DETERMINING THE LOSSES ON GROUND AT HARVESTING THE MEDICINAL PLANTS

Adriana MUSCALU¹, Ladislau DAVID²

In the case of medicinal plants, the quality requirements imposed on the harvested material are strict. Among the researches conducted within INMA related to mechanical harvesting of chamomile inflorescences with different sizes of active organs, the paper summarizes the ones related to the rate of losses on soil. These were studied for the constructive variants of working organs, designated representatives on the basis of the harvesting degree, the main indicator of evaluation of a harvesting process, performed with a specialized equipment. The conclusions issued following the interpretation of the results is an important prerequisite for the optimization of the mechanized harvesting process of the Chamomile inflorescences, in order to achieve of efficient equipment.

Keywords: mechanized harvesting, chamomile inflorescences, the rate of losses on soil, multivariable functions

1. Introduction

Generally, medicinal plant cultivation offers the possibility to mechanize the agricultural works, which represents a guarantee of productivity and quality of vegetal material obtained [1]. Phytotherapeutical efficiency of medicinal and aromatic plants depends largely on the quality of vegetal material, obtained after a process of harvesting carried out differentially, depending on the species, the plant's useful body and on the season [2].

The chamomile (Matricaria recutita L.) is one of the best known and most used natural remedies both in the human traditional therapy and in the veterinary one, its beneficial properties being known since ancient times. At world level is cultivated on approx. 20,000 ha, the main producers being Argentina, Egypt, Italy, Hungary, Germany, Serbia, etc. [3]. In these countries it is very important the cultivation of some studied varieties, with a high content of volatile oil, together with other valuable bioactive compounds found in inflorescences (azulenes, flavonoids, coumarin etc.) [4]. The mechanized harvesting of the chamomile inflorescences is a key point in the production chain, because it has a major

¹ Eng, PhD Student, National Institute of Research Development for Machines and Installations Designed to Agriculture and Food Industry (INMA) Bucharest, Romania, e-mail: amuscalis@yahoo.com;
² Prof., Faculty of Biotechnical Engineering Systems, POLITEHNICA University of Bucharest, Romania.
impact on the quantity and quality of vegetal material obtained [1,5]. Chamomile harvesting costs represent a large part of total costs, this being economically efficient when is done mechanically on surfaces of minimum 4 ha [6]. In many countries in Europe (including Romania) camomile cultivation is in a great decline. To relaunch this culture, in some countries, based on some investments or programs, were researched and realized selfpropelled combines of high productivity for the harvesting of chamomile inflorescences [5,7].

The chamomile reapers which equip the harvesting equipment can be of drum, or of conveyor type [1,8], the predominant harvesting organs being of comb type [3]. Due to the active bodies, the working process is a process of raking comprising the following stages: combs penetration in the layer of stalks; combs moving along the stalks; the combs exiting from the layer of stalks [9].

The paper presents the experimental results on the losses rate on soil and their interpretation by means of the multivariate functions. The results were obtained at the harvesting of chamomile inflorescences with a trailed machine, which was equipped with different types of active bodies comb type.

2. Material and method

The chamomile harvesting machine (fig.1) utilized was of traction type, with an offset position from tractor while working and fitted with mechanical transmission.

The gatherer moved along the rows of plants with the combs scrapers in action. These performed the bottom up combing of the plants, operation having the effect of detaching the inflorescences of strains. In the working process the combs performed a movement resulting from the overlapping of the rotational movement of the collecting conveyer belt over the translational movement given by the movement of the aggregate. Each point on the pulling bodies (characterized by a position vector against the center of rotation) described an elongated cycloidal trajectory. The action of the combs scrapers comprises the floral floors which are harvested according to the established working height.

Fig.1 Chamomile harvester
The experiments were conducted in a chamomile crop from the former SCPMA Fundulea, Calarasi County. The Table 1 presents the crop characteristics.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Margaritar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of chamomile plants [pcs/m²]</td>
<td>326</td>
</tr>
<tr>
<td>Average number of weeds [pcs/m²]</td>
<td>12</td>
</tr>
<tr>
<td>Average number of mature flowers [pcs/m²]</td>
<td>1986</td>
</tr>
<tr>
<td>Average number of buttons non blossomed [pcs/m²]</td>
<td>46</td>
</tr>
<tr>
<td>Average production of fresh inflorescences [kg/ha]</td>
<td>3204</td>
</tr>
<tr>
<td>Average mass of 100 inflorescences [g]</td>
<td>13.2</td>
</tr>
<tr>
<td>Average diameter of inflorescences [mm]</td>
<td>19.4</td>
</tr>
<tr>
<td>Minimum and maximum heights between which are found the flowers on plants [mm]</td>
<td>298...583</td>
</tr>
</tbody>
</table>

Several types of combs scrapers with straight teeth (fig. 2a) and with curved teeth (fig.2b) were executed and tried.

