THE NUMBER OF CHAINS OF SUBGROUPS OF A FINITE ELEMENTARY ABELIAN \(p \)-GROUP

Marius Tărnăuceanu

In this short note we give a formula for the number of chains of subgroups of a finite elementary abelian \(p \)-group. This completes our previous work [5].

Keywords: chains of subgroups, fuzzy subgroups, finite elementary abelian \(p \)-groups, recurrence relations.

MSC2010: Primary 20N25, 03E72; Secondary 20K01, 20D30.

1. Introduction

Let \(G \) be a group. A chain of subgroups of \(G \) is a set of subgroups of \(G \) totally ordered by set inclusion. A chain of subgroups of \(G \) is called rooted (more exactly \(G \)-rooted) if it contains \(G \); otherwise, it is called unrooted. A fuzzy subgroup of \(G \) is a fuzzy subset \(\mu : G \rightarrow [0, 1] \) satisfying the following two conditions:

a) \(\mu(xy) \geq \min\{\mu(x), \mu(y)\} \), for all \(x, y \in G \);

b) \(\mu(x^{-1}) \geq \mu(x) \), for any \(x \in G \).

The fuzzy subgroups of \(G \) can be classified up to some natural equivalence relations on the set of all fuzzy subsets of \(G \). One of them is defined by

\[\mu \sim \eta \quad \text{iff} \quad (\mu(x) > \mu(y) \iff \eta(x) > \eta(y)) \quad \text{for all} \quad x, y \in G, \]

and two fuzzy subgroups \(\mu, \eta \) of \(G \) are said to be distinct if \(\mu \not\sim \eta \). Notice that there is a bijection between the set of \(G \)-rooted chains of subgroups of \(G \) and the set of distinct fuzzy subgroups of \(G \) (see e.g. [5]), which is used to solve many computational problems in fuzzy group theory.

The starting point for our discussion is given by the paper [5], where a formula for the number of rooted chains of subgroups of a finite cyclic group is obtained. This leads in [3] to precise expression of the well-known central Delannoy numbers in an arbitrary dimension and has been simplified in [2]. Some steps in order to determine the number of rooted chains of subgroups of a finite elementary abelian \(p \)-group are also made in [5]. Moreover, this counting problem has been naturally extended to non-abelian groups in other works, such as [1, 4]. The purpose of the current note is to improve the results of [5], by indicating an explicit formula for the number of rooted chains of subgroups of a finite elementary abelian \(p \)-group.

\(^1\)Associate Professor, Faculty of Mathematics, Al. I. Cuza University of Iaşi, Romania, e-mail: tarnauc@uaic.ro
Given a finite group G, we will denote by $C(G)$, $D(G)$ and $F(G)$ the collection of all chains of subgroups of G, of unrooted chains of subgroups of G and of G-rooted chains of subgroups of G, respectively. Put $C(G) = |C(G)|$, $D(G) = |D(G)|$ and $F(G) = |F(G)|$. The connections between these numbers have been established in [2], namely:

Theorem 1. Let G be a finite group. Then

$$F(G) = D(G) + 1 \quad \text{and} \quad C(G) = F(G) + D(G) = 2F(G) - 1.$$

In the following let p be a prime, n be a positive integer and \mathbb{Z}_p^n be an elementary abelian p-group of rank n (that is, a direct product of n copies of \mathbb{Z}_p). First of all, we recall a well-known group theoretical result that gives the number $a_{n,p}(k)$ of subgroups of order p^k in \mathbb{Z}_p^n, $k = 0, 1, \ldots, n$.

Theorem 2. For every $k = 0, 1, \ldots, n$, we have

$$a_{n,p}(k) = \frac{(p^n - 1) \cdots (p - 1)}{(p^k - 1) \cdots (p - 1)(p^{n-k} - 1) \cdots (p - 1)}.$$

Our main result is the following.

Theorem 3. The number of rooted chains of subgroups of the elementary abelian p-group \mathbb{Z}_p^n is

$$F(\mathbb{Z}_p^n) = 2 + 2f(n) \sum_{k=1}^{n-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n-1} \frac{1}{f(n-i_k)f(i_k-i_{k-1}) \cdots f(i_2-i_1)f(i_1)},$$

where $f : \mathbb{N} \to \mathbb{N}$ is the function defined by $f(0) = 1$ and $f(r) = \prod_{s=1}^{r} (p^s - 1)$ for all $r \in \mathbb{N}^*$.Obviously, explicit formulas for $C(\mathbb{Z}_p^n)$ and $D(\mathbb{Z}_p^n)$ also follow from Theorems 1 and 2. By using a computer algebra program, we are now able to calculate the first terms of the chain $f_n = F(\mathbb{Z}_p^n)$, $n \in \mathbb{N}$, namely:

- $f_0 = 1$;
- $f_1 = 2$;
- $f_2 = 2p + 4$;
- $f_3 = 2p^3 + 8p^2 + 8p + 8$;

Finally, we remark that the above f_3 is in fact the number $a_{3,p}$ obtained by a direct computation in Corollary 10 of [5].
2. Proof of Theorem 3

We observe first that every rooted chain of subgroups of \(\mathbb{Z}_p^n \) are of one of the following types:

(i) \(G_1 \subset G_2 \subset \ldots \subset G_m = \mathbb{Z}_p^n \) with \(G_1 \neq 1 \)

and

(ii) \(1 \subset G_2 \subset \ldots \subset G_m = \mathbb{Z}_p^n \).

