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THE CORRESPONDENCE OF FUSION FRAMES AND FRAMES IN A

HILBERT C∗-MODULE: COUNSTRUCTION AND APPLICATION IN

MODULAR FUSION FRAMES

Mozhgan Mohammadpour1, Rajab Ali Kamyabi-Gol2

In this article, we show that a fusion frame in an infinite dimensional separable

Hilbert space H with finite dimensional subspaces whose dimensions are at most m,

corresponds to a frame in the Hilbert B (Cm)-module Hm and present they share some
properties. We also show that a Reisz fusion basis in H is correspondent with a Reisz

basis in Hm. Finally, we introduce a new notion, modular fusion frame, using modular

frames in the Hilbert B (Cm)-module Hm.
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1. Introduction

Fusion frame was originally called frame of subspaces introduced by Casazza and
Kutyniok [9]. Fusion frame is a generalization of frame theory and it is useful for robust and
stable representation of a signal. In other words, a signal is represented by the magnitude of
projection of a signal onto frame vectors in frame theory, while in fusion frame, a signal is
represented by a collection of vectors, in which their entries are equal to the inner product
of the signal and orthogonal bases of subspaces of the fusion frame. Fusion frames have
wide range of applications including sampling theory [14], data quantization [7], coding [6],
image processing [8], time frequency analysis [12], and speech recognition [5].

On the other hand, many mathematicians generalized the notion of frame in a Hilbert
space to frame in a Hilbert C∗-module and achieved significant results. Standard frames
in Hilbert C∗-modules over unital C∗-algebras, were first defined by Frank and Larson in
1998 [18]. However, the case of Hilbert C∗-module over non-unital C∗-algebra has been
investigated in [28] as well as in [4]. The most significant advantages of frame in Hilbert
C∗-module to frame in Hilbert space are the additional degree of freedom coming from the
C∗-algebra of coefficients and therefore, similar procedures used for frames in Hilbert spaces
are applied to deal with frames in Hilbert C∗-modules.

In this article, we show that every fusion frame in a separable Hilbert space H cor-
responds to a frame in the Hilbert B (Cm)-module Hm. Thus, they share similar properties
and results in different interpretations. We also define modular fusion frame using modular
frames in the Hilbert B (Cm)-module Hm.

This paper is structured as follows: Section 2 starts with preliminaries about fusion
frames and frames in Hilbert C∗-modules and some of their characterisation. In section 3,
we present the equivalence of fusion frames and frames in Hilbert C∗-modules. Then, we
discuss some properties of these two notions and show that they share similar properties.

1, Department of Pure Mathematics, Faculty of Mathematical sciences, Ferdowsi University of Mashhad,
Iran e-mail: mozhganmohammadpour@gmai.com

2, Department of Pure Mathematics, Faculty of Mathematical sciences, Ferdowsi University of Mashhad,

Center of Excellence in Analysis on Algebraic Structures (CEAAS), Mashhad, Iran e-mail: kamyabi@um.ac.ir

67



68 Mozhgan Mohammadpour, Rajab Ali Kamyabi-Gol

Finally, section 4 is devoted to introducing of the new notion, modular fusion frames, using
modular frames in the Hilbert B (Cm)-module Hm and it explores some of their properties.

2. Preliminaries and Notations

We recall that a fusion frame for a separable infinite dimensional Hilbert space H is
a family of m dimensional subspaces {Wi}i∈I in H and a family of positive weights {ωi}i∈I
where I is a countable index set and for every f ∈ H there exist two positive constants
0 < A ≤ B <∞ such that for every f ∈ H

A‖f‖2 ≤
∑
i∈I

ω2
i ‖PWi

f‖2 ≤ B‖f‖2, (1)

where P
Wi

is the orthogonal projection onto Wi. The constants A and B are called the
fusion frame bounds. Furthermore, the fusion frame is tight when A = B and it is a Bessel
sequence if the right hand side of (1) holds. A fusion frame {(Wi, ωi)}i∈I is said to be an
orthonormal fusion basis if H = ⊕i∈IWi and it is a Riesz decomposition of H if for every
f ∈ H, there exists a unique choice of fi ∈Wi such that f =

