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IMPLICIT CHAOS IN COMPLEX SYSTEMS IN THE FORM 
OF PERIOD DOUBLING THROUGH HARMONIC MAPPINGS  

Stefana AGOP1, Vladimir-Alexandru PAUN2, Gavril STEFAN1,  
Tudor–Cristian PETRESCU3, Maricel AGOP4, 6, Viorel-Puiu PAUN5, 6, * 

In the Multifractal Theory of Motion, in the form of Schrödinger – type 
“regimes”, non – linear behaviors of a complex system are analysed. Then, in the non 
- stationary case, symmetries of SL(2R)-type for structural units of any complex 
system can be highlighted. These become functional, for example in the form of period 
doubling "synchronization mode". This “mode” can mime a possible scenario toward 
chaos (period doubling scenario), without concluding in chaos (non – manifest 
chaos). 
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1. Introduction 

Theoretical modelling of complex systems is one of the best tools in 
understanding the formation, evolution and extinction of a wide range of natural 
phenomena, which transcend the border of various scientific areas: cosmology, 
physics, biology, economy, finances, computer science, human societies, the 
Internet etc. [1]. Analysing non-linear complex systems is not a simple task, as the 
nature of non-linear complex systems is understood as containing many interacting 
structural units whose individual interactions lead to a collective behavior [2]. The 
large number of interactions and the nonlinear properties of most natural systems 
often make the fractal approach to their description the best option in describing 
their evolution [3]. The evolution of non-linear complex systems usually leads to 
chaotic or turbulent dynamics. There are already a few well-established scenarios 
that can describe such systems, through: intermittences [4], period doubling [5], 
quasi-periodicity [6], sub-harmonic bifurcation avalanche [7]. In most cases, the 
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route to chaos is governed by well-defined control parameters which can transition 
the complex system to various stages of the chaotic dynamics.  

In recent years, the analysis of non-linear complex dynamics has also led to 
the proposal of novel scenarios of chaos, through mapping with discontinuities [8, 
9]. Moreover, for understanding the non-chaotic-chaotic transitions for coupled 
non-linear dynamic complex systems, non-chaos base states must be explained 
[10]. This reveals that the spectrum for the chaos analysis is vast and new and also 
that “outside the box” approaches are always needed to cover the multitude of 
possibilities offered by nature.  

In the present paper, considering the multifractal paradigm as being 
functional (in the form of Multifractal Theory of Motion), we analyse the implicit 
chaos in the form of period doubling, in complex systems through harmonic 
mappings from the usual space to the hyperbolic one. In such a conjecture, a 
possible scenario toward chaos in the form of period doubling, without concluding 
in chaos (non-manifest chaos) can be mimed. 

2. Mathematical Model 

The fundamental hypothesis postulates that the structural units’ dynamics 
of any complex system are described by continuous but non – differentiable curves 
(multifractal curves). Indeed, such an assumption is sustained by the following 
example, related to the interaction processes in a complex fluid: between two 
successive collisions, the trajectory of the complex fluid structural unit is a straight 
line. This trajectory becomes non – differentiable in the impact point. Considering 
that all the collision impact points form an uncountable set of points, it results that 
the trajectories of the complex fluid structural units become continuous and non – 
differentiable curves, i.e. fractal curves. Obviously, the reality is much more 
complicated, taking into account both the diversity of the particles which compose 
a complex fluid and the various interactions between them, in the form of 
double/triple collisions etc. Then, the complex fluid becomes multifractal. 
Extrapolating the previous reasoning for any complex system, it results that it can 
be assimilated to a multifractal. 

In such context, the dynamics of the non-linear complex system’s structural 
units can become operational in the multifractal paradigm through the Multifractal 
Theory of Motion, in the form of a Schrödinger equation of a multifractal type [2, 
11-14]: 

𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙𝛹𝛹 + 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑡𝑡𝛹𝛹 = 0 (1) 

where 

𝜕𝜕𝑡𝑡 =
𝜕𝜕
𝜕𝜕𝑡𝑡

,𝜕𝜕𝑙𝑙 =
𝜕𝜕
𝜕𝜕𝑋𝑋𝑙𝑙

,𝜕𝜕𝑙𝑙𝜕𝜕𝑝𝑝 =
𝜕𝜕
𝜕𝜕𝑋𝑋𝑙𝑙

𝜕𝜕
𝜕𝜕𝑋𝑋𝑝𝑝

, 𝑖𝑖 = √−1, 𝑙𝑙,𝑝𝑝 = 1, 2, 3 (2) 
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In the previous relations, the significations of the terms are the following: 
a) 𝑡𝑡 is the non-multifractal time coordinate and plays the role of the 

affine parameter of the motion curves;  
b) 𝑑𝑑𝑑𝑑 is the scale resolution; 
c) 𝑋𝑋𝑙𝑙 are the multifractal spatial coordinates;  
d) 𝜆𝜆 is a constant coefficient imposed by the differential-non-

differential scale transition; 
e) 𝑓𝑓[𝛼𝛼(𝐷𝐷𝐹𝐹)] is the singularity spectrum of order 𝛼𝛼; 
f) 𝛼𝛼 is the singularity index;  
g) 𝐷𝐷𝐹𝐹 is the fractal dimension of the motion. 

There are various modes for defining the fractal dimension: the Hausdorff-
Besikovitch fractal dimension, Kolmogorov fractal dimension [14] etc. (these are 
the most frequently employed). Choosing one such definition and operating it in the 
framework of complex system dynamics, the value of the fractal dimension shall 
be arbitrary and constant for the entirety of the dynamic analysis pertaining to the 
complex system. In such a context, for correlative processes in complex system 
dynamics it is commonly established that 𝐷𝐷𝐹𝐹 < 2 while, for non – correlative 
processes in complex system dynamics, 𝐷𝐷𝐹𝐹 > 2. 

It is noted that, when complex system dynamics are described through the 
singularity spectrum of 𝑓𝑓[𝛼𝛼(𝐷𝐷𝐹𝐹)], then the Scale Relativity Theory will become 
operational on multifractal manifolds through the Multifractal Theory of Motion. 
Conversely, when working with a singular fractal dimension 𝐷𝐷𝐹𝐹, then the Scale 
Relativity Theory will become operational on a monofractal manifold, through the 
model of Nottale [11]. Thus, the benefits of the Multifractal Theory of Motion are 
evident [15, 16]:  

a) the areas of complex systems dynamics that are portrayed by a specific 
fractal dimension; 

b) the number of areas in the complex systems dynamics, for whom the fractal 
dimensions are found in a span of values; 

c) the types of universality in the complex systems dynamics, even in the cases 
when regular or strange attractors exhibit diverse aspects. 
New data regarding the non-linear behaviors of complex systems, 

complementary to the class of solutions associated to equation (1) (generated 
through initial and boundary conditions), can also be given on the base of the 
transformation groups (which leave invariant the equation (1)) [17, 18]. These 
transformation groups constitute, in the most general case of the one – dimensional 
non-linear complex system dynamics, a realization of the Lie group 𝑆𝑆𝑆𝑆(2𝑅𝑅)[19], 
through the action [17, 18]: 

𝑡𝑡′ →
𝛼𝛼𝛼𝛼 + 𝛽𝛽
𝛾𝛾𝛾𝛾 + 𝛿𝛿

, 𝑋𝑋′ →
𝑋𝑋

𝛾𝛾𝛾𝛾 + 𝛿𝛿
   (3) 
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where 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 and 𝛿𝛿 are real elements. 
 Let it be considered that, in accordance with general mathematical 

procedures from [17, 18], the complex system dynamics may be generally described 
with the help of a 2 X 2 matrix with real elements. In any complex system, it is 
obvious that the problem revolves around a family of such matrices, each of them 
describing the dynamics of any complex system entity (structural unit). The 
interactions between the complex system entities can then be expressed through 
relations between the representative matrices. These relations must contain certain 
parameters which characterize the structure of the complex system, adequate to the 
description of the complex system dynamics. 

Therefore, the matrix which generates an anharmonic curve [17, 18] is a 2 
X 2 matrix with real elements. This matrix has the form: 

M� = �𝛼𝛼 𝛽𝛽
𝛾𝛾 𝛿𝛿� , 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿 ∈ ℝ (4) 

The elements of matrix M�  contain both the physical parameters and the 
possible initial conditions of the complex system dynamics, but in an unspecified 
form. More precisely, the elements of matrix (4) depend on the scale resolution in 
the sense of the Multifractal Theory of Motion [12, 13].  

A set of such matrices, with variable elements, may be admitted as relevant 
for any complex system dynamics. In a particular case, a fundamental spinor set 
can be used, given by 2 X 2 matrices which describe the complex system dynamics 
[20]. 

