SYNTHESIS AND CHARACTERIZATION OF GEOPOLYMER BINDERS FROM FLY ASH

Irina CĂTĂNESCU1, Maria GEORGESCU2, Alina MELINESCU3

Valorification of wastes from industrial or mining activities has become an important area on research. A category of materials in which these wastes can be recovered, are geopolymer binders.

The present paper brings some data on the synthesis and characterization of geopolymer binder masses of fly ash and NaOH solution. Fly ashes with different compositional and dispersional characteristics and different dosages of NaOH were used as well as different conditions of synthesis.

The formation processes and binder properties have been studied in correlation with compositional and processing factors. In order to investigate these, compressive strength tests and physical methods of investigation, as FTIR spectroscopy, X-ray diffraction were used.

Keywords: Fly ash, Geopolymer binders, Compressive strength

1. Introduction

In the last years, more several experimental researches have as their object efficient valorization, with low cost, of fly ashes, which result in large quantities, by burning coal in the power stations and storage which has negative implications on the environment.

1 PhD student, Faculty of Applied Chemistry and Material Science, University POLITEHNICA of Bucharest, e-mail: cati_catanescu@yahoo.com
2 Prof., Faculty of Applied Chemistry and Material Science, University POLITEHNICA of Bucharest, Romania
3 Lecturer, Faculty of Applied Chemistry and Material Science, University POLITEHNICA of Bucharest, Romania
Besides using fly ash as the admixture in the blended cements - limited in some countries (including our country too), it can be considered as material aluminosilicate that, by alkaline activation, leads to obtaining of the binders that are different from those considered classics, namely geopolymer type binders. Geopolymers are poorly crystalline materials (almost amorphous), similar from the point of view of composition to the zeolites, and are formed by the polymerization processes of silicate and aluminate groups favored, in general, by higher temperature [1-5].

Their synthesis from aluminosilicate materials, as fly ash or metakaolin, take place by the so-called geopolymerization process, which involves polycondensation phenomena of aluminate and silicate groups with formation of - Si-O-Al- type bonds.

Geopolymerization mechanism consists, by different authors [4-7], in the following main stages:
- dissolution of aluminosilicate material in alkaline medium, with the destruction of the surface links, in highly alkaline pH conditions, with movement in solution of hydrated silicate and aluminate ions;
- polycondensation of silicate and aluminates ions, with the participation of alkali ions and formation of a gelic product, type sialate;
- evolution of sialate groups into more organized structural formations, type of poly (sialate-siloxo) [4]; the gel formation is passing, in time at semi-crystalline compounds.

\[
\begin{align*}
\text{Orthosialate} & \quad \xrightarrow{\text{NaOH/KOH}} \quad \text{(Na,K)-Polysialate} \\
(Si_2O_3Al_2O_2)_n + 3nH_2O & \xrightarrow{\text{NaOH/KOH}} n(OH)_{3-Si-O-Al-(OH)}_3 \\
(n(OH)_{3-Si-O-Al-(OH)}_3 & \xrightarrow{\text{NaOH/KOH}} (Na,K)-Si-O-Al-O-O_, + 3nH_2O
\end{align*}
\]
The alkalis compounds are necessary for the dissolution of silica and alumina from initial solid component and favor the polycondensation process. Alkaline cations and Ca\(^{2+}\) cations is assumed to be embedded in the reaction products, so physical, in structural cavities, and chemical, bound by Al-O and Si-O bonds[4].

Silico-aluminate materials used in geopolymers performing can be: fly ash, granulated blast furnace slag, calcined clay (metakaolin), together eventually, with some admixtures as: cement kiln dust, lime etc. Commonly used alkaline activators are: NaOH, Na\(_2\)CO\(_3\), K\(_2\)CO\(_3\), K\(_2\)SO\(_4\) [1-13]. The nature of these influences the geopolymerisation process and the properties of the obtained product. Usually, geopolymerisation processes involves initial thermal treatment of reactants mixture [1-13] that enhance these processes. Less used is the curing at room temperature, when the geopolymerisation processes are slower [14].

The present paper brings some data regarding synthesis and properties of some geopolymer type binders from Romanian fly ashes, having specific compositional and dispersional characteristics, activated with NaOH. For synthesis were considered the initial hydrothermal treatment at different temperatures (60 – 100\(^\circ\)C). Geopolymerisation processes and reaction products formation, in correlation with initial hydrothermal treatment and subsequent storage in air, were investigated by X-ray diffractions and FTIR spectroscopy.

The binding properties were appreciated by the mechanical strengths determination, for the same conditions.

2. Experimental

Two types of fly ash from Romanian power stations were considered. Their chemical composition is shown in the Table 1. Some compositional differences can be mentioned:

- amount (SiO\(_2\) + Al\(_2\)O\(_3\) + Fe\(_2\)O\(_3\)): 80.66% - fly ash T and 84.11% –fly ash D
- the ratio SiO$_2$ / Al$_2$O$_3$: 2.25 - fly ash T and 2.17 –fly ash D;
- CaO content: 10.01% - fly ash T and 6.69% –fly ash D;
- LOI: 1.10% - fly ash T and 2.69% - fly ash D.

