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VIBRATION OF ROTOR BLADES WITH LARGE 

DEFORMATIONS IN A ROTATING NONINERTIAL 

REFERENCE FRAME 

Cristian M. STĂNICĂ1, Ion STROE2 

This paper is filling an important gap in the scientific literature dealing with 

the vibrations of rotor blades which sustain large deformations during normal 

operation. Although the occurring phenomena are known, there is no succinct and 

complete approach in recent literature in order to clarify this aspect. Therefore, it 

will be shown that the traditional approach to natural vibration calculation is not 

sufficient in order to obtain accurate results. 
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1. Introduction 

The problems regarding rotating machinery are related to flexural 

vibrations and precession motion, in which the apparent stiffening of the parts 

under centrifugal force [1], the apparent softening due to radial displacement in 

centrifugal force field [2] and the influence of large displacements with changing 

direction of the variable inertial load [3] make difficult any theoretical model and 

the results are not easy to obtain. The resulting vibration modes should account 

for the variable inertial loads applied during rotation.  In order to find the 

vibration eigenshapes and frequencies in top-level industries such as aeronautics, 

the simple natural vibration calculation, using the manufactured geometry of the 

parts is unsatisfactory. This happens because the components of turbomachinery 

and in general all the parts which are heavily loaded in aerospace industry, are 

experiencing large modifications of the geometry during aircraft operation [4], 

when the vibration eigenshapes are considerably different from the manufacturing 

geometry, defined in an inertial reference frame. The originality of this paper 

resides in gathering all the aspects involved in the mechanical analysis of the 

vibration shapes and natural frequencies of the highly loaded and highly deformed 

parts subjected to rotation and analyzed in a non-inertial reference frame. This is 

especially useful for the unexperienced specialist who is confronted with the need 

to design and compute aeronautical moving parts as mentioned above. 
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Nomenclature 

 g  - vector of displacements 

   ,r r  - vectors of position and speed 

 ,    - rotational speed scalar, rotational speed vector 

 M  - mass matrix 

 D  - damping matrix 

 C  - the gyroscopic matrix 

 K  - the stiffness matrix 

 Z  - centrifugal matrix 

 GK  - geometric or differential stiffness matrix 

 DK  - structural damping stiffness matrix 

 TK  - torque derived stiffness matrix 

 F  - dynamic forces 

 
L

C  - equivalent damping matrix in the large deformation hypothesis 

 
L

K  - equivalent stiffness matrix in the large deformation hypothesis 

 R  - reaction forces of the mechanical structure 

 T  - transformation matrix from local coordinate system to the global  

 eq  - displacements in the local coordinate system of the finite element 

 eF  - internal finite element force in element coordinate system 

 
lin

K  - linear stiffness matrix 

 
diff

K  - differential stiffness matrix 

m  - concentrated mass of a finite volume 

rm  - mass of the rotor 

e  - eccentricity of the rotor center of mass at a certain time related to the 

axis of rotation 

 

2. Theoretical aspects 

Considering the force field of the rotating machinery in a non-inertial 

reference system, there are strict requirements in computing stresses, 

displacements and vibrations of aircraft engines fan blades, rocket engines turbo-
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pump turbine blades. Due to the very small safety factors [5], it is required an 

excellent knowledge of the problem and very accurate results [6]. Consequently, 

the principles defined in this paper are applied to the fields of airplanes design, 

space shuttles and rocket engines, concerning some of the critical parts involved 

in the safe operation limits of this machines. 

The stress distribution and the acceleration field along the investigated 

rotating part lead to substantial change in vibration natural frequencies. A 

particular case is the combination between the two effects mentioned above, when 

the load application is modified interactively as a function of part deformation. An 

important example of these phenomena is materialized in the modification of the 

local direction of the inertial forces of centrifugal type during the large structure 

deformation [3]. Therefore, it is mandatory in a first stage, to calculate exactly the 

influence of these effects and add them in the final vibration calculation [7]. 

In order to understand the phenomena underlying the operation of a 

rotational machine one can start from the Newton second principle which states 

that in an inertial reference frame the sum of the forces acting on any physical 

body is equal with the mass of the body multiplied by its acceleration. 

   F m a=       (1) 

 Usually the rotors are designed and analyzed in a rotating reference frame 

linked with the rotor itself. By this approach all parts of the rotors can be 

calculated using the well known classical theory. Therefore the Newton second 

law is adapted in order to account for the acceleration observed in the rotational 

reference frame. For this the time derivation operator is expressed in the rotational 

frame regarding the position in space {r} of a material point of mass m [8]. 
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   
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+     +  
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(3) 

 

 If the equation above is multiplied by the mass m of the studied physical 

body the expression of Newton second law in the rotating frame can be obtained. 
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(4) 

 The above equation serves for the adaptation of the Newton second law in 

the non-inertial rotating reference frame. The trajectory of the material point of 

mass m in the rotating non-inertial reference frame can be determined using three 

fictitious forces: the centrifugal force, the Coriolis force and the Euler force. 