Now, any 2 X 2 matrix of form (4) can be written as a linear combination 
with real coefficients, which implies two special matrices: the unity matrix 𝑈𝑈� and a 
null – trace matrix 𝐼𝐼, such that: 

𝑀𝑀� = 𝜆𝜆𝑈𝑈� + 𝜇𝜇𝐼𝐼 (5) 
The involution 𝐼𝐼 has some important properties, such as the ones that its 

squared form is a multiple of 𝑈𝑈� and the fixed points of its homographic action are 
the ones of matrix 𝑀𝑀� . 

In (5), we have the liberty to choose a parameterization in which, up to a 
sign, the squared form of  𝑈𝑈� can be the unity matrix. In this case, the elements of 𝐼𝐼 
may be expressed with only two parameters. These parameters represent the 
asymptotic directions of matrix 𝑀𝑀� . If the asymptotic directions are complex, in the 
form 𝑢𝑢 ± 𝑖𝑖𝑖𝑖, the representation of the matrix 𝐼𝐼 through asymptotic directions is of 
a spherical type. Satisfying the above properties implies, for the matrix 𝐼𝐼, the form: 

𝐼𝐼 =
1
𝑣𝑣
�−𝑢𝑢 −𝑢𝑢2 − 𝑣𝑣2

1 𝑢𝑢
� , 𝐼𝐼 = −𝑈𝑈�  (6) 

When analyzing this problem, the proposed model allows an explicit 
differential description of the complex system dynamics, through matrix geometry, 
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identic to the metric geometry of space at a certain moment - the hyperbolic 
geometry of second type [17, 18]. 

The representation of complex system dynamics through 2 X 2 matrices 
leads to a natural matrix of the matrices’ space. For example, the Killing – Cartan 
metric of 𝑆𝑆𝑆𝑆(2𝑅𝑅) – type algebra of these matrices may be chosen [17, 18]. The 
basic co – vectors of such geometry are, in the general case of matrix (4), given by 
the 1-differential forms:  

𝜔𝜔1 =
𝛼𝛼𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽𝛽𝛽

𝛥𝛥
, 𝜔𝜔2 =

𝛼𝛼𝛼𝛼𝛼𝛼 − 𝛾𝛾𝛾𝛾𝛾𝛾
𝛥𝛥

, 𝜔𝜔3 =
𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛾𝛾𝛾𝛾𝛾𝛾

𝛥𝛥
 

𝛥𝛥 = 𝛼𝛼𝛼𝛼 − 𝛽𝛽2 
(7) 

In the parameterization given through (5) and (6), (7) becomes: 

𝜔𝜔1 =
1
𝑣𝑣
𝑑𝑑𝑑𝑑 + 𝑠𝑠𝑠𝑠𝑠𝑠2 𝛷𝛷

𝑑𝑑𝑑𝑑
𝑣𝑣2

− 𝑠𝑠𝑠𝑠𝑠𝑠𝛷𝛷 𝑐𝑐𝑐𝑐𝑐𝑐 𝛷𝛷
𝑑𝑑𝑑𝑑
𝑣𝑣2

 

𝜔𝜔2 = 2
𝑢𝑢
𝑣𝑣
𝑑𝑑𝑑𝑑 + 2 𝑠𝑠𝑠𝑠𝑠𝑠2 𝛷𝛷

𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣2

+ 2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛷𝛷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑢𝑢𝑢𝑢𝑢𝑢

𝑣𝑣2
 

𝜔𝜔3 =
𝑢𝑢2 + 𝑣𝑣2

𝑣𝑣
𝑑𝑑𝑑𝑑 + 𝑠𝑠𝑠𝑠𝑠𝑠2 𝛷𝛷

(𝑢𝑢2 − 𝑣𝑣2)𝑑𝑑𝑑𝑑 + 2𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑣𝑣2

+ 𝑠𝑠𝑠𝑠𝑠𝑠𝛷𝛷 𝑐𝑐𝑐𝑐𝑐𝑐 𝛷𝛷
2𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − (𝑢𝑢2 − 𝑣𝑣2)𝑑𝑑𝑑𝑑

𝑣𝑣2
 

(8) 

where: 
𝑡𝑡𝑡𝑡𝑡𝑡𝛷𝛷 =

𝜇𝜇
𝜆𝜆

  (9) 

Related to these co – vectors, the metric is given by the squared form: 