Table 1

<table>
<thead>
<tr>
<th>Fly ash type</th>
<th>LOI</th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>Fe$_2$O$_3$</th>
<th>CaO</th>
<th>MgO</th>
<th>SO$_3$</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1.10</td>
<td>48.93</td>
<td>21.72</td>
<td>10.01</td>
<td>10.70</td>
<td>2.61</td>
<td>1.21</td>
<td>__</td>
<td>__</td>
</tr>
<tr>
<td>D</td>
<td>2.69</td>
<td>51.5</td>
<td>23.68</td>
<td>8.93</td>
<td>6.69</td>
<td>1.99</td>
<td>1.10</td>
<td>0.50</td>
<td>2.18</td>
</tr>
</tbody>
</table>

The ashes were ground at corresponding specific surface areas of 5900cm2/g approximately. The alkaline activator was NaOH – as solutions 8M and 12M. The liquid/solid ratio of binding pastes was 0.39, for all compositions (table 2).

Table 2

<table>
<thead>
<tr>
<th>Fly ash type</th>
<th>S_a (cm2/g)</th>
<th>NaOH concentration</th>
<th>Curing conditions</th>
<th>Liquid/solution ratio</th>
<th>Indicative of cured samples in air, for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>T19</td>
<td>5952</td>
<td>12M</td>
<td>24 hours \rightarrow 60$^\circ$C</td>
<td>0.39</td>
<td>T19.3 T19.4 T19.5</td>
</tr>
<tr>
<td>T20</td>
<td>24 hours \rightarrow 80$^\circ$C</td>
<td>T20.3 T20.4 T20.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T21</td>
<td>atm</td>
<td>T21.3 T21.4 T21.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T22</td>
<td>8M</td>
<td>T22.3 T22.4 T22.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T23</td>
<td>24 hours \rightarrow 60$^\circ$C</td>
<td>T23.3 T23.4 T23.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24</td>
<td>24 hours \rightarrow 80$^\circ$C</td>
<td>T24.3 T24.4 T24.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D36</td>
<td>5908</td>
<td>12M</td>
<td>24 hours \rightarrow 60$^\circ$C</td>
<td>D36.3 D36.4 D36.5</td>
<td></td>
</tr>
<tr>
<td>D37</td>
<td>24 hours \rightarrow 80$^\circ$C</td>
<td>D37.3 D37.4 D37.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D38</td>
<td>24 hours \rightarrow 100$^\circ$C</td>
<td>D38.3 D38.4 D38.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D39</td>
<td>atm</td>
<td>D39.3 D39.4 D39.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D40</td>
<td>8M</td>
<td>D40.3 D40.4 D40.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D41</td>
<td>24 hours \rightarrow 60$^\circ$C</td>
<td>D41.3 D41.4 D41.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The cylindrical samples with $d=h=20$ mm were prepared by pressing, and cured for geopolymerisation and hardening in the next conditions: 24 hours – hydrothermal treatment at 60$^\circ$C, 80$^\circ$C and 100$^\circ$C (in the tight closed box, with relative humidity approximately 100%) + n days (till 28) in the air (T=20±2$^\circ$C and RH= 55-60%).

On the hardened samples were determined compressive strengths, after thermal treatment at different periods of time, and respectively, after subsequent storage in the air.
Information on the geopolymerisation process and reaction products formation was obtained by X-ray diffraction analysis and FTIR spectroscopy on the geopolymer samples, after different curing periods of time.

3. Experimental results

Mechanical strengths of the geopolymer type binders, synthesized in different conditions, are presented in Figs. 1 and 2.

![Compressive strengths of the geopolymer binders resulted from fly ash T and 12M/8M NaOH solution: $S_a = 5952 \text{ cm}^2/\text{g}$;](image1)

![Compressive strengths of the geopolymer binders resulted from fly ash D and 12M, 8M NaOH solution: $S_a = 5908 \text{ cm}^2/\text{g}$;](image2)

Higher compressive strengths are achieved for geopolymer compositions made from fly ash T, compared with those of type D masses.

The main compositional characteristics of T fly ash, which contribute to the better binding properties of the derived geopolymers, are:
- a greater CaO content (10.7% value is very close to the limit of the fly ashes type C and respectively of type F);
- a smaller loss on ignition, suggesting a lower carbon content, a high carbon content which could negatively influences the fly ash reactivity.

The initial thermal treatment, of precursor mixtures, at temperatures up to 100°C, favors the development of compressive strengths, even after short periods of time (the first hours), better under conditions of high temperatures (100°C), in good correlation with literature data [1, 4]. Otherwise, for both categories of the masses, the best mechanical strengths were developed by the compositions T21 and D38, initial treated at 100°C (see Figs.1 and 2). The continuous curing up to 7 days (28 days), in air, leads to further increases of strengths, for all compositions,
explained by the structuring processes of reaction products, which continues in these conditions.