Fig. 2 The combs shape: a) with straight teeth; b) with curved teeth

For the curved teeth, it just shows the side view, in order to highlight the differences. At both types of combs the gap between teeth has the agreed shape of a rounded "U", the radius being equal to half of the distance between teeth (d/2) [3].

Notations used in Fig. 2 and Table 2, in which are shown the dimensional characteristics of the combs are shown, have the following meanings: d - the distance between two consecutive teeth; p - teeth pitch; L - teeth length; b - teeth width; R - curvature radius of the combs with curved teeth. Dimensions m and n can be expressed and calculated depending on the radius R.

In Table 2 are shown 12 typo dimensions of combs scrapers, for the identification of which the following symbols were used:

a) combs with straight teeth - M1; N1; O1; S1; T1; V1;

b) combs with curved teeth - M2; N2; O2; S2; T2; V2.
To be more comparable, the version with straight teeth, followed by the one with curved teeth are presented in pairs, for the common sizes. The distance d for the first 6 versions is 6 mm, for the others being 4 mm. The tooth width and length varies in the same way for the versions grouped by d.

Table 2

<table>
<thead>
<tr>
<th>Comb symbol</th>
<th>d [mm]</th>
<th>b [mm]</th>
<th>p [mm]</th>
<th>L [mm]</th>
<th>R [mm]</th>
<th>$m = \sqrt{2} R / 2$ [mm]</th>
<th>n [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M2</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>60</td>
<td>60</td>
<td>42</td>
<td>16</td>
</tr>
<tr>
<td>N1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N2</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>80</td>
<td>80</td>
<td>57</td>
<td>21</td>
</tr>
<tr>
<td>O1</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O2</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>100</td>
<td>100</td>
<td>71</td>
<td>26</td>
</tr>
<tr>
<td>S1</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S2</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>60</td>
<td>60</td>
<td>42</td>
<td>16</td>
</tr>
<tr>
<td>T1</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T2</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>80</td>
<td>80</td>
<td>57</td>
<td>21</td>
</tr>
<tr>
<td>V1</td>
<td>4</td>
<td>10</td>
<td>14</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V2</td>
<td>4</td>
<td>10</td>
<td>14</td>
<td>100</td>
<td>100</td>
<td>71</td>
<td>26</td>
</tr>
</tbody>
</table>

Using interchangeable chain wheels, with different numbers of teeth, it was obtained the modification of the transmission ratio of the movement to gatherer and implicitly there were obtained different linear speeds ($v_b = 0.52; 0.76; 1.08 \text{ ms}^{-1}$) for the band on which were mounted on all variants of active bodies (combs scrapers).

Any harvesting process is characterized by the degree of collection, which is the main indicator for assessing the working process. In this case it expresses percentually the ratio between the inflorescences detached from plants and the initial number of inflorescences from a crop area of 1 m^2. For each type of active organs there were performed five experimental determinations, for all the possible combinations relating to the working conditions. After analyzing the experimental results obtained for the collection rate, there were chosen the representative variants for the types of active bodies, these being: version V1 (for combs with straight teeth) and version T2 (for combs with curved teeth).

The losses of inflorescences on the ground represent the flowers detached from the stalks in the process of harvesting, which are not retained by gatherer. Due to a complex of factors difficult to control, these fall on the ground without having to be recovered. The losses rate represents the percentage ratio between the number of flowers fallen on the ground and the number of detached flowers from stalks per unit of harvested area.
After carrying out the experiments it was found that the values determined for the losses rate on soil of the inflorescences collected, depend on the values that we imposed for the working speed, the working height and peripheral speed of the combs. Thus the rate of losses on soil is a variable that depends on several independent variables simultaneously. This dependence could be expressed by means of an analytical expression, whose form should generally be determined as a multivariable function \(y \) type:

\[
y = f(x_1, a_0, a_1, a_{ii}, a_{ij})
\]

Due to the complexity of solving this problem it is required to complete several steps: drawing up a suitable program of organizing of the experiences, determining the values of the constants, testing the significance of the variables, testing the adequacy function form [10].