∑
i∈I ωifi. Moreover, a family

of subspaces {Wi, }i∈I of H is called a Riesz fusion basis whenever it is complete for H
and there exist two positive constants 0 < C ≤ D < ∞ such that for any arbitrary vector
fi ∈Wi we have

C
∑
i∈I
‖fi‖2 ≤ ‖

∑
i∈I

ωifi‖2 ≤ D
∑
i∈I
‖fi‖2.

It is clear that any Riesz fusion basis is a fusion frame and also a fusion frame is a Riesz
basis if and only if it is a Riesz decomposition for H [9].

To define the operators associated with a fusion frame we consider the Hilbert space∑
i∈I
⊕Wi =

{
{fi}i∈I : fi ∈Wi, and{‖fi‖}i∈I ∈ `2 (I)

}
,

with the inner product

〈{fi}i∈I , {gi}i∈I〉 =
∑
i∈I
〈fi, gi〉.

The analysis operator T
W

: H →
∑

i∈I ⊕Wi for any f ∈ H is defined as

T
W

(f) = {ωiPWif}i∈I .
The adjoint of analysis operator T ∗

W
:
∑

i∈I ⊕Wi → H is called the synthesis operator and
it is given by

T ∗
W

({fi}i∈I) =
∑
i∈I

ωifi.

Let {(Wi, ωi)}i∈I be a fusion frame. The fusion frame operator S
W

: H → H is defined by

S
W
f =

∑
i∈I

ω2
i PWi

f,

which is a bounded, invertible and positive operator. Consequently, we have

f =
∑
i∈I

ω2
i S
−1
W P

Wi
f.

The family {ω2
i S
−1
W
Wi}i∈I is called the cannonical dual fusion frame associated to {(Wi, ωi)}i∈I .

Moreover, a Bessel fusion sequence {(Vi, νi)}i∈I is an alternate dual of {(Wi, ωi)}i∈I if and
only if [21]:

T
V
φ

V W
T ∗

W
= IH, (2)

where φ
V W

:
∑

i∈I ⊕Wi →
∑

i∈I ⊕Vi is a bounded operator. If we assume

φ
V W

({fi}i∈I) = {P
Vi
Afi}i∈I , (3)
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then, (2) will be equivalent to:

f =
∑
i∈I

νiPVi
AωiPWi

f. (4)

A Hilbert C∗-module over a C∗-algebra A is a left A-module E with an A-valued
inner product 〈., .〉 : E × E → A such that E is a Banach space with respect to the norm

‖f‖ = ‖〈f, f〉‖ 1
2 . Recall that the inner product on E has the properties

• 〈f, f〉 ≥ 0,
• 〈f, f〉 = 0⇔ x = 0,
• 〈f, g + h〉 = 〈f, g〉+ 〈f, h〉,
• 〈af, g〉 = a〈f, g〉,
• 〈f, g〉∗ = 〈g, f〉,

where f, g, h ∈ E and a ∈ A. We say that E is countably generated if there exists a sequence
{fi}i∈I in E such that the closed linear span of the set {fia : i ∈ I, a ∈ A} is equal to E. It
is clear that B (Cm) is a unital C∗-algebra.

Let E be a Hilbert C∗-module. A sequence {fi}i∈I in E is called a frame for E if
there exist two positive constants A and B such that for every f ∈ E:

A〈f, f〉 ≤
∑
i∈I
〈f, fi〉〈fi, f〉 ≤ B〈f, f〉,

which is identical to the following inequalities:

A‖f‖2 ≤
∑
i∈I
‖〈f, fi〉‖2 ≤ B‖f‖2. (5)

If only the second inequality of (5) is satisfied, we say that {fi}i∈I is a Bessel sequence. The
constants A and B are called frame bounds. If A = B = 1, i.e. if for every f ∈ E∑

i∈I
〈f, fi〉〈fi, f〉 = 〈f, f〉,

the sequence {fi}i∈I is called a Parseval frame for E.

