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PHASE DIAGRAM PREDICTIONS FOR CARBON DIOXIDE + 

DIFFERENT CLASSES OF ORGANIC SUBSTANCES AT 

HIGH PRESSURES 

Mihaela IONIŢĂ1, Adrian CRIŞCIU2, Radu C. RACOVIŢĂ3, Sergiu SIMA4, 

Catinca SECUIANU5* 

The ability of a unique set of binary interaction parameters (BIPs) to predict 

the phase behavior of binary systems consisting of carbon dioxide (1) + organic 

compounds (2) from different classes is tested. The binary interaction set was 

determined for the carbon dioxide + 2-butanol binary mixture in a predictive way, 

being the intersection of the experimental temperature of the experimental upper 

critical endpoint (UCEP) and the experimental critical pressure maximum (CPM) 

traced by paths in k12–l12 diagram. The calculations were performed with the Soave-

Redlich-Kwong (SRK) cubic equation of state (EOS), coupled with classical van der 

Waals mixing rules (two-parameter conventional mixing rule, 2PCMR). 
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1. Introduction 

Carbon dioxide (CO2) accounts for over 80% of greenhouse gases (GHGs) 

emitted in atmosphere and reached a historical maximum last year [1, 2]. Many 

processes are responsible for the dramatic increase of carbon dioxide emissions 

such as burning fossil fuels (coal, natural gas, and oil) in energy production 

facilities and power plants, but also wood, solid waste, and other biological 

materials, by-product of certain chemical reactions in different industries (e.g., 

cement and steel factories), worldwide bushfires, land use change, etc. [3-11]. The 

alarming increased concentrations of CO2 and other GHGs into atmosphere trap 
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heat leading to the greenhouse effect, which results in global warming and climate 

change sparking extreme phenomena [8, 9].  

Carbon capture and storage (CCS) or carbon capture and utilization (CCU) 

are favorite options among many ways of reducing the carbon dioxide [12-18]. 

Despite their great potential in different industries with large CO2 emissions, the 

drawback is still represented by costs [13-15, 19]. 

In this context, our group focused on investigating the phase behavior of 

carbon dioxide and different classes of organic substances as a way of carbon 

mitigation. Phase equilibria, both experimental determinations and modelling, at 

high-pressures of carbon dioxide with alcohols [20-51], alkanes [52, 53], 

cycloalkanes [52, 54, 55], ethers [56, 57], and esters [58], were explored to 

illustrate the functional group effect on the solvent ability to dissolve CO2. It is 

well known that the experiments are usually expensive and very time consuming 

[10, 59-63]. Therefore, equations of state (EoS) models are the most common 

approach for the correlation and/or prediction of phase equilibria and properties of 

the mixtures [64-67]. 

In the present work, we discuss the influence of binary interaction 

parameters (BIPs) on predicting phase diagrams using Soave–Redlich–Kwong 

(SRK) [68] equation of state (EoS) coupled with classical van der Waals (two-

parameter conventional mixing rule, 2PCMR) for several carbon dioxide + 

organic substances binary systems. 

2. Modelling 

Since van der Waals proposed his famous equation in 1873, cubic 

equations have been intensively studied, and they are to date the most common 

approach for the correlation and prediction of phase equilibria and properties of 

the mixtures, being used frequently for practical applications [67]. 

Although cubic equations of state have their known limitations [69-73], 

they offer the best balance between accuracy, simplicity, reliability, and speed of 

computation, and remain an important and easy tool to calculate the phase 

behavior of many systems, even for complex mixtures like petroleum fluids [74-

76].  

The model chosen for studying the influence of binary interaction 

parameters on the prediction of phase behavior is the Soave–Redlich–Kwong 

(SRK) [68] equation of state (EoS) coupled with classical van der Waals (two-

parameter conventional mixing rule, 2PCMR). 