𝑑𝑑𝑠𝑠2 = 𝜔𝜔1𝜔𝜔3 − �
𝜔𝜔2

2
�
2

= 𝑑𝑑𝛷𝛷2 − 𝑠𝑠𝑠𝑠𝑠𝑠2 𝛷𝛷
𝑑𝑑𝑢𝑢2 + 𝑑𝑑𝑣𝑣2

𝑣𝑣2
  (10) 

As such, for as long as the complex system is defined by the core property 
that the proposed model admits as being essential – which is the complex system 
dynamic – its description mode is a metric geometry. Then, the metric is given 
through (10), where Φ is an arbitrary “phase”, and 𝑢𝑢 and 𝑣𝑣 are “coordinates” 
obtained from the (local) dynamic of the complex system, in a previously described 
method. 

Such a metric approach for the complex system dynamics can be certainly 
delegated to harmonic maps, from the complex system to the space. As soon as the 
mapping mode of the complex system on the space available its disposal is solved, 
the quantities Φ, 𝑢𝑢 and 𝑣𝑣 – and, the elements of the matrix family which represent 
the complex system – are obtained. In principle, a “position” function will be 
sufficient to correctly define a specific quantity of the complex system. 
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The difficulty of representing the complex system in this form is overcome 
though the harmonic map 𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2,𝑋𝑋3) → 𝝃𝝃 = (𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3) which can provide a 
set of quantities as functions of spatial coordinates. Let it be considered the 
functional corresponding to the harmonic mapping principle (for details see [21]): 

𝐽𝐽 =
1
2
�𝑑𝑑3𝑿𝑿�|ℎ| ℎ𝑖𝑖𝑖𝑖(𝑿𝑿)

𝜕𝜕𝜉𝜉𝜇𝜇𝜕𝜕𝜉𝜉𝜈𝜈

𝜕𝜕𝑋𝑋𝑖𝑖𝜕𝜕𝑋𝑋𝑙𝑙
𝑔𝑔𝜇𝜇𝜇𝜇(𝝃𝝃) (11) 

In (11), ℎ is the space metric and 𝑔𝑔 is the associated metric of the complex 
system. Cancelling the first-degree variation of this functional, in relation to the 
spatial coordinates, gives the sought harmonic map. Taking into account the fact 
that the space is Euclidean and using (9) for the metric tensor associated to the 
complex system, for the integrand of (11) the expression will be: 

�|ℎ| ℎ𝑖𝑖𝑖𝑖(𝑿𝑿)
𝜕𝜕𝜉𝜉𝜇𝜇𝜕𝜕𝜉𝜉𝜈𝜈

𝜕𝜕𝑋𝑋𝑖𝑖𝜕𝜕𝑋𝑋𝑙𝑙
𝑔𝑔𝜇𝜇𝜇𝜇(𝝃𝝃) ≡ 𝜕𝜕𝑙𝑙𝛷𝛷𝛷𝛷𝑙𝑙𝛷𝛷 − �

𝑠𝑠𝑠𝑠𝑠𝑠 𝛷𝛷
𝑣𝑣

�
2

[𝜕𝜕𝑙𝑙𝑢𝑢𝑢𝑢𝑙𝑙𝑢𝑢 + 𝜕𝜕𝑙𝑙𝜈𝜈𝜈𝜈𝑙𝑙𝜈𝜈] (12) 

Introducing the complex variables 
ℎ = 𝑢𝑢 + 𝑖𝑖𝑖𝑖,   ℎ� = 𝑢𝑢 − 𝑖𝑖𝑖𝑖, (13) 

the relation (12) becomes: 

�|ℎ| ℎ𝑖𝑖𝑖𝑖(𝑿𝑿)
𝜕𝜕𝜉𝜉𝜇𝜇𝜕𝜕𝜉𝜉𝜈𝜈

𝜕𝜕𝑋𝑋𝑖𝑖𝜕𝜕𝑋𝑋𝑙𝑙
𝑔𝑔𝜇𝜇𝜇𝜇(𝝃𝝃) ≡ 𝜕𝜕𝑙𝑙𝛷𝛷𝛷𝛷𝑙𝑙𝛷𝛷 − (𝑠𝑠𝑠𝑠𝑠𝑠𝛷𝛷)2 �

𝜕𝜕𝑙𝑙ℎ𝜕𝜕𝑙𝑙ℎ�

�ℎ − ℎ��
2� (14) 

where the usual notation 𝜕𝜕𝑙𝑙 denotes the gradient. 
In the case of the dynamics’ synchronization of complex system’s structural 

units, i.e. 𝛷𝛷 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.≠ 𝑛𝑛𝑛𝑛, with 𝑛𝑛 = 0,1,2 …, the Euler - equations corresponding 
to the functional (14) are: 