3. The Correspondence between Fusion Frames in H and Frames In Hilbert
B (Cm)-Module Hm

In this section we present the relationship of fusion frames in a seperable infinite
dimensional Hilbert space with frames in a Hilbert C∗-module. In this paper, we assume
that subspaces of fusion frames are finite dimensional and the dimension of each subspace is
at most m ∈ N. Moreover, as we can embed each subspace in the m-dimensional subspace,
we may consider the dimension of each subspace is equal to m. We know that B (Cm)
is a C∗-algebra with multiplication as the matrix multiplication and we can consider the
elements of B (Cm) as a square matrix of dimension m × m. It is obvious that Hm is a
Hilbert C∗-module on the C∗-algebra B (Cm) [3] with the inner product defined for every
F = (f1, · · · , fm) , G = (g1, · · · , gm) ∈ Hm as

〈F,G〉 = (〈fi, gj〉)1≤i,j≤m ,

where 〈fi, gj〉 is the inner product defined on the Hilbert space H.
In order to show that fusion frame is related a frame in a Hilbert C∗-module, we

discuss how to represent fusion frame elements in the Hilbert C∗-module Hm. To do this,
we assume that W is a subspace of H and the dimension of W is equal to t ≤ m. We
represent W by a matrix UW as follows:

UW = [e1, · · · , em] ,
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where {e1, · · · , et} is an orthonormal basis for W and ei = 0 for i = t + 1, · · · ,m. We

also define a map ˜i : H → Hm by transfering f ∈ H to F̃ i = (0, · · · , 0, f, 0, · · · , 0) ∈ Hm

where the i-th component of F̃ i is equal to f and other components are equal to zero. By
this process, the inner product of a signal and subspaces as fusion frame elements are well
defined.

We will show the relationship of fusion frames in the Hilbert space H with finite
dimensional subspaces and frames in the Hilbert C∗-module Hm on the C∗-algebra B (Cm)
are investigated in the next theorem.

Theorem 3.1. Let {Wi}i∈I be a family of subspaces of H with the dimension is at most m
and {ωi}i∈I be a set of positive weights. Then, the following statements are equivalent.

(i) {(Wi, ωi)}i∈I is a fusion frame for H.
(ii) {ωiUWi}i∈I is a frame for Hm.

Proof. i→ ii Consider {(Wi, ωi)}i∈I as a fusion frame for H. Then there exist two con-
stants 0 < A ≤ B <∞ such that for every f ∈ H we have:

A‖f‖2 ≤
∑
i∈I

ω2
i ‖PWi

f‖2 ≤ B‖f‖2. (6)

On the other hand:

‖P
Wi
f‖2 =

m∑
j=1

|〈f, eji 〉|
2 = ‖〈F̃ 1, U

Wi
〉‖Fr,

where {eji}mj=1 is an orthonormal basis for Wi for every i ∈ I and ‖.‖Fr is the
Frobenius norm. Moreover,

‖F̃ 1‖2Fr = ‖f‖22.
Therefore, we have:

A‖F̃ 1‖Fr ≤
∑
i∈I

ω2
i ‖〈F̃ 1, U

Wi
〉‖Fr ≤ B‖F̃ 1‖Fr.

Suppose that G = (g1, · · · , gm) ∈ Hm is given. So we have:

‖G‖2Fr =

m∑
i,j=1

|〈gi, gj〉| =
m∑
i=1

‖gi‖2 +

m∑
i,j=1,i6=j

|〈gi, gj〉|

≤
m∑
i=1

‖gi‖2 +

m∑
i,j=1,i6=j

‖gi‖‖gj‖ ≤
m∑
i=1

‖gi‖2 +

m∑
i,j=1,i6=j

1

2

(
‖gi‖2 + ‖gj‖2

)
≤

m∑
i=1

‖gi‖2 +

m∑
i=1

m∑
j=i+1

(
‖gi‖2 + ‖gj‖2

)
=

m∑
i=1

‖gi‖2 + (m− 1)

m∑
i=1

‖gi‖2

= m

m∑
i=1

‖gi‖2.