Concluding from the perspective of the perturbation forces one can observe that a 

perturbation force expressed in the inertial frame can be substituted by a 

perturbation force in the rotating non-inertial reference frame plus three additional 

fictitious forces depending on the rotation of the non-inertial frame. The three 

fictitious forces, Coriolis, centrifugal and Euler are the following: 

 
 

     ( )
 

 2 ;  ;  

rot

d r d
m m r m r

dt dt

 
−     −      −   

  . 
(5) 

 In order to solve complex problems in the rotating machines the finite 

element technique is employed. Additionally, more advanced principles like 

Hamilton principle are used in order to account also for nonconservative forces 

like the damping forces. For the finite element discretized rotor, the small masses 

denoted above as m are organized in matrices like the mass matrix [M] or the 

centrifugal matrix [C] [9]. Therefore, the above fictitious forces take the more 

complex matrix shape of the finite element theory  

       22 ;     ;     .C r m r C r      (6) 

Therefore in case that the working regime of the analyzed rotor implies 

rapid rotational accelerations and decelerations one more term should be 

considered in the stiffness matrix assembly, the circulatory matrix  C  and one 

more term rm e   ads to the centrifugal inertial force as an additional inertial 

force, both terms counting for the Euler force.[9] The circulatory matrix accounts 

for the Euler force as in the axysymmetrical rotor or more generally formulated in 

the perfect balanced rotors and the second term depending of rm e  is related to 

the eccentricity of that rotor at a time t in relation with the equilibrium axis. 

Considering the dynamic equilibrium equation, with the addition of the rotational 

acceleration terms, this becomes 

      ( ) 

           ( )     2 2

2

0G D T

M g D C g

K Z K K K C g F

+ +  +

+ − + + − + − =
  (7) 
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where the rm e   is encapsulated in the force term {F} together with the 

imbalance centrifugal force 2

rm e   and the other forcing functions existent in 

the mechanical system. This equation have to be solved by direct integration with 

Runge-Kutta algorithm or something similar using real physical coordinates [10], 

[9]. The equation (7) is expressed in a noninertial reference system linked to the 

rotor like is depicted in the figure 1 with red color. 

Theoretically the equation (7) is known to be the complete form of the 

dynamic equilibrium equation for the rotors [11] which condensed takes the form  

 

              0 .
L L

M g C g K g F+ + − =    (8) 

The complete list of stiffness matrices comprises the classical stiffness matrix K, 

the geometric or differential stiffness matrix KG, the structural damping stiffness 

matrix KD, the centrifugal stiffness (softening) matrix Z, the torque derived 

stiffness matrix KT and the Euler force related circulatory matrix  C . All this 

stiffness matrices are included in the dynamic equilibrium equation (7) under the 

action of dynamic forces {F}, in order to solve for the dynamic equilibrium 

position of the rotating finite element. 

In case that the rotational speed is constant or varies slowly a nonlinear 

implicit algorithm is used first to find the equilibrium position of the rotor and 

then to compute the vibrations using a linear algorithm. Regarding the equilibrium 

equation and considering only the effect of large displacements, large rotation, 

one gets 

         0
L

K g F− =  .     (9) 

With L are denoted the condensed terms for large displacements.  In order 

to establish the vibration shapes, the equilibrium position will be calculated before 

the vibration analysis. Therefore, is considered only the last term of this equation, 

which multiplies the displacement vector {g} in eq. (9). Generally, the large 

displacements problems can be solved using iterative algorithms which account 

for the modification of the geometry and for a complex geometry, the finite 

element discretization is used. Thus, the stiffness matrix is expressed in terms of 

each finite element. For the global matrix, a transformation matrix from the 

element local coordinate system to the global coordinate system is employed. For 

the small displacements problems, this matrix has a constant expression for every 

element. In the case of large displacements, the changing position of the finite 

elements require changing the element coordinate transformation matrix at every 

time step, in order to account for the new position of the finite element in the 

whole part assembly [12].  