This \(y \) function can be of type: polynomial regression function or polytropic regression function as follows [10,11,12]:

1. \textit{Regression function of the polynomial form}, with three independent variables which has the form [10,12]:

\[
y = a_0 + \sum_{i=1}^{3} a_i \cdot x_i + \sum_{i=1}^{3} a_{ii} \cdot x_i^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3
\]

(2)

Where: \(x_1, x_2, x_3 \) are independent variables, \(y \) is a dependent variable and \(a_0, a_i, a_{ii}, a_{12}, a_{13} \) si \(a_{23} \) are the constants whose values are to be determined.

2. \textit{Regression function polytropic}, with three independent variables that has the form [10], [12]:

\[
y = a_0 \cdot x_1^{a_1} \cdot x_2^{a_2} \cdot x_3^{a_3}
\]

(3)

The structure of the experimental research program used to determine the function \(y \) is given by: the number \(n^* = 14 \) experiences carried out for the different values of the independent variables, necessary to determine the coefficients; the number \(n_0 = 4 \) of experiences carried out for identical values of the independent variables, necessary to determine the experimental error; the total number of experiments [13]:

\[
n = n^* + n_0 = 14
\]

(4)

The main characteristics of the experimental program, defined in relation to the requirements of functions determination appropriate to the investigated processes are: compatibility, (defined in relation to the achievement of a unique solution of the coefficients), orthogonality (defined in relation with the realisation of some estimations of the coefficients, uncorrelated), credibility (defined in relation to carrying out of some conclusive values of the indicators of testing the significance of the coefficients and of the form function adequacy) [10,13].

For the multivariable regression functions (polynomial and polytropic), the following steps were performed:
a) Coefficients calculation - The determination of these constants is made with the method of the least squares, expressing the sum of deviations squares of the measured values compared to those computed with the modeling software. Putting the condition that the sum should be minimal, a system of linear equations is obtained. Solving the system, the constants from the expression of the multivariate function are obtained [10,12,14,15]:

\[
S_j = a_j \sum_{i=1}^{n} X_{ij}^2, \quad S_0 = nb_0^2, \quad j = 1, 2, 3, \ldots, \quad m_1
\]

b) Testing the significance of the coefficients - is done using Fisher test, by calculating the sum of experimental errors squares and the sums due to the coefficients. The following ratios are calculated:

\[
F_o = \frac{S_o(n_0 - 1)}{S_j}, \quad F_j = \frac{S_j(n_j - 1)}{S_j}, \quad j = 1, 2, 3, \ldots, \quad m_1
\]

If \(F_0 \geq F(1-\alpha, 1, n_0 - 1), F_j \geq F(1-\alpha, 1, n_j - 1), F_{ij} \geq F(1-\alpha, 1, n_{ij} - 1) \) and respectively \(a_{23} \) are significant. If the condition is not met for one or more factors, they are equal to zero. The critical values \(F(P = 1 - \alpha, k_1 = 1, k_2 = n_0 - 1) \) are given for the significance level \(\alpha = 0.95 \) [10,11,16].

c) Testing the function form adequacy - is done, also, studying Fisher test to calculate:

\[
F = \frac{(S - S_e)(n_e - 1)}{S_e(n - n_e - m_1)} < F(1-\alpha, n_e - m_1, n_e - 1)
\]

where \(m_1 \) represents the number of function coefficients (without \(a_0 \)). If this condition is met, then the function form is adequate [10,11,16].

The rate of harvested inflorescences lost on the ground, can be expressed using the multivariable regression functions. In this respect, the independent variables that influence the dependent variable are [17,18]: The working speed: \(v_l = 0.5 – 1.22 \) km\(\text{h}^{-1} \); The height of harvest: \(H = 0.3 – 0.45 \) m; The combs peripheral speed: \(v_p = 0.52 – 1.08 \) m\(\text{s}^{-1} \). The calculation algorithm shown above was used to carry out a program in the Turbo Pascal 7 programming language [19]. The experimental program of tests for determining the multivariable functions for calculating the rate of losses on ground of the inflorescences for the versions V1 and T2 is shown in Table 3.