(7)

On the other hand,
m∑
j=1

‖gj‖2 ≤ ‖G‖2Fr =

m∑
j=1

‖gj‖2 +

m∑
i,j=1,i6=j

|〈gi, gj〉| (8)

Moreover, it is obvious that:

‖〈G,ω2
jUWi

〉‖2Fr =

m∑
j=1

ω2
j ‖〈G̃j

j
, U

Wi
〉‖2Fr =

m∑
j=1

ω2
j ‖PWi

gj‖2. (9)



The Correspondence of Fusion Frames and Frames in a Hilbert C∗-module 71

So (6), (7), (8), and (9) lead to

A
1

m
‖G‖2 =

m∑
j=1

A‖gj‖2 ≤
∑
i∈I
‖〈G,ωiUWi

〉‖2Fr =
∑
i∈I

m∑
j=1

ω2
j ‖PWi

gj‖2

≤
m∑
j=1

B‖gj‖2 = B‖G‖2.
(10)

By the fact that B (Cm) is a finite dimensional C∗-algebra, all norms on it are
equivalent. Therefore, by the inequality (10) {ωiUWi

}i∈I is a frame in the Hilbert

B (Cm)-module Hm.
ii→ i Now assume {ωiUWi

}i∈I is a frame in the Hilbert C∗-module Hm. As all norm on

B (Cm) are equivalent, we have the following inequalities:

A‖F‖2Fr ≤
∑
i∈I
‖〈F, ωiUWi

〉‖2Fr ≤ B‖F‖2Fr.

By the fact ‖〈F̃ 1, U
Wi
〉‖2Fr = ‖P

Wi
f‖2, it is easily achieved that {(Wi, ωi)}Ni=1 is a

fusion frame for H.
�

Now we study the relation between the analysis and synthesis operators of a fusion
frame in the Hilbert space H and the corresponding frame in the Hilbert B (Cm)-module
Hm. The analysis operator for {U

Wi
}i∈I is defined as:

T :Hm → `2 (B (Cm))

F → {〈F, ωiUWi
〉}i∈I ,

and the analysis operator for F̃ 1 = (f, 0, · · · , 0) is

T
(
F̃ 1
)

= {〈F̃ 1, U
Wi
〉}i∈I = {ω̃iPWi

f
1

}i∈I . (11)

By (11) we have the following equation which shows the relationship of the analysis operator
of a fusion frame in H and the analysis operator of the corresponding frame in the Hilbert
B (Cm)-module.

{P̃
Wi
f
1
}i∈I = T

(
F̃ 1
)
{U

Wi
}i∈I .

where {P̃
Wi
f
1
}i∈I is equivalent to the analysis operator of the fusion frame T

W
(f). More-

over, the multiplication between T
(
F̃ 1
)

as an element of B (Cm) and {U
Wi
}i∈I as an el-

ement of Hm is the multiplication of an element of a C∗-algebra and C∗-Hilbert module
which results in Hm.

The synthesis operator for {Xi}i∈I ⊂ B (Cm) is achieved as

T ∗ ({Xi}i∈I) =
∑
i∈I

XiωiUi =
∑
i∈I

ωiXiUi. (12)

Now we are looking for Fi ∈ Hm such that 〈Fi, Ui〉 =
(
〈f ji , eki 〉

)
1≤j,k≤m

= Xi. Consider

f ji = Xi (j, k) eki . Then, for Fi =
(
f1i , f

2
i , · · · , fmi

)
, we have 〈Fi, Ui〉 = Xi. So, we can

rewrite (12) as

T ∗ ({Xi}i∈I) =
∑
i∈I

ωi〈Fi, Ui〉Ui.
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Assume fi ∈Wi for i ∈ I and F̃i
1

is its associated matrix. Therefore

T ∗
(
{〈F̃i

1
, Ui〉}i∈I

)
=
∑
i∈I

ωi〈F̃i
1
, Ui〉Ui =

∑
i∈I

ωiP̃Wi
fi

1

.