Using the notation {R} for the reaction forces of the mechanical structure, 

then the stiffness matrix can be expressed as 
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  
 

 L

d R
K

d g
=  , (10) 

or using the transformation T from global to local element coordinate system, 

  
    
 

e

L

T F
K

g

 
=


 , (11) 

equation which can be developed as 

    
 

 

 
 

 e

eL

TF
K T F

g g


=  + 

 
 .  (12) 

As a consequence, from relation (11) and (12) one can observe a new term 

appearing from the variation of the coordinate transformation matrix [T], which 

contributes to the stiffness of the structure. Practically, this is accounting for the 

geometry modification and usually contributes with additional stiffness: the 

geometry is adapting in order to sustain the load.  

A typical example of this fact is a fishing rod [13],[3]. The tip of a fishing 

rod is very weak in bending but has a good capability in tension. When a fish is 

apprehended, the tip of the fishing rod changes the geometry by rotation of the tip 

sections in such a way as to work in tension, not in bending, thus supporting a 

much heavier load.  

Developing this simple analogy in the field of high speed rotation 

machinery, the “fish” becomes the large inertial loads acting on the components 

optimized for decreased weight, with the lowest allowable safety factors. By the 

same mechanism, slender and thin parts which could be deformed with bare 

hands, can sustain huge inertial loads appearing during the operation at high speed 

rotation in non-inertial reference frames. But this remarkable design capability 

requires a carefully planned design effort, in order to use the big deformation 

accompanying different working regimes in the advantage of the application.  

For example, the very flexible fan blades of the modern aircrafts are 

designed to deform in such manner, that the blade stagger angle is adapting to the 

working regime in order to maximize the efficiency [13], [10] at every usual 

rotating speed, thus obtaining an important fuel economy. 

Considering the coordinates in the local coordinate system of the finite 

element  eq , equation (12) becomes 

   
 

 

 

 

 
 

 e e

eL
e

TF q
K T F

q g g

 
=   + 

  
 .   (13) 
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Using the notations      
 

 

 

 
e e

lin
e

F q
K T

q g

 
=  

 
    (14) 

and      
 
 

 ediff

T
K F

g


= 


.    (15) 

Finally, the equation (13) can be written 

      
L lin diff

K K K= +  . (16) 

An apparently curious fact is how it is possible for structural damping to 

generate a displacement stiffness matrix, when it is well known that damping is 

acting, when a part is moving with a certain speed like in a fluid. The answer to 

this apparent issue is that the equilibrium equation (7) is expressed in a non-

inertial reference frame and all damping elements that are connected to a rotating 

part but are not rotating, appear to exert forces on the rotating part [11]. The 

differential stiffness [KG] is arising from the fact that once the dynamic 

equilibrium position is achieved, every perturbation to the system has to act not 

only against the common stiffness of the mechanical system, but also against the 

load forces, such as the centrifugal force. Usually by a careful design this force 

acts to reestablish the intended equilibrium of the system. This in turn results in a 

change of the natural frequencies of the loaded system. The differential stiffness 

matrix is also named in the literature the “geometrical stiffness matrix”.  

Another curious phenomenon is related to the amount of torque carried by 

a slender rotating mechanical system, like a shaft. It was demonstrated that for an 

exceeding amount of torque, torsion will lead to lateral buckling [14]. In general, 

the torque contributes to the softening of the rotating machine by the matrix [KT]. 

Thus, a perturbation force in the lateral direction regarding the rotating direction 

will produce an increased displacement proportional with the torque transmitted 

by the rotating machinery. 

The centrifugal softening matrix [Z], accounts for the contribution of the 

centrifugal force as a force perturbation which acts in radial direction. Practically, 

when an elementary mass of the system is subjected to a force in radial direction, 

a small displacement occurs at this point. The small radial displacement makes the 

inertial load, known as centrifugal force, to increase with the increasing radial 

distance to the axis of rotation. Therefore, any radial force is accompanied with an 

increase of the centrifugal force, in that particular point. This effect produces an 

additional displacement, appearing as if the mechanical system becomes “softer” 

than its real stiffness. This centrifugal softening matrix is a particular type of the 

more general “follower force” [3] stiffness matrix which accounts for the 

modification of the load with the geometry deformation. Finally, the circulation 

matrix  C  related to the Euler force acts similar with the [KT] matrix. 
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3. Numerical example 

 

An example is proposed, to demonstrate the application of the above 

algorithm, including: stress stiffening, spin softening and large displacements 

influences.  

The example is represented by a “blade” of rectangular shape, but curved 

about a circle of 560 mm radius (Figure 1). The thickness is 3mm and the width is 

20mm. The material is steel, with Young modulus 217 GPa, density 7850 Kg/m3 

and Poisson coefficient 0.3. The blade is spinning mounted on a shaft of 150 mm 

radius. The rotation speed is 50 rot/s. To show the importance of considering the 

additional stiffness matrices, two cases were considered: 

• First case, when the commercial solver MSC.NASTRAN is used with default 

settings and  

• second case, when the additional stiffness matrices are used by actively 

selecting them during preprocessing with the same solver MSC.NASTRAN.  