Table 3

<table>
<thead>
<tr>
<th>Crt. No.</th>
<th>(v_l) [km h(^{-1})]</th>
<th>(H) [m]</th>
<th>(v_p) [m s(^{-1})]</th>
<th>Losses on soil for V1 [%]</th>
<th>Losses on soil for T2 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.30</td>
<td>0.52</td>
<td>17.5</td>
<td>5.8</td>
</tr>
<tr>
<td>2</td>
<td>1.22</td>
<td>0.30</td>
<td>0.52</td>
<td>19.6</td>
<td>8.2</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.45</td>
<td>0.52</td>
<td>13.6</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>1.22</td>
<td>0.45</td>
<td>0.52</td>
<td>11</td>
<td>10.8</td>
</tr>
</tbody>
</table>
3. Results

The regression function of polynomial form \(P_{s1} \) with three independent variables \(v_i, H, v_p \), expressing the losses on ground for V1 is of the form:

\[
P_{s1} = a_1 + a_2 v_i + a_3 H + a_4 v_p + a_5 v_i^2 + a_6 H^2 + a_7 v_p^2 + a_8 v_i H + a_9 v_p v_p + a_{10} H v_p
\] (8)

Using a computer program developed in Turbo Pascal were calculated the regression coefficients for the function of polynomial form, expressing the losses on soil for the V1 combs version, by the method of the least squares. Fisher test was used to test the coefficients significance and the function adequacy.

Regression coefficients and coefficients of testing the coefficients significance for the function of polynomial form corresponding to V1 are:

\[
\begin{align*}
a_1 & = -0.763503, F_1 = 6417.467660 > F=8.25 \text{ results: } a_1 \text{ is significant;} \\
a_2 & = 0.00000, F_2 = 5.987685 < F=8.25 \text{ results: } a_2 \text{ is not significant;} \\
a_3 & = 154.649041, F_3 = 66.064084 > F=8.25, \text{ results: } a_3 \text{ is significant;} \\
a_4 & = -1.2100387, F_4 = 15.233396 > F=8.25 \text{ results: } a_4 \text{ is significant;} \\
a_5 & = 2.115545, F_5 = 57.003245 > F=8.25 \text{ results: } a_5 \text{ is significant;} \\
a_6 & = -261.877069, F_6 = 571.108994 > F=8.25 \text{ results: } a_6 \text{ is significant;} \\
a_7 & = -3.980434, F_7 = 64.153649 > F=8.25 \text{ results: } a_7 \text{ is significant;} \\
a_8 & = -17.126107, F_8 = 8.797095 > F=8.25 \text{ results: } a_8 \text{ is significant;} \\
a_9 & = 0.00000, F_9 = 1.913586 < F=8.25 \text{ results: } a_9 \text{ is not significant;} \\
a_{10} & = 34.306827, F_{10} = 21.354733 > F=8.25 \text{ results: } a_{10} \text{ is significant;}
\end{align*}
\]

The calculated regression coefficients are:

\[
a_1 = 0.62118, a_2 = 0.00000, a_3 = 154.64904, a_4 = -10.26048, a_5 = 2.11554, a_6 = -261.87707, a_7 = -3.98043, a_8 = -17.12611, a_9 = 0.00000, a_{10} = 34.30683.
\]

The coefficient of testing the form adequacy for the function is \(F=4.504 < F_{tab} = 9.4 \), so it follows that the function form is adequate. [16]

Polynomial function that allows the calculation of losses on the ground for the V1 combs version is:

\[
\begin{array}{|c|c|c|c|c|}
\hline
5 & 0.5 & 0.30 & 1.08 & 17.1 \\
6 & 1.22 & 0.30 & 1.08 & 16.9 \\
7 & 0.5 & 0.45 & 1.08 & 11.8 \\
8 & 1.22 & 0.45 & 1.08 & 11.7 \\
9 & 0.5 & 0.30 & 0.76 & 17 \\
10 & 1.22 & 0.30 & 0.76 & 15.4 \\
11 & 0.76 & 0.45 & 0.76 & 14.4 \\
12 & 0.76 & 0.30 & 0.76 & 17.5 \\
13 & 0.76 & 0.30 & 1.08 & 11.4 \\
14 & 0.76 & 0.30 & 0.52 & 19.3 \\
15 & 0.76 & 0.30 & 0.76 & 17.5 \\
16 & 0.76 & 0.30 & 0.76 & 16 \\
17 & 0.76 & 0.30 & 0.76 & 18 \\
18 & 0.76 & 0.30 & 0.76 & 17 \\
\hline
\end{array}
\]
Next there were calculated the regression coefficients and the coefficients of testing the coefficients significance for the function of polytropic form corresponding to the losses on soil for V1:

\[a_1 = 6.380547724, \ F_1 = 50592.229762 > F = 8.25 \text{ results: } a_1 \text{ is significant; } \]

\[a_2 = -0.048975618, \ F_2 = 1.878456998 < F = 8.25 \text{ results: } a_2 \text{ is not significant; } \]

\[a_3 = -0.744759146, \ F_3 = 89.753680159 > F = 8.25 \text{ results: } a_3 \text{ is significant; } \]

\[a_4 = -0.210922389, \ F_4 = 23.391606194 < F = 8.25 \text{ results: } a_4 \text{ is significant. } \]

The recalculated coefficients are: \(a_1 = 6.45427728, a_2 = 0, a_3 = -0.745874437, a_4 = -0.210893861 \).

The coefficient of testing the function adequacy form is \(F = 4.770 < F_{\text{tab}} = 9.4 \), so the function form is adequate [16]. Polytropic function that allows the calculation of losses on the ground for the V1 combs version is:

\[P_{s2} = 6.45427728 \cdot v_i^0 \cdot H^{-0.745874437} \cdot v_p^{-0.210893861} \] \hspace{1cm} (10)

Table 4 presents the deviations of the values for the losses on ground, calculated with the regression functions (9) si(10), compared to the experimental ones, for V1.

<table>
<thead>
<tr>
<th>Crt. No.</th>
<th>Losses on ground [%]</th>
<th>Deviation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.5</td>
<td>19.105</td>
</tr>
<tr>
<td>2</td>
<td>19.6</td>
<td>18.025</td>
</tr>
<tr>
<td>3</td>
<td>13.6</td>
<td>14.232</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>11.303</td>
</tr>
<tr>
<td>5</td>
<td>17.1</td>
<td>15.556</td>
</tr>
<tr>
<td>7</td>
<td>11.8</td>
<td>13.565</td>
</tr>
<tr>
<td>8</td>
<td>11.7</td>
<td>10.636</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>17.89</td>
</tr>
<tr>
<td>12</td>
<td>17.5</td>
<td>17.247</td>
</tr>
<tr>
<td>13</td>
<td>11.4</td>
<td>14.913</td>
</tr>
<tr>
<td>14</td>
<td>19.3</td>
<td>18.462</td>
</tr>
<tr>
<td>15</td>
<td>17.5</td>
<td>17.247</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>17.247</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>17.247</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>17.247</td>
</tr>
</tbody>
</table>
For the V1 combs version, figure 3 shows the experimental values of the rate of losses on ground, compared to the theoretical ones, calculated using the polynomial and polytropic functions previously obtained, for each experiment.

Using the same calculation program developed in Turbo Pascal and the methodology stated above, were calculated the coefficients of regression and the coefficients of testing the coefficients significance for the function of polynomial form corresponding to losses on soil for the T2 combs version, but the function form was not adequate.

Then, there were calculated the regression coefficients and the coefficients of testing the coefficients significance for the function of polytropic form corresponding to losses on soil for T2:

\[
\begin{align*}
a_1 &= 3.530916808, \quad F_1 = 9092.09151940 > F=8.25 \text{ results: } a_1 \text{ is significant;} \\
a_2 &= 0.2465642, \quad F_2 = 18.152010439 > F=8.25 \text{ results: } a_2 \text{ is significant;} \\
a_3 &= -0.486373265, \quad F_3 = 14.594299667 > F=8.25 \text{ results: } a_3 \text{ is significant;} \\
a_4 &= -0.508928921, \quad F_4 = 51.922098693 > F=8.25 \text{ results: } a_4 \text{ is significant.}
\end{align*}
\]

Recalculated coefficients were:

\[
\begin{align*}
a_1 &= 3.5309168, \\
a_2 &= 0.2465642, \\
a_3 &= -0.4863733, \\
a_4 &= -0.5089289
\end{align*}
\]

The coefficient of testing the function adequacy form is \(F=6.214 < F_{tab} = 9.4\), so the function form is adequate [16]. The polytropic function that allows the calculation of losses on ground for the T2 combs version is:

\[
P_s = 3.5309168 \cdot v_{ij}^{0.2465642} \cdot H^{-0.4863733} \cdot v_p^{-0.5089289}
\]

(11)

Table 5 presents the deviations of the values for the inflorescences lost on soil, calculated with the regression function (11), compared to the experimental ones, for T2.