As a result, the synthesis operator of {ωiUWi
}Ni=1 in the Hilbert B (Cm)-module Hm is

equivalent to the synthesis operator of the fusion frame {Wi}i∈I in the Hilbert space H.
The frame operator of {ωiUWi

}i∈I in the Hilbert B (Cm)-module Hm is concluded as
the combination of the synthesis and analysis operators which is equal to

S (F ) =
∑
i∈I
〈F, ωiUi〉ωiUi =

∑
i∈I

ω2
i 〈F,Ui〉Ui,

for every F ∈ Hm. Therefore, for f ∈ H we have

S
(
F̃ 1
)

=
∑
i∈I

ω2
i 〈F̃ 1, U

Wi
〉U

Wi
=
∑
i∈I

ω2
i P̃Wi

f.

On the other hand the corresponding fusion frame operator for f ∈ H is equal to

SW

(
F̃ 1
)

=
∑
i∈I
〈〈F̃ 1, ωiUWi

〉U
Wi
, U

Wi
ωi〉UWi

=
∑
i∈I

ω2
i 〈F̃ 1, U

Wi
〉〈U

Wi
, U

Wi
〉U

Wi
=
∑
i∈I

ω2
i 〈F̃ 1, U

Wi
〉U

Wi
,

which is equal to the frame operator of {U
Wi
}i ∈ I in Hm.

One of the most favorite type of frames is tight frames which atracts attentions of
many researchers. Next theorem shows that the fusion frame {(Wi, ωi)}i∈I is tight if and
only if {ωiUWi

}i∈I is a tight frame in the Hilbert B (Cm)-module Hm.

Theorem 3.2. Assume {Wi}i∈I is a sequence of finite dimensional subspaces in H with
dimensions equal to m. Then the following statements are equivalent.

(i) {(Wi, ωi)}i∈I is a A-tight fusion frame in H.
(ii) {ωiUWi

}i∈I is a A-tight frame in the Hilbert B (Cm)-module Hm.

Proof. i→ ii Since {(Wi, ωi)}i∈I is a A-tight fusion frame, so for every f ∈ H, we have

f =
1

A

∑
i∈I

ω2
i PWi

f, (13)

or

F̃ 1 =
1

A

∑
i∈I

ω2
i 〈F̃ 1, U

Wi
〉U

Wi
. (14)

Consider F = (f1| · · · |fm) ∈ Hm as
∑m

j=1 F̃
j
j where each F̃ j

j contains the j-th

component of F and other components are equal to zero. Since (13) holds for every
fi, (14) is valid for every F ∈ Hm. Thus, {ωiUWi

}i∈I is a A-tight frame in the
Hilbert C∗-module Hm.

ii→ i Assume {ωiUWi
}i∈I is a A-tight frame so for every F ∈ Hm we have

F =
1

A

∑
i∈I

ω2
i 〈F,UWi

〉U
Wi
.

As a result for any f ∈ H

F̃ 1 =
1

A

∑
i∈I

ω2
i 〈F̃ 1, U

Wi
〉U

Wi
=

1

A

∑
i∈I

ω2
i P̃Wi

f
1
.