It is clear that the numbers of chains of types (1) and (2) are equal. So

\[
\begin{align*}
 f_n &= 2x_n, \\
 \text{where } x_n \text{ denotes the number of chains of type (2). On the other hand, such a chain is obtained by adding } \mathbb{Z}_p^n \text{ to the chain } \\
 1 &\subset G_2 \subset \ldots \subset G_{m-1},
\end{align*}
\]

where \(G_{m-1} \) runs over all subgroups of \(\mathbb{Z}_p^n \). Moreover, \(G_{m-1} \) is also an elementary abelian \(p \)-group, say \(G_{m-1} \cong \mathbb{Z}_p^k \) with \(0 \leq k \leq n \). These show that the chain \(x_n \), \(n \in \mathbb{N} \), satisfies the following recurrence relation

\[
x_n = \sum_{k=0}^{n-1} a_{n,p}(k)x_k,
\]

which is more facile than the recurrence relation founded by applying the Inclusion-Exclusion Principle in Theorem 9 of [5].

Next we prove that the solution of (4) is given by

\[
x_n = 1 + \sum_{k=1}^{n-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n-1} a_{n,p}(i_k) a_{i_{k-1},p}(i_{k-1}) \cdots a_{i_2,p}(i_1).
\]

We will proceed by induction on \(n \). Clearly, (5) is trivial for \(n = 1 \). Assume that it holds for all \(k < n \). One obtains

\[
x_n = \sum_{k=0}^{n-1} a_{n,p}(k)x_k = 1 + \sum_{k=1}^{n-1} a_{n,p}(k)x_k
\]

\[
= 1 + \sum_{k=1}^{n-1} a_{n,p}(k) \left(1 + \sum_{r=1}^{k-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_r \leq k-1} a_{k,p}(i_r) a_{i_{r-1},p}(i_{r-1}) \cdots a_{i_2,p}(i_1) \right)
\]

\[
= 1 + \sum_{k=1}^{n-1} a_{n,p}(k) + \sum_{k=1}^{n-1} a_{n,p}(k) \sum_{r=1}^{k-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_r \leq k-1} a_{k,p}(i_r) a_{i_{r-1},p}(i_{r-1}) \cdots a_{i_2,p}(i_1)
\]

\[
= 1 + \sum_{k=1}^{n-1} a_{n,p}(k) + \sum_{k=1}^{n-1} a_{n,p}(k) \sum_{r=1}^{n-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_r \leq n-1} a_{k,p}(i_r) a_{i_{r-1},p}(i_{r-1}) \cdots a_{i_2,p}(i_1)
\]

\[
= 1 + \sum_{k=1}^{n-1} a_{n,p}(k) + \sum_{k=1}^{n-1} a_{n,p}(k) \sum_{r=2}^{n-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_{r-1} \leq k-1} a_{k,p}(i_r) a_{i_{r-2},p}(i_{r-2}) \cdots a_{i_2,p}(i_1)
\]
= 1 + \sum_{1 \leq i_1 \leq n-1} a_{n,p}(i_1) + \sum_{r=2}^{n-1} \sum_{k=1}^{n-1} a_{n,p}(k) \sum_{1 \leq i_1 < i_2 < \ldots < i_{r-1} \leq k-1} a_{k,p}(i_{r-1})a_{i_{r-1},p}(i_{r-2}) \cdots a_{i_2,p}(i_1) \\
= 1 + \sum_{1 \leq i_1 \leq n-1} a_{n,p}(i_1) + \sum_{r=2}^{n-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_{r-1} \leq n-1} a_{n,p}(i_r)a_{i_r,p}(i_{r-1}) \cdots a_{i_2,p}(i_1) \\
= 1 + \sum_{r=1}^{n-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_r \leq n-1} a_{n,p}(i_r)a_{i_r,p}(i_{r-1}) \cdots a_{i_2,p}(i_1),
\text{as desired.}

Since by Theorem 2
\[a_{n,p}(k) = \frac{(p^n - 1) \cdots (p - 1)}{(p^k - 1) \cdots (p - 1)(p^{n-k} - 1) \cdots (p - 1)} = \frac{f(n)}{f(k)f(n-k)}, \forall 0 \leq k \leq n, \]
the equalities (3) and (5) imply that
\[f_n = 2 + 2f(n) \sum_{k=1}^{n-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n-1} \frac{1}{f(n-i_k)f(i_k-i_{k-1}) \cdots f(i_2-i_1)f(i_1)}, \]
completing the proof. □

Acknowledgements. The author is grateful to the reviewer for its remarks which improve the previous version of the paper.

REFERENCES