The Soave–Redlich–Kwong equation of state is: 
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where the two parameters, a and b, are: 
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The two parameter conventional mixing rules are given by: 
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The calculations were made using the software package PHEQ (Phase 

Equilibria Database and Applications), developed in our laboratory [77], and 

GPEC (Global Phase Equilibrium Calculations) [78, 79]. In our in-house 

software, the module for calculating the critical curves is called CRIMIX and uses 

the method proposed by Heidemann and Khalil [80] with the numerical 

derivatives given by Stockfleth and Dohrn [81]. 

3. Results and discussion 

Phase diagrams display the domains occupied by the different phases of a 

system, the boundaries that separate these regions, and the special points of the 

system, as a function of two independent variables. They are calculated using 

equations of state and the best known classification of phase diagrams for binary 

systems was proposed by van Konynenburg and Scott [82].  

In a previous paper [40], we predicted the phase diagram for the carbon 

dioxide + 2-butanol binary system using the k12–l12 method [43, 45, 83], meaning 

that we determined a unique set of interaction parameters in a wide range of 
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temperatures, representing exactly the experimental critical pressure maximum 

(CPM) and the experimental temperature of the upper critical endpoint (UCEP). 

This single set determined for the SRK EoS is k12 = 0.020 and l12 = -0.111. 

Stevens et al. [84] have provided experimental evidence that the binary system 

carbon dioxide + 2-butanol exhibits liquid–liquid immiscibility and therefore the 

system is a type II phase diagram, according to the classification of van 

Konynenburg and Scott [82] or the recent one of Privat and Jaubert [85]. Type II 

phase behavior is characterized by a continuous liquid–vapor critical curve 

stretching between the critical points of the pure components as in type I phase 

behavior, but additionally presents a liquid–liquid critical curve which intersects 

the three-phase liquid–liquid–vapor equilibrium line in an upper critical endpoint, 

as sketched in Fig. 1. 

 

 
Fig.1. P–T fluid phase diagram for type II phase behavior 

 
Table 1 

Critical data (Tc, Pc) and acentric factor () for pure components [86] 
Compounds Formula Molecular 

weight 

CAS 

number 

Tc/K pc/MPa ω 

Carbon dioxide CO2  44.0095 124-38-9 304.21 7.383 0.22362 

n-Butane n-C4H10  58.1222 106-97-8 425.12 3.796 0.200164 

1-Butanol 1-C4H10O  74.1216 71-36-3 563.0 4.414 0.589462 

2-Butanol 2-C4H10O 74.1216 78-92-2 536.2 4.202 0.576776 

1,2-Dimethoxyethane C4H10O2 90.1210 110-71-4 536.15 3.87061 0.347486 

Ethyl acetate C4H8O2 88.1051 141-78-6 523.3 3.88 0.366409 
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We also showed that this set of parameters can accurately predict the 

phase behavior for carbon dioxide + 2-propanol system [30], which has a type I or 

type II phase diagram. It can be noticed that 2-propanol belongs to the same class 

of organic compounds as 2-butanol (secondary alcohols), but with three C atoms. 

In the present work, we used the same set, tailored for the carbon dioxide 

+ 2-butanol (2B) system, to predict the phase behavior of carbon dioxide + n-

butane (nB), + 1-butanol (1B), + 1,2-dimetoxyethane (DME), and + ethyl acetate 

(EA) binary systems and study the influence of BIP on the mixtures with organic 

compounds from different classes. The critical data and the acentric factors of the 

pure substances [86] used in the calculations are presented in Table 1, while their 

chemical structures [87] are shown in Table 2. 