<table>
<thead>
<tr>
<th>Crt. No.</th>
<th>Losses on ground [%]</th>
<th>Deviation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(P_{\text{exp}})</td>
<td>(P_{d(11)})</td>
</tr>
<tr>
<td>1</td>
<td>5.8</td>
<td>7.456</td>
</tr>
<tr>
<td>2</td>
<td>8.2</td>
<td>9.29</td>
</tr>
<tr>
<td>3</td>
<td>5.3</td>
<td>6.122</td>
</tr>
</tbody>
</table>
For the T2 combs version, figure 4 shows the experimental values of the rate
of inflorescences lost on the ground, compared to the theoretical ones, calculated
using the polytropic function previously obtained, for each experiment (Table 5).

![Figure 4](image)

Fig. 4 The rate of the losses on ground for the T2 combs version

Usually, in a process of harvesting the inflorescences of chamomile, the
harvesting height H (of working) is determined depending on the disposition
height of the inflorescences on plant. At the first passage of the equipment
through the field, a smaller working height is used, this being increased for the
following crossings. For a working height which is maintained constant
the rate of the harvested inflorescences lost on ground can be determined using functions
of two variables, dependent on the working speed (v_1) and by the peripheral
speed of the combs ($v_p=x_2$), having the shape:

$$f(x_1, x_2) = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_1^2 + a_4 x_1 x_2 + a_5 x_2^2$$ \hspace{1cm} (12)

Using the values recorded during the experiments from Table 6 and the
MathCad software could be determined the constants of the two variables function
of the form (12), with which can be studied the variation of the degree of harm of
the harvested inflorescences at the working height $H = 0.3m$ for the variants V1
and T2 of the combs, as well as for the height $H = 0.45m$. [20]
Determining the losses on ground at harvesting the medicinal plants

Table 6

<table>
<thead>
<tr>
<th>Crt. No.</th>
<th>Working speed v_1 [km h$^{-1}$]</th>
<th>Combs peripheral speed v_p [m s$^{-1}$]</th>
<th>Losses rate on soil [%] for V1 at H=0.3m</th>
<th>Losses rate on soil [%] for T2 at H=0.3m</th>
<th>Losses rate on soil [%] for V1 at H=0.45m</th>
<th>Losses rate on soil [%] for T2 at H=0.45m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.52</td>
<td>17.5</td>
<td>8</td>
<td>13.6</td>
<td>5.3</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.76</td>
<td>17</td>
<td>5.8</td>
<td>11.4</td>
<td>4.9</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>1.08</td>
<td>17.1</td>
<td>5.3</td>
<td>11.8</td>
<td>4.9</td>
</tr>
<tr>
<td>4</td>
<td>0.76</td>
<td>0.52</td>
<td>19.3</td>
<td>5.6</td>
<td>14.2</td>
<td>5.1</td>
</tr>
<tr>
<td>5</td>
<td>0.76</td>
<td>0.76</td>
<td>17.5</td>
<td>9.4</td>
<td>14.4</td>
<td>5.3</td>
</tr>
<tr>
<td>6</td>
<td>0.76</td>
<td>1.08</td>
<td>11.4</td>
<td>7.9</td>
<td>12.7</td>
<td>4.7</td>
</tr>
<tr>
<td>7</td>
<td>1.04</td>
<td>0.52</td>
<td>19.2</td>
<td>7.0</td>
<td>15.1</td>
<td>6.9</td>
</tr>
<tr>
<td>8</td>
<td>1.04</td>
<td>0.76</td>
<td>17.1</td>
<td>13.0</td>
<td>14.4</td>
<td>6.2</td>
</tr>
<tr>
<td>9</td>
<td>1.04</td>
<td>1.08</td>
<td>17.3</td>
<td>9.4</td>
<td>13.6</td>
<td>8.3</td>
</tr>
<tr>
<td>10</td>
<td>1.22</td>
<td>0.52</td>
<td>19.6</td>
<td>7.8</td>
<td>11.0</td>
<td>10.8</td>
</tr>
<tr>
<td>11</td>
<td>1.22</td>
<td>0.76</td>
<td>15.4</td>
<td>8.2</td>
<td>11.4</td>
<td>7.7</td>
</tr>
<tr>
<td>12</td>
<td>1.22</td>
<td>1.08</td>
<td>16.9</td>
<td>7.6</td>
<td>11.7</td>
<td>3.9</td>
</tr>
</tbody>
</table>