Curing the samples at normal temperature (20±2°C) determines a slow development of compressive strengths. Their values, determined for 7 and 28 days, are closely to those of the samples initial treated, at 100°C. This also confirms the accelerator effect of thermal treatment of these mixtures, on compressive strengths development, in correlation with the geopolymerisation process.

Concentration of NaOH solution influences the mechanical strength development. A higher NaOH concentration (12 M) favors the development of better mechanical strength, as can see in Fig. 3.

This influence is in correlated with a higher solubility of alumino-silicates compounds in concentrated alkaline solutions [4], the geopolymerisation process being also, favored.

Information on the geopolymerisation processes evolution and reaction products formation that ensure the mechanical strengths development, are obtained of FTIR spectroscopy and X-ray diffraction analysis.
Fig. 4. FTIR spectra of fly ashes T and D and geopolymer binder prepared from these ashes and NaOH 12M, after thermal treatment at 60°C for 24 hours, and subsequent storage in air for 6 days respectively 27 days: a- fly ash T; b- fly ash D

FTIR spectra of the fly ashes show the following absorption bands (Fig. 4):
- 1075 cm\(^{-1}\) - attributed to the asymmetric vibrations of bonds Si-O and Al-O [1];
- 465 cm\(^{-1}\) - attributed to the deformation vibrations of Si-O bonds;
- 797 cm\(^{-1}\) - attributed to Al-O bonds vibration.

Fig. 5. FTIR spectra of fly ashes and geopolymer binders prepared from these, by activation with NaOH 12M, after thermal treatment at 80°C for 24 hours, and subsequent storage in air for 6 days respectively 27 days: a- fly ash T, b- fly ash D
The main changes that are recorded on the geopolymer IR spectra, after hydrothermal treatment and subsequent storage in air (Fig. 4-6 T 21.1-T21.3), consist in:

- the shifting of the main band (1075 cm\(^{-1}\)) to smaller wave numbers (1003-998 cm\(^{-1}\)), in parallel with the decrease of the its amplitude, which suggests the silica solubilisation and polycondensation processes, with partial substitution of SiO\(_4^{4-}\) with AlO\(_4^{5-}\) groups, in the newly formed network [3]; the valences compensation is achieved by Na\(^+\) ions; the shift is significantly for the thermal treated samples and practically does not change, for the storage in air;
- the disappearance of the band at 797 cm\(^{-1}\), what point out the consumption of tetrahedral coordinated Al [3];
- the appearance of a two new bands, at about 3450 and 1650 cm\(^{-1}\), which belonging to the vibration bonds H-O and H-OH from aluminate-silicates hydrates, formed as reaction products;
- a well outlined band, at about 1459-1500 cm\(^{-1}\), is attributed to C-O bond from alkaline carbonates formed by atmospheric CO\(_2\) action.

X-ray diffraction analysis, performed on a geopolymer binders from fly ashes T and D, hydrothermal synthesized at 60°C, 80°C and 100°C - 24 hours and then kept in the laboratory atmosphere (air), up to 7 and 28 days respectively, are presented in Figs. 7 and 8.
On the X-ray spectra of the geopolymer a small halo is present, in the range of $2\theta = 20^\circ - 40^\circ$, which suggest the presence of poorly crystalline phases (nano-sized) - geopolymeric gel. As crystalline compounds are found the fly ash main components – quartz, mullite, hematite, and some reaction products, these compounds, of zeolites type (hershelit $\text{NaAlSi}_2\text{O}_6\cdot3\text{H}_2\text{O}$) [11], phylipsit $\{\text{KCa}$(\text{Si}_5\text{Al}_3)\text{O}_{16}\cdot6\text{H}_2\}$ have a certain crystallization degree. Theirs formation is favored by hydrothermal treatment [13]. Beside these products, the X-ray spectra suggest the presence of alkali carbonates too, in good correlation with IR spectra [16].
4. Conclusions

- The geopolymer type binders prepared by alkaline activation of the fly ashes with NaOH solution can develop good mechanical strengths, that are influenced by the compositional features and the processing conditions too.

- A great CaO and vitreous phase content, as well as small quartz content in fly ash T, exert a favourable influence on geopolymerisation and mechanical strengths development.

- A higher concentration of NaOH solution favours the geopolymerisation process and higher mechanical strengths development.
- The initial thermal treatment of the fly ash + NaOH solution mixtures, at temperatures up to 100°C, favours the geopolymerisation process and the development of mechanical strengths, even after short periods of curing (2 hours).
- The curing at normal temperature (20±2°C) determine a slow development of mechanical strengths, as consequence of a very slow geopolymerisation process.

Acknowledgements

This study has been made within the PhD Programme founded by European Social Fund (ESP) (Contract no. POSDRU/6/1.5/S/19).

REFERENCES

6. S. Kumar, R. Kumar, T.C. Alex, A. Bandopadhyay and S.P. Mehrotra – Influence of reactivity of fly ash on geopolymerisation – Advances in Applied Ceramics (2007), v. 106, n.3