 
Table 2 

Chemical structures of pure components [87] 
Compounds Chemical structure 

Carbon dioxide 

 
n-Butane 

 
1-Butanol 

 
2-Butanol 

 
1,2-Dimethoxyethane 

 
Ethyl acetate 

 

 

 The organic substances selected as the second component in the binary 

systems all have four carbon atoms and zero, one, or two oxygen atoms, 

respectively. We compare one n-alkane (n-butane), two alcohols (the position 

isomers, 1- and 2-butanol), one ester (ethyl acetate), and one di-ether (1,2-

dimethoxyethane). The critical pressures of 1-butanol and 2-butanol are very 
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similar, as are those of n-butane, ethyl acetate, and 1,2-dimethoxyethane, while 

the critical temperatures are increasing from n-butane, to ethyl acetate, 1,2-

dimethoxyethane and 2-butanol, for which they are almost identical, and up to the 

highest value of 1-butanol.  
Table 3 

Available literature critical data for CO2 (1) +n-Butane (2), + 1-Butanol (2), + 2-Butanol (2), 

+Ethyl Actetate (2), + 1,2-Dimethoxyethane (2) binary systems 

Binary 

System Trange/K Prange/MPa NEXP* Observations References 

CO2 + nB 

368.15÷418.15 4.702÷7.901 3 VLE critical curve 

Leu and 

Robinson 

[88] 

304.16÷424.92 3.790÷7.395 15 VLE critical curve 
Horstmann 

et al. [89] 

CO2 + 1B 

305.50÷329.20 7.580÷10.810 8 VLE critical curve 
Gurdial et al. 

[90] 

315.26÷427.24 8.710÷17.373 6 VLE critical curve 
Yeo et al. 

[91] 

304.25÷562.95 4.400÷7.390 19 VLE critical curve 
Ziegler et al. 

[92] 

CO2 + 2B 

304.10÷532.03 4.226÷8.290 17 VLE critical curve 
Stevens et 

al. [84] 

249.34÷251.39 1.674÷1.787 6 
LLV equilibrium 

line and UCEP 

Stevens et 

al. [84] 

335.14÷431.73 10.473÷14.023 5 VLE critical curve 

Silva-Oliver 

and Galicia-

Luna [93] 

CO2 + EA 

313.20÷393.20 8.160÷11.530 5 VLE critical curve 
Byun et al. 

[94] 

304.25÷523.45 3.880÷7.638 16 VLE critical curve 
Chester & 

Haynes [95] 

CO2 + 1,2-

DME 
333.15÷420.05 9.900÷12.870 15 VLE critical curve 

Sima et al. 

[57] 
*Number of experimental points 

 

Table 4 

Predicted UCEPs by SRK/2PCMR model (k12 = 0.020 and l12 = -0.111) 

Binary System TUCEP/K PUCEP/MPa 

CO2 + nB 188.3122 0.11687 

CO2 + 1B 275.6178 2.93557 

CO2 + 2B 252.9606 1.54910 

CO2 + EA 215.0685 0.41040 
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CO2 + 1,2-DME 217.3275 0.45158 

 

We carefully reviewed the literature for the selected binary systems and 

the available critical data are presented in Table 3. 
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Fig. 2. Comparison of P–T fluid phase diagrams for carbon dioxide (1) + 2-butanol (2) and carbon 

dioxide (1) + n-butane (2) systems. Square symbols, literature data [84, 93] and red dark tick lines, 

predictions by SRK model for CO2 + 2B. Star symbols, literature data [88, 89] and black tick lines, 

predictions by SRK model for CO2 + nB. 

 

The available experimental data from literature were compared with the 

SRK model predictions using the same BIPs for each system. We also compared 

the predicted phase behavior of each system with the reference system, carbon 

dioxide + 2-butanol. The model predicts type II phase behavior for all systems.  

Thus, the predicted phase diagram of carbon dioxide (1) + n-butane (2) 

binary mixture is compared with that of carbon dioxide (1) + 2-butanol system in 

Fig. 2. The model predicts the liquid–liquid–vapor line at very low temperatures 

and underestimates the CPM by about 8 bar for the carbon dioxide + n-butane 

system. The carbon dioxide + n-butane predicted UCEP is situated at a very low 

temperature, much lower than that of carbon dioxide + 2-butanol system. The 

coordinates of the predicted UCEPs are given in Table 4 for all studied mixtures. 