Therefore, {(Wi, ωi)}i∈I is a A-tight frame.
�



The Correspondence of Fusion Frames and Frames in a Hilbert C∗-module 73

We recall that a sequence {F}i∈I is a dual frame of {Gi}i∈I in the Hilbert B (Cm)-
module Hm if [22]

F =
∑
i∈I
〈F,Gi〉Fi,

for all F ∈ Hm.
On the other hand, by (4) we have a sequence of subspaces {(Vi, νi)}i∈I in H is a

dual of the fusion frame {(Wi, ωi)}i∈I if for all f ∈ H

F̃ 1 =
∑
i∈I

A〈F̃ 1, ωiUWi
〉〈U

Wi
, U

Vi
〉νiUVi

=
∑
i∈I

ωiνiA〈F̃ 1, U
Wi
〉〈U

Wi
, U

Vi
〉UVi . (15)

Based on (15) it is much easier to work with the dual of the corresponding frame in
the Hilbert B (Cm)-module instead of working with the dual of fusion frames [27].

Now we introduce the notion of Riesz fusion bases using Reisz bases in Hilbert C∗-
module and show that it coincides with Reisz decomposition of fusion frame. We recall that
every frame {Fi}i∈I is a Reisz basis if and only if Fi 6= 0 for each i ∈ I and if

∑
i∈I AiFi = 0

for some sequence {Ai}i∈I ∈ `2 (B (Cm)), then AiFi = 0 for each i ∈ I [22]. Next theorem
shows that every fusion Riesz basis in H corresponds to a Riesz basis in the Hilbert C∗-
module Hm and vice versa.

Theorem 3.3. Assume {(Wi, ωi)}i∈I is a fusion frame in H. The following statements are
equivalent.

(i) {ωiUWi
}i∈I is a Reisz basis in Hm.

(ii) {(Wi, ωi)}i∈I is a Reisz fusion basis in H.

Proof. i→ ii Assume
∑

i∈I fi = 0. So,
∑

i∈I ωiPWi
fi = 0 and

∑
i∈I〈F̃ 1

i , UWi
〉ωiUWi

= 0.

Since {ωiUWi
}i=∈I is a Riesz basis in Hm, we have ω̃iPWi

f
1

= 〈F̃ 1
i , UWi

〉ωiUWi
= 0

for each i ∈ I or P
Wi
fi = fi = 0 which means that {(Wi, ωi)}i∈I is a Riesz fusion

basis in H.
ii→ i Consider {(Wi, ωi)}i∈I as a Riesz fusion basis, so every f ∈ H has a unique repre-

sentation based on {Wi}i∈I , which means that if
∑

i∈I ωiPWi
fi = 0, then P

Wi
fi = 0

for all i ∈ I and all {fi}i∈I ∈ ⊕i∈IWi. Now consider
∑

i∈I XiωiUWi
= 0. We

can rewrite it as
∑

i∈I
∑m

j=1X
j
i ωiUWi

= 0 where Xj
i is the matrix with j-th row

is equal to the j-th row of Xi and other rows are equal to zero. By the fact∑
i∈I X

j
i ωiUWi

has the j-th element equal to nonzero and other elements are equal

to zero,
∑

i∈I X
j
i ωiUWi

for j = 1, · · · ,m are linear independent. So for each i ∈ I
we have

∑
i∈I X

j
i ωiUWi

= 0. By the same process which is done for the equivalence

of synthesis operators, there exists F̃ j
1

i such that 〈F̃ j
1

i , UWi
〉 = Xj

i . Therefore, we

have
∑

i∈I ωiPWi
f ji = 0. Since {Wi}i∈I is a Riesz fusion basis, we have P

Wi
f ji = 0.

Therefore, 〈F̃ j
1

i , UWi
〉ωiUWi

= Xj
i ωiUWi

= 0 and then XiωiUWi
= 0.

�

4. Modular Fusion Frames

In this section we focus on structured fusion frames in the separable Hilbert space H
using modular frames in the Hilbert C∗-module Hm. First, we introduce some notations.
We remind that a unitary system U on Hm is defined as the set of unitary operators acting
on Hm which contains the identity operator. We call G = (g1, · · · , gm) in Hm as a complete
frame element for a unitary system U on Hm if UG = {UG : U ∈ U} is a frame. If UG is
an orthonormal basis for Hm, then G is called wandering element for U .
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Therefore, we define W as a complete fusion frame element for a unitary system U on
Hm if UωUUW

= {Uω
U
U

W
: U ∈ U} is a frame in Hm and as a result is a fusion frame in H.