For the losses on soil corresponding to V1 at $H=0.300m$, for a correlation coefficient $R=0.67$, the function (12) has the shape:

$$P_s(v_1,v_p) = 29.567 - 6.52v_1 - 21.764v_p + 4.333v_p^2 + 0.009009v_1v_p + 9.998v_p^2$$ (13)

For the losses on soil corresponding to V1 at $H=0.450m$, for a correlation coefficient $R=0.879$, the function (9.26) has the shape:

$$P_s(v_1,v_p) = 6.134 + 29.683v_1 - 8.942x10^{-3}v_p - 19.821v_1^2 + 4.868v_1v_p + 1.767v_p^2$$ (14)

Figs. 5 and 6 show the plots representing the variation of losses on soil according to the working speed ($v_1=x_1$) and the peripheral speed of the combs ($v_p=x_2$), at a working height of $H=0.300m$ and respectively of $H=0.450m$, using the functions given by the relations (13) and (14). On the axes corresponding to these speeds (x_1 and x_2) appears the number of intervals.

![Fig.5 Variation of losses on soil (P_s) for V1 depending on v_1 and v_p, at $H=0.300m$](image-url)
In Fig. 7 and Fig. 8, for the V1 combs version, corresponding to each heights (H=0.300m and H=0.450m) it was graphically represented the variation of losses on soil, for each combs peripheral speed (v_{p1}=0.52 ms$^{-1}$, v_{p2}=0.76 ms$^{-1}$, v_{p3}=1.08 ms$^{-1}$), depending on the working speed, (using the relationship 13 and 14).

Analyzing Fig. 7, it results that for V1 at H = 0.300m, the losses on soil vary by a parabola, the minimum being at a working speed v_l=0.35kmh$^{-1}$, for all peripheral speeds of the active bodies. The lowest values are recorded for the highest peripheral speed v_{p3}=1.08 ms$^{-1}$.
Analyzing Fig. 8, it results that for V1 at H=0.450m, the losses on soil are ascending. For the peripheral speed \(v_p = 1.08 \text{ ms}^{-1} \), the values are slightly lower. For this height, the losses values are lower than for H=0.300m, at the same working speeds and the same peripheral speeds.

For the losses on soil of inflorescences corresponding to T2 at H=0.300m, for a correlation coefficient \(R = 0.909 \), the function (12) has the form:
\[
P_s(v_l, v_p) = -9.433 + 50.307 v_l - 6.252 v_p - 23.362 v_l^2 - 9.045 v_l v_p + 5.813 v_p^2 \quad (15)
\]

For the losses on soil of inflorescences corresponding to T2 at H=0.450m, for a correlation coefficient \(R = 0.774 \), the function (12) has the form:
\[
P_s(v_l, v_p) = 2.162 + 6.169 v_l + 0.378 v_p + 3.854 v_l^2 - 11.32 v_l v_p - 4.232 v_p^2 \quad (16)
\]

In Figs. 9 and 10, it is graphically represented the variation of losses on soil depending on the working speed (\(v_l = x_1 \)) and of the peripheral speed of the combs (\(v_p = x_2 \)), at a working height H=0.300m and respectively H=0.450m, using the functions given by the relations (15) and (16). On the axes corresponding to these speeds (\(x_1 \) and \(x_2 \)) appears the number of intervals.
In the Fig. 11 and Fig. 12, for the T2 version of combs, corresponding to each heights (H=0.300m and H=0.450m) was graphically represented the variation of the losses on the ground for each peripheral speed of combs ($v_{p1}=0.52$ ms$^{-1}$, $v_{p2}=0.76$ ms$^{-1}$, $v_{p3}=1.08$ ms$^{-1}$), depending on the working speed, (using the same relations 15 and 16).