 
 

Fig. 1. Scheme of the proposed demonstrating rotor 

 

As can be observed from table 1, first row, the error regarding the first 

vibration mode using just the [K] stiffness matrix is 54%, rendering the results 

completely wrong and useless in practice. Regarding the relative Von Mises 

stress, the error is of the same magnitude. This proves that using even a well-

known commercial software like MSC.NASTRAN, but with classical default 

settings, without knowing and selecting the appropriate stiffness matrices for the 

problem, leads to wrong and completely inaccurate results. 
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Table 1 

The results considering only K stiffness matrix and K+KG+Z stiffness matrix 

Nr. 
Considered 

stiffness 
matrix 

Displacement 
under inertial 

load 
[mm] (%error) 

Stress value 
under inertial 

load  
[Mpa] (%error) 

First natural 
frequency 

value  
[Hz] (%error) 

Vibration 
relative stress 

[Mpa] (%error) 

1 K 0 (100%) 0 (100%) 24 (54%) 11970 (43%) 

2 K+KG+Z 78  629 52 21130 

 

On the second row in the table 1, are the correct results, obtained with the 

same commercial software (Figure 2), but by activating the large displacement 

and spin softening matrices and solving the problem in two stages: 

• In the first stage, the NASTRAN solver is used to obtain the dynamic 

equilibrium position at the rotating working regime (50 rot/s) involving the 

[K], [Z] stiffness matrices.  

• During the second stage in solving the problem, the natural frequencies of the 

mechanical system are calculated, accounting for the differential stiffness 

matrix [KG] which includes the stress inside the blade, generated by the 

rotational speed during the first stage solver analysis and adding the 

centrifugal matrix [Z] which accounts for the non-inertial characteristics of the 

centrifugal field (the so-called spin softening). For this case, the damping is 

negligible and the shaft is not considered, so the matrices [KD] and [KT] are 

not involved in the example problem.  

 

 
Fig. 2. FEM modeling of the blade 

 

 

This is the new algorithm proposed, with two stage solving technique, 

illustrated also in the figure 3 and figure 4 which is the only correct one. The 
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figure 3 shows the blade deforming from the initial curved shape, under the 

centrifugal force up to the equilibrium position. The blade shows a maximum 

deformation at tip of 78mm and a maximum Von Mises stress of 629 MPa.  

In the figure 4, the blade subjected to small perturbation is freely vibrating 

around the equilibrium position, corresponding to a specific mode of the selected 

natural frequency, which is simple bending. The resulting modal displacements 

and modal stresses, corresponding to the fundamental vibration frequency are 

obtained using the Lanczos algorithm, with the option for maximum displacement 

normalization. 

In order to find the allowable maximum dynamic response for this 

particular mode shape, the Goodman diagram is used [15]. Knowing the 

maximum static stress (629 MPa), the Goodman diagram provides the allowable 

dynamic stress. This allowable dynamic stress can be divided by the maximum 

stress obtained using the Lanczos algorithm (21130MPa in our example, see 
table_1), resulting the coefficient for scaling the normalized displacements. 

 

 
a)                                                                       b) 

 

Fig. 3. Static equilibrium at the 50 rps 

a) displacements [m] b) Von Mises stress [Pa] 
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a)                                                                       b) 

 

Fig. 4. First flexion vibration around the equilibrium position 

a) normalized displacements. b) normalized Von Mises stress 

Finally, scaling the normalized displacements obtained with the Lanczos 

algorithm, will result the eigenshapes, with displacements corresponding to the 

real maximal allowable dynamic response as shown in ref. [15]. 

 

6. Conclusions 

The contribution of this paper to the present literature in the field of 

rotating machinery, analyzed in a non-inertial reference frame, is to emphasize the 

correct formulation of the dynamic equilibrium equation, leading to correct 

results. This formulation is neither implicit, nor theoretically described in any 

commercial software used today in the aerospace industry.  

Moreover, the paper is presenting a complete image of the phenomena 

involved in the mechanical analysis of rotating machinery in a non-inertial 

rotating frame, including a succinct explanation for each phenomenon.  

This is reflecting the state of the art in the present free vibration theory and 

should be considered in the author’s opinion, a mandatory and unique guiding 

algorithm for the researcher/designer in the general field of rotating machinery.  

Usually, the torque effect is neglected in all recent specialized literature, 

even if it has considerable implication in the results precision, when dealing with 
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slender, heavily loaded rotors. Such effects will be further investigated, and this 

represents a perspective for continuation of the present research. 
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