The SRK predictions for the carbon dioxide + 1-butanol system are 

compared with the carbon dioxide + 2-butanol system in Fig. 3. The model 

predicts type II phase behavior for the system containing the position isomer, 1-



124            Mihaela Ioniţă, Adrian Crişciu, Radu Racoviţă, Sergiu Sima, Catinca Secuianu 

 

butanol, as well. The liquid–vapor predicted critical curve for the carbon dioxide 

+ 1-butanol binary system is shifted at higher temperatures compared with the 

experimental data, as can be seen in Fig. 3.  
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Fig. 3. Comparison of P–T fluid phase diagrams for carbon dioxide (1) + 2-butanol (2) and carbon 

dioxide (1) + 1-butanol (2) systems. Square symbols, literature data [84, 93] and red dark tick 

lines, predictions by SRK model for CO2 + 2B. Crossed square symbols, literature data [90-92] 

and dark green tick lines, predictions by SRK model for CO2 + 1B. 

 

The CPM is slightly underestimated, but the corresponding temperature is 

~ 14 degrees higher than the experimental one. The predicted UCEP for the 

carbon dioxide + 1-butanol system is located at a higher temperature than that of 

carbon dioxide + 2-butanol system. 
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Fig. 4. Comparison of P–T fluid phase diagrams for carbon dioxide (1) + 2-butanol (2) and carbon 

dioxide (1) + ethyl acetate (2) systems. Square symbols, literature data [84, 93] and red dark tick 

lines, predictions by SRK model for CO2 + 2B. Circle symbols, literature data [94, 95] and light 

green tick lines, predictions by SRK model for CO2 + EA. 

 

Fig. 4 shows the comparison of carbon dioxide + 2-butanol and carbon 

dioxide + ethyl acetate binary systems. It can be noticed that the available 

experimental data are not in agreement for the carbon dioxide + ethyl acetate 

binary system, the difference in CPM being about 15 bar for the two literature sets 

[94, 95]. The SRK model prediction for the liquid–vapor curve is in agreement 

with the experimental critical pressure reported by Byun et al. [94] and with the 

critical temperatures measured by Chester et al. [95]. The temperature 

corresponding to the CPM for the carbon dioxide + ethyl acetate system is very 

well predicted and in agreement with the experimental data from Chester et al. 

[95]. The predicted UCEP for the carbon dioxide + ethyl acetate is located at a 

lower temperature than that of carbon dioxide + 2-butanol system. 

 

Finally, the predictions by SRK/2PCMR for the carbon dioxide + 1,2-

dimethoxyethane and carbon dioxide + 2-butanol binary mixtures are shown in 

Fig. 5. The liquid–vapor critical curve is remarkably well predicted for the carbon 

dioxide + 1,2-dimethoxyethane system. The predicted UCEP for carbon dioxide + 

1,2-dimethoxyethane system is at a lower temperature than that of carbon dioxide 

+ 2-butanol system.  
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Fig. 5. Comparison of P–T fluid phase diagrams for carbon dioxide (1) + 2-butanol (2) and carbon 

dioxide (1) + 1,2-dimethoxyethane (2) systems. Square symbols, literature data [84, 93] and red 

dark tick lines, predictions by SRK model for CO2 + 2B. Diamond symbols, literature data [57] 

and pink tick lines, predictions by SRK model for CO2 + DME. 

 

It can be noticed that the liquid–vapor critical curves are ranging 

increasingly from ~70 bar to ~175 bar in the order carbon dioxide + n-butane, + 

ethyl acetate, + 1,2-dimethoxyethane, + 2-butanol, and + 1-butanol, respectively. 

4. Conclusions 

The phase behavior of several binary systems containing carbon dioxide 

and an organic compound belonging to various classes (n-alkane, primary and 

secondary alcohols, di-ether, ester) was predicted using the SRK/2PCMR with a 

single set of binary interaction parameters (k12 = 0.020 and l12 = -0.111). The 

unique set of BIPs was determined for the carbon dioxide + 2-butanol system 

using the k12-l12 method and further used to successfully model the carbon dioxide 

+ n-butane, + 1-butanol, + ethyl acetate, and + 1,2-dimethoxyethane binary 

systems. 
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