�ℎ − ℎ��∇(∇ℎ) = 2(∇ℎ)2 (15) 
which admits 

ℎ = 𝑖𝑖
cosh𝜒𝜒 − sinh𝜒𝜒𝑒𝑒−𝑖𝑖Ω�

cosh𝜒𝜒 + sinh𝜒𝜒𝑒𝑒−𝑖𝑖Ω�
, 𝜒𝜒 =

𝜓𝜓
2

 (16) 

as a solution. 
Relation (16) represents harmonic mappings from the usual space to the 

Lobacevsky plane, having the metric 

𝑑𝑑𝑠𝑠2 = −
𝑑𝑑ℎ𝑑𝑑ℎ�

�ℎ − ℎ��
2 = −

𝑑𝑑𝑢𝑢2 + 𝑑𝑑𝑣𝑣2

𝑣𝑣2
  (17) 

as long as 𝜒𝜒 (and thus 𝜓𝜓) are solutions of a Laplace – type equation for the free 
space. 

3. Results and Discussion 

Therefore, space-time "synchronization modes" in phase and amplitude of 
the complex system structural units imply group invariances of a 𝑆𝑆𝑆𝑆(2𝑅𝑅) type. 
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Then, period doubling emerges as a natural behavior in the complex systems 
dynamics (see Figures 1 a-d where 𝑟𝑟 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝜒𝜒,  |ℎ| ≡ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and Ω� = Ωt  at 
various scale resolutions, given by means of the maximum value of Ω , i.e., Ω𝑚𝑚𝑚𝑚𝑚𝑚). 

 

 

 

a 

b 

c 



246         S. Agop, V.-A. Paun, G. Stefan, T.–C. Petrescu, M. Agop, V.-P. Paun 

 
Fig. 1 a-d. A period doubling (a, b, c, d) “synchronization mode” of complex structural units (3D, 

contour plot, time – series and reconstructed attractors) for the scale resolution given by 
 Ω𝑚𝑚𝑚𝑚𝑚𝑚 = 2. 

As it can be observed in Figures 1 a-d, the natural transition of a complex 
system is to evolve from a normal period doubling state towards damped 
oscillating and a strong modulated dynamics. The complex system never reaches 
a chaotic state but it permanently evolves towards that state. There is a periodicity 
to the whole series of transitions, the system evolves through period doubling, 
damped oscillations even reaching in some cases an internment state but it never 
reaches a pure chaotic state. The evolution of the systems sees a “jump” into a 
period doubling oscillation state and the transition resumes towards a quasi-chaotic 
state.  

 
Fig. 2: Oscillation frequency of the complex system as a function of a scale resolution chosen by 

Ω𝑚𝑚𝑚𝑚𝑚𝑚 Bifurcation Map 
The Bifurcation Map is presented (Fig. 2) where again it is observed that 

the complex system starts from a steady state (double period state) and evolves 

d 
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towards a chaotic one (Ω𝑚𝑚𝑚𝑚𝑚𝑚 = 2) but it never reaches that state. For each periodic 
transition scenario, it is possible to observe the system swiping through all the 
previously mentioned dynamic states. Therefore, there is an overall-periodicity 
with a continuous increase in oscillation amplitude. 

Let us note that the mathematical formalism of the Multifractal Theory of 
Motion implies various operational procedures (invariance groups, harmonic 
mappings, groups isomorphism, embedding manifolds etc.) with quite a number of 
applications in complex systems dynamics [22-33]. 

4. Conclusions  
In the non - stationary case of Schrödinger equation of a multifractal type, 

a symmetry of 𝑆𝑆𝑆𝑆(2𝑅𝑅) type is highlighted, situation in which the period doubling 
"synchronization mode" among the structural units of a complex system becomes 
functional. In such a manner, a possible scenario toward chaos (period doubling 
scenario), without concluding in chaos (nonmanifest chaos) can be mimed. 

Also, for each periodic transition scenario, it is observed that the system is 
swiping through all the previously mentioned dynamic states, in paper. 
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