![Fig.11 Variation of inflorescences losses on soil for T2, depending on v_r, at H=0.300m](image1)

Analyzing Fig. 11, it results that for T2 at the height of harvest H=0.300m, the losses on soil increase with the working speed. For the highest peripheral speed $v_{p3}=1.08$ ms$^{-1}$ are recorded slightly lower values.

Analyzing Fig. 12, it results that for T2 at H=0.450m, the losses on soil vary as follows:
- for the working speed $v_l \leq 0.55$km$^{-1}$ the losses are minimal for $v_{p1}=0.52$ ms$^{-1}$;
- for the working speed 0.55km$^{-1} \leq v_l \leq 0.70$km$^{-1}$ the losses are minimal for $v_{p2}=0.76$ ms$^{-1}$;
- for the working speed 0.70km$^{-1} < v_l \leq 1.22$km$^{-1}$ the losses are minimal for $v_{p3}=1.08$ ms$^{-1}$.
6. Conclusions

Analyzing comparatively the variation of losses on soil in case of using the V1 and T2 versions of combs scrapers, the following have resulted:
- from the point of view of the rate of the loss on the ground (which should record as lower values), is advantageous the highest peripheral speed of the active bodies ($v_p=1.08 \text{ms}^{-1}$);
- for the same working conditions (harvesting height, working speed, peripheral speed of active bodies) the rate of the losses on the ground is smaller in the case of using the variant T2 of combs scrapers than in the case of variant V1;
- in the case of chamomile inflorescences harvesting at the working height $H=0.3 \text{ m}$, the losses rate remains low for a low working speed (approx. $v_l =0.55 \text{kmh}^{-1}$) and a high peripheral speed of the working bodies ($v_p=1.08 \text{ ms}^{-1}$), for the variant T2 being recorded lower values of about 12%;
- in the case of chamomile inflorescences harvested at the working height $H=0.45 \text{ m}$, the losses rate has advantageous values (<6%) for the variant T2, for a working speed of $v_l =0.5\ldots0.7 \text{ kmh}^{-1}$ and for the same high peripheral speed of working bodies ($v_p=1.08 \text{ ms}^{-1}$);

The results obtained from this analysis of experimental data represents an important prerequisite in order to achieve effective specialized equipment.

REFERENCES

[2] Leon Sorin Muntean, Plante medicinale si aromatic cultivate in Romania (Medicinal and aromatic plants cultivated in Romania), Editura Dacia Cluj, 1990;
[4] Ivan Salamon Chamomile Biodiversity of the Essential Oil Qualitative-Quantitative Characteristics, Innovations in Chemical Biology, pp.89-93, Publisher Springer Netherlands 2009;

[12] M. Gheorghe, F. Draganescu, Considerații privind alegerea formei funcțiilor de regresie multivariabile, lucrările Sesiunii științifice “Promovarea tehnologiilor moderne in construcția de mașini” (Considerations for choosing the form of multivariable regression functions, the works of Scientific Session “Promoting the modern technologies in machine construction”), IPB, București, 1979;

[13] M. Gheorghe, F. Draganescu, Restrictii privind structura programelor experimentale, lucrările Sesiunii științifice “Promovarea tehnologiilor moderne in constructia de masini” (Restrictions on the structure of experimental programs, the works of Scientific Session “Promoting the modern technologies in machine construction”), IPB, București, 1979;

[14] I. Placinteanu, Teoria erorilor de măsurare și metoda celor mai mici pătrate (Theory of measurement errors and the least squares method), Editura Tehnică, 1957;

[16] Z.I. Rumsiski, Prelucrarea matematica a datelor experimentale (Mathematical processing of experimental data), Editura Tehnica, București, 1974;

[17] M. Gheorghe, F. Draganescu, Considerații privind stabilirea nivelurilor variabilelor în programele experimentale de cercetare, lucrările Sesiunii științifice “Promovarea tehnologiilor moderne in constructia de masini” (Considerations on determining levels of the variables in experimental research programs, the works of Scientific Session ”Promotion of modern technologies in machine building”), IPB, București, 1979;

[18] F. Draganescu, s.a., Considerații privind stabilirea continutului experiențelor programelor de cercetare, lucrările Sesiunii științifice “Promovarea tehnologiilor moderne in constructia de masini” (Considerations on defining the content of experiments of the research programs, the works of Scientific Session "Promotion of modern technologies in machine building"), IPB, București, 1979;
