quasi-S-normed spaces.
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