Moreover, UωUUW
is an orthonormal basis for Hm, then U

W
is called wandering element

for U .
The following proposition shows that a unitary system U generates fusion frames.

Proposition 4.1. Let U be a unitary system on the Hilbert B (Cm)-module Hm. Suppose
that W is a subspaace of H with dimension m. If Hm has an orthonormal basis and G is a
wandering element for U , we have the following statements

• UW is a complete Riesz basis element for U if and only if there exists an invertible
and adjointable operator T ∈ {A ∈ End (Hm) : AUω

U
U

W
= UAU

W
, U ∈ U} such

that ωIUW
= TG.

• U
W

is a complete Parseval frame element for U if and only if there exists a co-
isometry T ∈ {A ∈ End (Hm) : AUω

U
U

W
= UAU

W
, U ∈ U} such that ωIUW

= TG.
• U

W
is a complete frame element for U if and only if there exists an adjointable

operator T ∈ {A ∈ End (Hm) : AUω
U
U

W
= UAω

U
U

W
, U ∈ U} with C〈F, F 〉 ≤

〈T ∗F, T ∗F 〉 for some C > 0 and any F ∈ Hm such that ωIUW
= TG.

• UW is a complete Bessel element for U if and only if there is an adjointable operator
T ∈ {A ∈ End (Hm) : AUω

U
U

W
= UAω

U
U

W
, U ∈ U} such that ω

I
U

W
= TG.

Proof. By the Proposition 5.1 in [22], UωUUW
is a frame ( Riesz basis, Parseval frame, and

Bessel sequence) for the Hilbert B (Cm)-module Hm. Therefore, by Theorems 3.1, 3.2, and
3.3 the fusion frame which is correspondent to UωUUW

is a fusion frame (Riesz fusion basis,
Parseval fusion frame, and Bessel fusion sequence). �

Remark 4.1. By this approach we can define Gabor fusion frames, Wavelet fusion frames
and any fusion frames which is construted by a group of unitary operators.

Example 4.1. The translation operator on L2 (R)
m

is defined as

Tk :Hm → Hm

Tk (F ) = Tk ((f1, · · · , fm)) = (Tk (f1) , · · · , Tk (fm)) ,

where Tk is the usual translation operator on L2 (R). It is clear that the matrix Tk is a
unitary operator for L2 (R)

m
and T ∗k = T −1k = T−k.

Now the modulation operator is defined on L2 (R)
m

as

Ml :Hm → Hm

Ml (F ) =Ml ((f1, · · · , fm)) = (Ml (f1) , · · · ,Ml (fm)) ,

where Ml is the usual modulation operator on L2 (R). Like the translation operator, the
modulation operator is also a unitary operator and M∗l =M−1l =M−l.

It is obvious that the combination of two unitary operators is a unitary operator.
Therefore, the set {MlTk}k,l∈Z constitutes a unitary system which includes identity operator
when k = l = 0. The Gabor transform is then defined on Hm for the window multifunction
G ∈ L2 (R)

m
as

V
G
F (k, l) = 〈F,MlTkG〉.

Now we consider W as a subspace of L2 (R) and U
W
∈ L2 (R)

m
as the matrix associated

to W . Moreover, we consider F̃ 1 = (f, 0, · · · , 0) ∈ L2 (R)
m

for any f ∈ L2 (R). Then, the
Gabor transform on L2 (R)

m
can easily transfered to the Gabor fusion transform on L2 (R)

which is defined by
V

U
W
F̃ 1 (k, l) = 〈F̃ 1,MlTkωl,kUW

〉.
As {MlTkωl,kUW

}k,l∈Z is a Gabor frame in the Hilbert B (Cm)- module L2 (R)
m

, the collec-
tion of corresponding subspaces is a Gabor fusion frame.
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